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Abstract—Today, process-aware systems are ubiquitous.
They are built by leveraging process languages for both busi-
ness and implementation perspectives. In the typical context
of a Web Services-based Service-oriented Architecture, the
obvious choice to implement service orchestrations is still the
Business Process Execution Language (BPEL). For BPEL, a
variety of open source and commercial engines have emerged.
Although the BPEL standard document defines a set of static
analysis rules which should be checked by engines prior to
deployment to be standard conformant, previous work revealed
that most engines are not capable of revealing all violations of
these constraints, resulting in costly runtime errors later on. In
this paper, we aim to improve the static analysis conformance of
BPEL engines. We implement the tool BPELlint that validates
71 static analysis rules of the BPEL specification, show that
the tool can be easily integrated into the deployment process
of existing engines, and evaluate its performance to measure
the effect on the time to deploy. The results demonstrate that
BPELlint can improve the static analysis conformance of BPEL
engines with an acceptable performance overhead.
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I. INTRODUCTION

Nowadays, processes are ubiquitous. We use them to
model our businesses, specify our implementation and even
provision our cloud services [1], [2]. As a result, building
such process-aware systems is critical for industry today [3].
A straight-forward means to build such systems is to define
the processes using an available process language and then
execute instances of the process on an available runtime, a so
called process engine. One popular language for processes is
the Business Process Execution Language (BPEL) [4] defined
in an OASIS standard that fits very well to build service
orchestrations within a Web Services-based Service-oriented
Architecture (SOA) [5]. BPEL is an XML-based domain
specific programming language for such orchestrations with
its own syntax and semantics. To ensure that a process
conforms to this language, one can use the XML schema
defined by the standard to validate the syntax. But the
semantics cannot be checked automatically. There is a list
of rules defining static semantics of BPEL, but the rules are
given in prose only. Nevertheless, the BPEL specification
explicitly states that every engine that implements the BPEL
standard must implement these static semantics rules [4]. We

refer to this as the static analysis conformance. As shown
in [6], the support for static analysis conformance of BPEL
engines varies widely.

This is a critical issue, because when the error is not
detected by the engine as part of its static analysis check,
instances of the erroneous process will be executed, resulting
in costly runtime errors. It is well known that the earlier an
error is found, the cheaper it is to fix [7]. Because of this, we
aim to improve the static analysis conformance of the BPEL
engines by providing a supporting tool with the ability to
evaluate the static semantics of BPEL processes. The general
idea is to implement a validation tool that checks these rules
as a preprocessing step as part of the deployment process [6].
Hence, we consider three requirements that our approach has
to meet:

R1 Effectiveness The tool MUST validate the static
analysis rules of the BPEL specification.

R2 Integration The tool MUST be integrable into the
deployment process of an engine.

R3 Efficiency The tool MUST perform its validations
within an acceptable time frame.

The paper is structured as follows. It starts with related
work in Section II on process languages, static analysis of
BPEL, and the quality of process models. The tool BPELlint
is described in Section III. Section IV elaborates on the
fulfillment of R1 by evaluating that BPELlint covers 71 out
of 94 of the BPEL static analysis rules, Section V fulfills
R2 by providing an easy to integrate API, and Section VI
fulfills R3 by providing a performance benchmark proving
that BPELlint is usable as part of the deployment process.
Finally, Section VII concludes the paper.

II. RELATED WORK

Related work starts with the most prominent process
languages to build process-aware systems in Section II-A. In
Section II-B, we have a closer look at the state-of-the-art of
static analysis of BPEL processes and compare the situation
to that of BPMN. We conclude with an overview of assuring
quality in process models in Section II-C.



A. Process Languages

Today, there is a plethora of process languages available for
various purposes with specific strengths and weaknesses [1].
The three most well-known ones are the Business Process
Execution Language 2.0 (BPEL) [4], the Business Process
Model and Notation 2.0 (BPMN) [8] and the XML Process
Definition Language 2.2 (XPDL) [9]. All three languages
are defined as a standard, ship with execution semantics and
their serialization format is XML. BPMN and XPDL are
both graph-oriented and do have a visual notation, whereas
BPEL is block-oriented and has none [10]. In this work, we
focus on BPEL but also compare the situation of BPEL to
that of BPMN, as BPMN is currently becoming more and
more important and show that our approach can be adapted
to further process languages.

