
Workflow Management Systems Benchmarking:
Unfulfilled Expectations and Lessons Learned

Vincenzo Ferme†, Jörg Lenhard∗, Simon Harrer‡, Matthias Geiger‡, and Cesare Pautasso†
†Faculty of Informatics, USI Lugano, Switzerland, {firstname.lastname}@usi.ch

∗Department of Mathematics and Computer Science, Karlstad University, Sweden, joerg.lenhard@kau.se
‡Distributed Systems Group, University of Bamberg, Germany, {firstname.lastname}@uni-bamberg.de

Abstract—Workflow Management Systems (WfMSs) are a
type of middleware that enables the execution of automated
business processes. Users rely on WfMSs to construct flexible
and easily maintainable software systems. Significant effort has
been invested into standardising languages for business processes
execution, with standards such as the Web Services Business
Process Execution Language 2.0 or the Business Process Model
and Notation 2.0. Standardisation aims at avoiding vendor lock-
in and enabling WfMS users to compare different systems.
The reality is that, despite standardisation efforts, different
independent research initiatives show that objectively comparing
WfMSs is still challenging. As a result, WfMS users are likely
to discover unfulfilled expectations while evaluating and using
these systems. In this work, we discuss the findings of two re-
search initiatives dealing with WfMSs benchmarking, presenting
unfulfilled expectations and lessons learned concerning WfMSs’
usability, reliability, and portability. Our goal is to provide advice
for practitioners implementing or planning to use WfMSs.

Index Terms—Workflow Management Systems, Standards,
Lessons Learned, Evaluation Research

I. INTRODUCTION

Workflow Management Systems (WfMSs) automate the
execution of business processes [1]. They are a widely used
middleware technology with many open-source and commercial
products available1. The complexity of WfMSs makes it diffi-
cult for users to compare and select the right WfMS for their use
case. The most critical part is probably the language in which
a user can model workflows. To this end, several organisations
proposed standards, as for example the Organization for the
Advancement of Structured Information Standards (OASIS)
with the Web Services Business Process Execution Language
(WS-BPEL) [2], or the Object Management Group (OMG) with
the Business Process Model and Notation (BPMN) [3]. These
standards define the language that can be used to implement
workflows and the execution lifecycle of the workflow instances.
They are meant to clarify the exact scope, building blocks,
constraints and semantics of the language in a precise and
unambiguous fashion. As a result, the users may freely select
a WfMS with respect to the standard it supports.

Unfortunately, in many real-world WfMS, this assumption is
flawed in many ways, e.g., inconsistencies [4], [5] and limited
support of the standards [6], [7].

1See https://en.wikipedia.org/wiki/List of BPMN 2.0 engines, last visited
on March 6, 2017

This work aims to provide guidance for practitioners (e.g.,
users and vendors of WfMSs) by highlighting key issues to con-
sider during WfMSs evaluation and by presenting WfMSs that
provide suitable approaches. The lessons learned summarised
in this extended abstract are derived from the evidence reported
in a number of studies that use specific WfMSs, e.g. [4], [6],
[8]–[16], which are the result of two independent research
initiatives (Betsy [17] and BenchFlow [18]). The BPMN 2.0
WfMSs we consider here are Activiti, Camunda, and jBPM,
which according to the vendor websites, are widely used in the
industry. Further products claiming to support BPMN 2.0 were
also evaluated but could not be integrated in our evaluation
approaches due to various reasons such as licencing issues or
missing standard compliance [8]. For WS-BPEL, our lessons
learned are based on the usage of Apache ODE, OpenESB,
bpel-g, Orchestra, Petals ESB, and three commercial WfMSs
whose names we cannot disclose. The data collected during our
research are publicly available on an interactive dashboard2.

II. UNFULFILLED EXPECTATIONS AND LESSONS LEARNED

During the analysis we recognised a number of items
related to WfMSs usability, reliability, and portability [19] for
which we found pitfalls. We also identified WfMSs that avoid
the pitfalls by following what we consider a good approach
(Table I). In the following, we discuss five major items that
we identified.

A. Usability Findings

1) Correctness Checking during Deployment:
WS-BPEL [2] and BPMN 2.0 [3] define rules and constraints

for determining whether modelled workflows are correct.
WS-BPEL explicitly lists 94 rules named static analysis
rules, describing issues that any standard compliant WfMS
should detect at workflow deployment time. As reported in
Table I (A1), many WfMSs do not reject invalid workflows
on deployment [12]. Thus, undetected workflow errors may
lead to failures of the WfMSs at runtime, which is costly.
In some cases of erratic workflows, the execution did not
crash observably, but instead completed with non-deterministic
results.