B. Static Analysis of BPEL

This section comprises available static analysis approaches
to validate BPEL processes, the role of editors in the
static analysis, and the situation of the BPMN specification
regarding static analysis rules.

Static Analysis Approaches of BPEL Processes: The
static analysis of BPEL has been studied extensively. The
typical approach is to transform the process into a formal
model on which to evaluate certain conditions creating
feedback on the original process model. The approaches
given in Table I are categorized according to the used BPEL
version, applied formalism and amount of static analysis rules
of BPEL they validated. Three use Petri nets or the Petri net
extension called open workflow net (oWFN), two are built
upon the Eclipse Modeling Framework (EMF), another two
use finite state machines (FSM), and the rest uses either a
labeled transition system (LTS), the language Promela, or
guarded finite state automata (GFSM). However, all except
BPEL2oWFN do not state that they check the static analysis
rules of BPEL. And BPEL2oWFN only checks these rules as
part of the translation to open workflow nets, i.e., as a side
product. WofBPEL does check a single rule, but at the time it
was published, the static analysis rules were not defined yet,
hence the authors could not have stated it explicitly. To sum
up, there are a lot of different approaches of validating BPEL
processes, but the validation of the static analysis rules has
been neglected so far.

Editors as Static Analysis Tools: In general, BPEL
processes are either automatically generated or created using
a visual editor, e.g., Eclipse BPEL Designer. These editors
may also implement static analysis validations. In this work,
however, we focus on stand-alone tools to improve the static
analysis conformance of BPEL engines that are independent
of the used editor and engine.

Comparison to BPMN: The BPMN standard docu-
ment [8] is at least as complex and lengthy as the BPEL speci-
fication. But in contrast, it does not comprise an extensive list
of relevant checks to be fulfilled by implementing tools as it is

Table I
STATIC ANALYSIS OF BPEL PROCESSES, PARTLY TAKEN FROM [6, P. 34]

Approach BPEL Formalism SA Rules

WofBPEL [11] 1.1 Petri nets (1)
BPEL2oWFN [12], [13] 2.0 oWFN 56
Heinze et al. [14] 2.0 oWFN
BPEL Data Flow Analyzer [15] 2.0 EMF
BPEL Validator with OCL [16], [17] 1.1 EMF
Yang et al. [18] 2.0 FSM
Ye et al. [19] 2.0 FSM
LTSA-WS [20] 1.1 LTS
VERBUS [21] 1.1 Promela
EA4B and WSAT [22] 1.1 GFSA

defined in the BPEL specification. Therefore, each developer
of a BPMN modeler or engine has to determine upfront,
which rules have to be fulfilled in order to create or execute
BPMN correctly [23]. In a recent work we have shown that
this has also implications on the standard conformance of
BPMN engines [24].

C. Process Model Quality

Adherence to static analysis rules is not the only aspect
which distinguishes the quality of process models. Moreover,
research in the area of assessing and measuring the quality of
models is manifold. This is due to the fact that the notion of
quality can be defined in various ways and further subdivided
into several aspects.

Our work on analyzing BPEL is an example for quality
aspects closely related to standard conformance. For instance,
a process (or tool) which fulfills all requirements stated in
the official standard document is regarded as a good process
model. In [23], [25] we presented a related approach to
check the standards conformance for BPMN process models.
Besides static analysis of process models, the analysis of the
execution semantics is often assessed for models based on
process languages as well. A common goal, regardless which
process language is used, is to provide formal semantics and
to guarantee the correctness of executability, especially the
absence of deadlocks and livelocks (e.g., [12]–[14], [26]–
[29].