2See http://peace-project.github.io, last visited on March 6, 2017

https://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines
http://peace-project.github.io


TABLE I
SUMMARY OF THE FINDINGS: + (GOOD APPROACH), − (PITFALL

PRESENT), ∼ (PITFALL PARTIALLY PRESENT), N/A (NO OBSERVATIONS)

WfMS A1 A2 A3 B C

BPMN

Activiti ∼ [10]
∼ [8] ∼ [10] + [8] N/A

∼ [8]
∼ [16]

Camunda ∼ [10]
∼ [8] + [10] + [8] N/A

∼ [8]
∼ [16]

jBPM ∼ [10]
∼ [8] ∼ [10] ∼ [8] N/A

∼ [8]
∼ [16]

WS-BPEL

Apache ODE ∼ [12] N/A + [20] − [11] ∼ [11]

OpenESB − [12] N/A − [20] + [11] ∼ [11]

bpel-g,
Orchestra,
Petals ESB

∼ [12] N/A + [20] + [11] ∼ [11]

3 Commercial N/A N/A N/A N/A ∼ [6]

2) Sensible Default Configuration:

Users expect a WfMS to be usable after a successful
installation, with the provided default configuration. Thus the
default configuration should enable a stable usage of the WfMS
and enable the execution of workflow models utilising any of
the features defined in the standard-based workflow language
which are supported by the system [19]. This is not always the
case, especially with BPMN WfMSs, as shown in Table I (A2).
Some WfMSs neither provide a sensible default configuration
nor clear guidelines to configure the system in the right way,
resulting in the usage of systems with an unstable configuration.
This might have a negative impact on the reputation of a
vendor, caused by misleading evaluations by the users regarding
the actual performance of a WfMS [21]. Furthermore, if the
configuration limits the execution of specific language features,
the users will consider the system unsuitable for specific use
cases they might have.

3) Availability of Management APIs:

WfMSs are usually deployed in production as part of a more
complex software ecosystem and typically interact with other
diverse systems. When deploying the WfMSs to production,
they are also usually integrated into a continuous integration and
delivery lifecycle [22]. To successfully achieve the integration,
users expect WfMS vendors to provide management APIs for
phases like workflow deployment, enactment and analysis. Such
management APIs are not present in the WS-BPEL WfMS
OpenESB, which rely more on file handling or web interfaces
and are provided, or partially provided, in a small subset of
BPMN WfMSs, reported in Table I (A3). The rest of the
evaluated systems, not reported in Table I, do not provide
them at all [20], [23]. Given the limitations or lack of WfMS
APIs, it is often hard to integrate the products in continuous
integration. E.g., it is not possible to automate testing of the
deployed workflows to quickly detect errors.

B. Reliability Findings - Isolation of Instance Execution

WfMSs usually execute many different workflow instances
concurrently and users expect that the instances do not influence
each other during the execution. Moreover, the stability and
integrity of a WfMS should not be impacted in any way
by the execution of workflow instances. The WfMSs should
restrict hostile instances from breaking out of their runtime
environment or crashing the WfMS [15], [24]. The WfMS
should also minimise performance influences of and among
different workflow instances [15], [24]. Missing isolation during
workflow instance execution is similar to a single process
crashing a complete operating system. This should not happen
and the WfMS should protect itself and the other running
instances, for example by detecting excessive resource usage
(e.g., RAM, CPU, I/O, Network) and suspending critical
workflow instances. Table I (B) reports the findings about
WS-BPEL WfMSs, showing that Apache ODE did not isolate
hostile instances in certain cases [11].

C. Portability Findings - Standard-based Portability

One of the goals of standardising workflow languages is
to establish a commonly agreed set of functionality and a
serialisation format for specifying the workflows [2], [3]. Users
of WfMSs supporting standard workflow languages expect to be
able to move workflows between any of the WfMSs supporting
the standard keeping the same execution semantics, protecting
themselves from vendor lock-in. Table I (C) shows that all of
the evaluated WfMSs are restricted in terms of standard-based
portability, mainly because of their limited and non-compliant
support of different language features [6], [8], [11], [16]. This
limits the advantage of relying on a standard and results in
WfMS-dependent workflows, introducing vendor lock-in.

III. CONCLUSION AND FUTURE WORK

In this work, we presented five lessons learned regarding
the usage of WfMSs with the aim of helping practitioners who
need to select a WfMS. The lessons learned are also relevant
for WfMS vendors, because they provide insights on how their
systems are perceived and can be improved. The limitations
we highlighted are related to usability: the lack of correctness
checking of workflow at deployment time, the lack of a sensible
default configuration and missing management APIs. We then
reported two additional limitations: the non-isolated execution
of workflow instances impacting the reliability of WfMSs and
the lack of support in standard-based portability of workflows.
We plan to extend the presented set to cover more quality
aspects and to provide a more comprehensive set of lessons
learned to help future practitioners.

ACKNOWLEDGMENT

This work is partially funded by the Swiss National Science
Foundation with the BenchFlow - A Benchmark for Workflow
Management Systems (Grant Nr. 145062).



REFERENCES

[1] F. Leymann and D. Roller, Production Workflow: Concepts and Tech-
niques. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.

[2] OASIS, Web Services Business Process Execution Language, 2007, v2.0.
[3] ISO/IEC, ISO/IEC 19510:2013 – Information technology - Object

Management Group Business Process Model and Notation, 2013, v2.0.2.
[4] M. Geiger and G. Wirtz, “BPMN 2.0 Serialization - Standard Compliance

Issues and Evaluation of Modeling Tools,” in 5th International Workshop
on Enterprise Modelling and Information Systems Architectures, Sep.
2013.