Other works use well-known software quality definitions
and metrics, and adapt these metrics to process languages.
Often the ISO/IEC 25000 SQuaRE series [30] is the ba-
sis for these efforts. Quality is divided into various sub-
characteristics herein. For example Lenhard tackles the
portability characteristics in his works [31], [32]. Another
application of this approach is the work of Mendling [33]
who tries to measure and predict the error probability of
processes.

Moreover there are more general approaches which provide
guidelines to construct process models (e.g., [34]) or holistic
approaches which take the business perspective into account
(e.g., [35]).



Figure 1. API of BPELlint

III. BPELLINT - THE BPEL VALIDATION TOOL

The BPEL specification contains 94 static analysis rules
which specify the static semantics in addition to the syntax
which is defined in the XML schema [4, Appendix B].
According to the specification, “conformant implementations
MUST perform basic static analysis” [4, p. 13], and may
even perform more advanced static analysis. However, the
support for checking these static analysis rules varies greatly
in a lot of engines as shown in [6]. Only a single engine out
of six that have been evaluated implemented the evaluated
subset of 71 rules fully. The other five covered none - or
only 3, 21, 38, or 53 rules fully.

To implement these rules, i.e., to fulfill R1, we have
implemented a tool called BPELlint that covers 71 out
of 94 static analysis rules of BPEL. BPELlint is open
source and publicly available1. This section describes its
API (Section III-A), internal structure (Section III-B), the
behavior (Section III-C) and its limitations (Section III-D).

A. API

Fig. 1 gives an overview on the proposed inputs and
outputs, i.e., the API, of the tool.

Input: In the simplest cases the input is a single process
file. However, processes often refer to other processes, or
rely on other artifacts such as WSDL or XML Schema files.
Because of this, the tool needs to access these files as well
as part of a package.

Output: The output is a ValidationResult which com-
prises all findings detected during validation: It is stored
which files have been analyzed in a list of Files. For each
violation found in the course of the validation a Violation
should be created and stored in the ValidationResult. Each
Violation consists of two strings describing the violated
constraint and providing a message, and a Location to
simplify locating the issue in the affected file. The Location
should be provided in machine-interpretable format for which
we propose to use an XPath query to identify an XML

1For further information, have a look at the project homepage at https:
//github.com/uniba-dsg/BPELlint

node in a document, and in a human-readable format for
which we propose to use a simple row/column schema.
Besides violations we propose that the ValidationResult also
comprises a list of Warnings which can be used to inform
the user about minor issues and findings such as ignored
conventions or best practices.2

B. Structure

In this section, we present the architecture of BPELlint.
We structured the classes into two parts (see Fig. 2), namely
the console-based user interface (ui) that makes use of the
API and the core that implements the API in terms of the
three packages.

Figure 2. Package Dependencies

User Interface (API Usage): The ui package implements
a simple command-based user interface on top of the API
defined in Section III-A. BPELlint accepts the path to a BPEL
file which acts as a starting point for a check. Moreover,
you can also pass in a folder. In this case, BPELlint will
search for every BPEL file in this folder recursively and
start a check for each found one. We do not pass in a whole
package as specified in the API, as on a local file system,
creating a zip file is not necessary. The output is printed
onto the console. Each line of the output represents either a
violation or a warning. This scheme is easily understandable
for both, humans and machines.

2The resulting Java design can be found at https://github.com/uniba-dsg/
BPELlint in the path src/main/java/api



Application Logic (API Implementation): The applica-
tion logic comprises three packages, namely, the package
imports that loads all files into the model and the package
validators that performs the actual validation by using the
model. The internal structure of these packages is shown in
Fig. 3 and now detailed in the following.

Package imports: The imports package consists of
classes to load the BPEL file along with its imported other
XML files. Its logic is detailed in Section III-C.

Figure 3. More detailed Package Diagram of BPELlint

Package model: The model package is a thin read-only
layer over the XML structure of a BPEL process and all its
required and imported documents. It is subdivided into three
sub packages, namely, BPEL, WSDL and XSD, each of them
containing the classes related to their file type. By far the
largest package is the BPEL one, as it contains a class for
every BPEL activity. To group these classes, we have come
up with four categories. The BPEL features are separated
into message exchange activities (mex), fault-, compensation-
and termination-handlers (fct), variable concerning features
(var), and flow elements (flow). Other BPEL model classes
that did not fit in the subpackages are directly located in the
BPEL package.

The major advantage of this model is that it implements
and facilitates navigation logic. For instance, when you have
an invoke activity, you can easily navigate to the correspond-
ing WSDL operation and even to the XSD definition of the
message that is to be sent. This allows for clear and concise
rule definitions to be used during validation and enables
reuse.

Package validators: There are three different types of
validators, namely, the XML validators, the XSD validators
and the rule validators. The XML validators check whether
a file is an XML file and that it is well-formed. The XSD
validators build upon that and only verify if the file is valid to
its XSD schema. We have built three different XSD validators,
for BPEL, WSDL and XSD files. The rule validators are

Figure 4. Bird-eyes view on the behavior of BPELlint

the core of BPELlint, as we have built one for each of the
covered static analysis rules of the BPEL specification. They
are built using the capabilities of the model enhanced with
additional queries that are unique to the rule. When any of
these validators finds a violation, this violation is added to
the output of the API call.

C. Behavior

In addition to the structure of BPELlint, we present its
behavior in this section. A high-level view is given in Fig. 4
as a BPMN [8] process. It shows that the logic consists
of two main steps. The step load model creates the model
and adds the visited files to the output whereas validate
model uses the model and checks it for any rule violations.
In both steps, violations and warnings can be found and
added to the output. The only difference is, that if there are
violations already after the load model step, the validation
model step will not be executed. In the following, both steps
are described in more detail.

Figure 5. BPEL, WSDL and XSD Import Graph

Load Model: Loading and creating the model works on
the basis of the BPEL import graph which is shown in Fig. 5.
The nodes are either BPEL, WSDL or XSD files whereas the
edges are import relationships. The start node is the BPEL
node on the left. A BPEL process must import at least a
single WSDL file and can import XSD files. WSDL files can
import other WSDL files and XSD files, while XSD files can
only import other XSD files. As the static analysis rules of
BPEL differentiate between files that are directly imported in
BPEL and files that are transitively imported, we outlined the
difference in the import graph as well. In this step, each file
is visited to check for three things: 1) the file exists, 2) the
file is an XML file and is well-formed, and 3) the file is valid
against its XML schema. If any of these conditions is not
met, the model cannot be created correctly and a violation



will be created. As the validation step makes the assumption
about the model that every file can be found and that it is
valid to its XML schema, the validation step is not performed
if any violation has been created during the Load Model step.
Therefore, if any violations have been collected after visiting
every node in the import graph, BPELlint immediately returns
these violations as its output and the validation terminates.

Validate Model: The BPEL specification defines 94
static analysis rules3 in [4, Appendix B]. Similar to [6], we
only cover a major subset (71 out of 94) of the static analysis
rules. To cover the remaining rules, we would have to take
engine-specific extensions as well as the evaluation of XPath
expressions into account. The evaluation of expressions refers
to XPath expressions directly defined in the original BPEL
process to model the data flow. Evaluating such expressions
statically to determine whether the results have an expected
type is rather hard.

The validation implementation in Java uses a customized
version of the XML library XOM4 v1.2.7. We added the
ability to determine the row and column of every XML node.
This allows us to provide location information for warnings
and violations. The XPath expression to determine the XML
node is computed based on the ancestors.

To implements the rules, we analyzed the rules in detail and
derived a rule specification on which the Java implementation
is based on. The rule specification consists of the different
violation types of a specific rule and a procedural listing on
how to determine any violations. This listing was used to
gain an understanding how to validate the rule, and acted as
a starting point for the implementation.

D. Limitations

Our tool has a few limitations. First, as described above,
not every rule is covered. The rules that cover XPath expres-
sions in the process itself and vendor-specific extensions are
neglected. Second, due to the XML schema validations, we
cannot cover BPEL processes with proprietary extensions
violating the standard XSD, as our tool does not know these
extensions.