[5] E. Börger, “Approaches to Modeling Business Processes. A Critical
Analysis of BPMN, Workflow Patterns and YAWL,” Softw Syst Model,
vol. 11, no. 3, pp. 305–318, 2012.

[6] S. Harrer, J. Lenhard, and G. Wirtz, “Open Source versus Proprietary
Software in Service-Orientation: The Case of BPEL Engines,” in 11th

International Conference on Service-Oriented Computing (ICSOC), Dec.
2013, pp. 99–113.

[7] M. Geiger, S. Harrer, J. Lenhard, M. Casar, A. Vorndran, and G. Wirtz,
“BPMN Conformance in Open Source Engines,” in 9th IEEE International
Symposium of Service-Oriented System Engineering, Mar. 2015.

[8] M. Geiger, S. Harrer, J. Lenhard, and G. Wirtz, “BPMN 2.0: The state
of support and implementation,” Future Generation Computer Systems,
Jan. 2017.

[9] M. Skouradaki, D. H. Roller, F. Leymann, V. Ferme, and C. Pautasso,
“On the Road to Benchmarking BPMN 2.0 Workflow Engines,” in
6th ACM/SPEC International Conference on Performance Engineering.
ACM, 2015, pp. 301–304.

[10] M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, and A. van Hoorn,
“Micro-Benchmarking BPMN 2.0 Workflow Management Systems with
Workflow Patterns,” in 28th International Conference on Advanced
Information Systems Engineering, Jun. 2016, pp. 67–82.

[11] S. Harrer, J. Lenhard, and G. Wirtz, “BPEL Conformance in Open Source
Engines,” in 5th IEEE International Conference on Service-Oriented
Computing and Applications, Dec. 2012, pp. 237–244.

[12] S. Harrer, C. Preißinger, and G. Wirtz, “BPEL Conformance in Open
Source Engines: The Case of Static Analysis,” in 7th IEEE International
Conference on Service-Oriented Computing and Applications, Nov. 2014,
pp. 33–40.

[13] V. Ferme, A. Ivanchikj, C. Pautasso, M. Skouradaki, and F. Leymann, “A
Container-centric Methodology for Benchmarking Workflow Management
Systems,” in 6th International Conference on Cloud Computing and
Services Science, Rome, Italy, 2016.

[14] V. Ferme, M. Skouradaki, A. Ivanchikj, C. Pautasso, and F. Leymann,
“BenchFlow: Performance Benchmarking of BPMN 2.0 Open Source
Workflow Management Systems,” in Submitted to 29th International
Conference on Advanced Information Systems Engineering, 2017.

[15] S. Harrer, F. Nizamic, G. Wirtz, and A. Lazovik, “Towards a Robustness
Evaluation Framework for BPEL Engines,” in Proceedings of the 7th

IEEE International Conference on Service-Oriented Computing and
Applications (SOCA), Nov. 2014, pp. 199–206.

[16] J. Lenhard and G. Wirtz, “Portability of Executable Service-Oriented
Processes: Metrics and Validation,” Service Oriented Computing and
Applications, vol. 10, no. 4, Dec. 2016.

[17] M. Geiger, S. Harrer, and J. Lenhard, “Process Engine Benchmarking with
Betsy in the Context of ISO/IEC Quality Standards,” Softwaretechnik-
Trends (STT), vol. 36, no. 2, pp. 57–60, 2016.

[18] V. Ferme, A. Ivanchikj, and C. Pautasso, “A framework for benchmarking
BPMN 2.0 workflow management systems,” in 13th International
Conference on Business Process Management (BPM). Springer, 2015.

[19] ISO/IEC, ISO/IEC 25010:2011; Systems and software engineering –
Systems and software Quality Requirements and Evaluation (SQuaRE) –
System and software quality models, 2011.

[20] S. Harrer and J. Lenhard, “Betsy–A BPEL Engine Test System,” Otto-
Friedrich Universität Bamberg, Tech. Rep. 90, Jul. 2012.

[21] V. Ferme, A. Ivanchikj, and C. Pautasso, “Estimating the Cost for
Executing Business Processes in the Cloud,” in International Conference
on Business Process Management (BPM), 2016, pp. 72–88.

[22] C. Thiemich and F. Puhlmann, “An agile BPM project methodology,” in
11th International Conference on Business Process Management, 2013,
pp. 291–306.

[23] J. Lenhard, S. Harrer, and G. Wirtz, “Measuring the Installability of
Service Orchestrations Using the SQuaRE Method,” in Proceedings of

the 6th IEEE International Conference on Service-Oriented Computing
and Applications (SOCA). Kauai, Hawaii, USA: IEEE, Dec. 2013.

[24] F. Leymann, “BPEL vs. BPMN 2.0: Should You Care?” in 2nd Intl.
Workshop on BPMN, 2010, pp. 8–13.