IV. EFFECTIVENESS EVALUATION OF BPELLINT

In this section, we check whether BPELlint is effective,
fulfilling R1. The central idea is to evaluate the tool with
test data that is sufficiently complete to determine any false
negatives and false positives.

A. Test Data and Method

The test data consists of multiple test sets as shown in
Table II. The valid processes can be used to determine that

3The rules are numbered from 1 to 95, but rule 49 is missing
4The customized version of XOM can be found at https://github.com/

uniba-dsg/xom which extends http://www.xom.nu/.
5The tests can be found at https://github.com/uniba-dsg/betsy
6The tests can be found at http://forge.ow2.org/plugins/scmsvn/index.php?

group id=266

Table II
TEST DATA

Type Valid Processes Erroneous Processes

betsy5 211 762
Orchestra6 4 92
MEDIUM taken from [36] 2 -
LARGE taken from [37] 2 -

BPELlint does not find false positives, while the erroneous
processes can be used to ensure that there are no false
negatives. For the erroneous processes, we have to determine
upfront which rules they violate. The main test set is that
of betsy which consists of 211 valid7 processes and 762
erroneous processes. Both valid and erroneous processes
have been created methodically to ensure that they cover
both the feature combinations and any rule combination
[6], [39], [40]. This allows reasoning that if BPELlint is
valid according to this test set, it effectively implements the
validation. To have an even larger set of tests, we added
three additional test sets as well as shown in Table II. The
test assertions for the erroneous processes, i.e., the violated
rules, have already been determined for the betsy tests as
part of [6], so we only had to do this for the Orchestra test
set by hand. In fact, BPELlint passes all the tests in our test
sets correctly, hence, can be considered to be implement the
covered rules effectively.

B. Unused Test Data in Related Work

As shown in [6, Table I], there are additional test sets
used in other approaches. But [11], [17] use BPEL 1.1
processes, which are unsuitable for our BPEL 2.0 validator.
The tool BPEL2oWFN [13] has 66 BPEL 2.0 processes in
total, however, nine do not import any WSDL file, 53 do not
conform to the BPEL 2.0 namespace, one is no well-formed
XML file and last two were just not importable. Only a single
process was checkable, and valid. Consequently, these tests
could not be used as well.

C. Threats to Validity

Regarding threats to validity, the test set to evaluate the
correctness of the implementation is large, but cannot contain
every BPEL activity in any location, as this would result in an
infinite number of test cases. This is an issue of completeness
of the test data, which has already been discussed in [6], [39],
[40] which have created the used betsy test set. In addition,
we created the test assertions of the erroneous processes of the
orchestra test set by hand. This may introduce human error,
however, as the main test is already considered complete, the
Orchestra test set is merely used for a secondary evaluation
to strengthen the primary one with third-party processes that
not have been created by at least one of the authors. Hence,
any errors would not cause the evaluation to miss its goal.

7The valid test cases have been used and described in [38]–[40]



V. ENGINE INTEGRATION EVALUATION OF BPELLINT

To integrate BPELlint in the deployment process of
available BPEL engines, i.e., to fulfill R2, the tool needs to
fit both technically and functionally.

Every available open source as well as proprietary BPEL
engine we know of is implemented in the Java programming
language. The same is true for most available BPMN engines.
Hence, as our tool is also implemented in Java, BPELlint
can be used natively, resulting in straight-forward integration
from a technical point of view.

In terms of functionality, the tool needs to answer and
output the basic question of whether a checked process is
valid or not. I.e., the engine can decide whether a process
should be rejected during deployment or not. However, in
order to facilitate debugging of invalid processes two further
questions should be answered:

1) If the process is invalid, what problems occurred? and
2) What are the exact locations of the problems?
Therefore we have designed the API as described in

Section III-A to determine the correctness of the process
and to answer these questions. Moreover, as the API is
process language independent, it can be reused for validating
processes for different languages as well.

VI. EFFICIENCY EVALUATION OF BPELLINT

In this section, we check whether our tool fulfills R3,
namely, that the checks are done efficiently to avoid a major
overhead. This is important because the tool is aimed to
be integrated as a gatekeeper for the deployment. And the
deployment is in many cases part of a larger build chain.
Hence, the longer the tool takes to check the process, the
longer the deployment process and the whole build and
release process will be. To verify the efficiency, we evaluate
three different performance characteristics of BPELlint: 1) the
absolute execution time on a typical developer machine,
2) the influence of the size of the BPEL process on time
complexity, and 3) the influence of the number of imported
WSDL and XSD files on time complexity. BPEL engines are
normally run on high-end servers that have fast hardware.
Hence, evaluating BPELlint on a developer machine marks
an upper bound, i.e., the worst case, in terms of absolute
execution time. Regarding time complexity, linear relations
are considered efficiently. In the following, we check whether
BPELlint is efficient regarding the definition above.

A. Benchmark

In this section, we describe how the benchmark is done
by specifying the workload that is executed with the test tool
that uses a specific method in a specified environment.

Environment: The benchmark is executed on a machine
with an i7-3520M@2.90GHz processor with four cores,
8 GB DDR3-800 RAM and a LiteOn IT LCT-256M3S
SSD. Software-wise, we use Windows 7 64bit and start
the benchmark directly from within IntelliJ IDEA 14.

Test Tool: The test itself is written as a JUnit8 v4.11
test that makes use of JUnitBenchmarks9. JUnitBenchmarks
allows performance benchmarking of Java code. With this
tool, we can specify the number of rounds the benchmark
should be repeated to get stable results which are presented
as the average and standard deviation of the test execution
time. As the Java virtual machine takes time to warm-up,
i.e., load classes or do an on-the-fly compilation to machine
code, we can specify a specific number of rounds which
execution times are discarded.

Workload: Our benchmark uses a workload consisting of
eleven different processes as shown in Table III, which differ
in their size of the BPEL process and the number of imported
WSDL and XSD files. The processes are numbered using the
first elven letters of the alphabet. Three are taken from the
betsy test set, one from the BPEL specification [4], another
three from the example processes of the OpenESB10, and
the last four from either [36] or [37]. They range from very
simple BPEL processes receiving and replying only a single
message up to very large ones that are hardly manageable by
human developers. The size of the BPEL process is measured
in terms of the number of XML elements and attributes, a
measure taken from [41]. This metric is more precise than
measuring the number of lines, and allows measuring the
complexity of XML documents. With these processes, we
are able to evaluate the relation between processing time and
process size and number of imported documents.

Table III
THE DIFFERENT WORKLOADS

ID Source BPEL nodes WSDL files XSD files

A betsy 42 1 0
B [4, Sec. 11.6.4] 166 1 0
C betsy 59 2 0
D betsy 72 1 1
E OpenESB 368 4 1
F OpenESB 268 4 1
G OpenESB 187 3 2
H [36] 1080 7 7
I [36] 1378 9 7
J [37] 4792 10 8
K [37] 4938 12 8

Test Method: To ensure that the results are valid,
we benchmark each of the eleven processes 110 times,
subtracting the first 10 runs to take the warm-up time of
the JVM into account. Thus, we get 100 rounds of data,
for which we calculate the average time and the standard
deviation. Moreover, we disable garbage collection during
the test run, allowing the garbage collection to run only in
between tests to not mess with our results. In addition, we
disabled logging completely.

8See http://junit.org/ for further information.
9See http://labs.carrotsearch.com/junit-benchmarks.html v0.7.2 for further

information.
10See http://www.open-esb.net/



B. Results

The results of the performance benchmark are shown in
Table IV. For each of the workloads, we have measured and
plotted the average runtime and the standard deviation in
seconds. The relative standard deviation is the ratio between
the standard deviation and the average, showing how much
the value is alternating. Because the time values are quite
small, the relative standard deviation is high for five processes
(B,C,E,F,G), but for the remaining six processes the value is
in an acceptable range again (between 0% and 7%). Hence,
we consider the values stable enough, and work with the
average in this chapter only.

Table IV
PERFORMANCE BENCHMARK RESULTS IN SECONDS

ID average standard deviation relative standard deviation

A 0.01 0 0%
B 0.03 0.01 33%
C 0.05 0.02 40%
D 0.02 0 0%
E 0.12 0.05 42%
F 0.08 0.03 38%
G 0.07 0.03 43%
H 0.15 0.01 7%
I 0.19 0.01 5%
J 0.66 0.04 6%
K 0.80 0.04 5%

Absolute Time: As it can be seen in the second column
in Table IV, the average time is at most 800 milliseconds for
the largest workload. Our benchmark environment is a laptop,
whereas BPEL engines normally run on dedicated servers.
Within a similar benchmark environment, the deployment
times of six process engines varied between 2.5 seconds and
18.2 seconds [42]. Putting these numbers in relation, the
overhead for validating the processes A to I ranges between
0.05% and 7.6% depending on the used engine. But only if
the really large processes J and K are deployed on the fastest
engines a relevant impact on the deployment time occurs
(32% prolonged deployment time). As a result, we can say
that our implementation is efficient in most cases - and also in
the worst case scenario tested the deployment time has risen
only by one third. Therefore, the absolute numbers do not
cause an impact on deployment as the numbers should drop
even more for these workloads in production environments.
Even when the server shares some resources, BPELlint only
requires a single core.

Relation Between Time and BPEL Elements: Next, we
aim to investigate the time complexity of BPELlint. To
achieve this, we relate the average time to the number of
BPEL elements as shown in Fig. 6. The graph shows that
there is a linear relationship (i.e., O(n)) between the time and
the number of BPEL elements. It is a very strong relationship
as the R2 value is 0.9825, hence, almost 1.0 which would
be a perfect match.

Figure 6. Relationship between average execution time in seconds and
number of BPEL elements

Relation Between Time and Imported Files: In addition
to the relationship between average execution time and the
number of BPEL elements, the relationship between the
average execution time and the number of imported files is
interesting as well. A correlation graph is shown in Fig. 7. The
data clearly shows an exponential relationship (i.e., O(cn))
between the number of files and the execution time. Hence,
the more imported files, the longer BPELlint takes to validate
a BPEL package. It is a high relationship as the R2 value is
0.8346, but not as strong as the relationship with the number
of BPEL elements.

Figure 7. Relationship between average execution time in seconds and
number of imported files

Summary: The results show that BPELlint can be
integrated into the deployment process as a pre-processing
step with only a minor impact on the time to deploy. One
needs to be aware that BPELlint is slowing down the more
files the BPEL file imports. This may be a limiting factor,
however, a process with 20 imported files still is checked in
at most 0.8 seconds on our development machine. Because
of this, an influence on a high-performance machine in
production is neglectable in a long continuous deployment
chain.



C. Limitations
We did not measure memory consumption. This is intended,

as we only require this tool for deployments, and afterwards,
the memory can be freed again. Only the time is critical, as
it will be part of any build or deployment process.

D. Threats to Validity
We did only benchmark our tool with correct processes.

This, however, is a feature as well, because a positive process
will invoke more code than an erroneous one, as in case
of violations during the Load Model step, the tool returns
earlier by skipping further validations.

VII. CONCLUSION AND FUTURE WORK

In this work, we have postulated three requirements that
have to be fulfilled by a tool that is intended to improve the
static analysis conformance of BPEL engines. Moreover, we
have built an API and a tool called BPELlint that fulfills these
three requirements: the tool implements 71 out of the 94 static
analysis rules of the BPEL specification, the Java API enables
the tool to be integrable into existing BPEL engines, and the
validation is done efficiently within at most 0.8 seconds on a
typical developer machine, having only a minor impact on the
whole deployment step. Therefore, BPELlint can be put as a
preprocessing step in the deployment process to effectively
and efficiently improve the static analysis conformance of
existing BPEL engines.

Future work comprises the implementation of the remain-
ing 23 static analysis rules, the performance improvement of
the time complexity regarding the number of imported files,
and the integration of our tool in BPEL engines. Besides,
we are planning to use the presented process-language
independent API to check and improve the static analysis
conformance of BPMN processes as well.
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