
Approaching a Methodology for Designing

Composite Applications Integrating Legacy

Applications Using an Architectural Framework

Helge Hofmeister?

BASF IT Services
Brussels, Belgium

Email: helge.hofmeister@basf-it-services.com

and

Guido Wirtz
Distributed and Mobile Systems Group

Otto-Friedrich Universität Bamberg
Bamberg, Germany

Email: guido.wirtz@wiai.uni-bamberg.de

Abstract. In this paper, an approach toward a problem-oriented de-
sign methodology for building composite applications is proposed. This
methodology allows for a business process based design that focuses on
re-using both existent enterprise services and legacy functionality. The
methodology takes a reference architecture into account that describes
how composite applications can be structured by means of layers and
which analysis and design patterns can be identified and applied on these
layers. The presented methodology aligns its phases on the architecture’s
single layers and on the dependencies that do exist between the patterns
of the single layers. These patterns are described as well.

? Contact



1 Introduction

Service oriented architecture (SOA) is an emerging spirit that promises to allow
agile software development by re-using existent functionality. The software ap-
plications that re-use functionality are called composite applications.
Inherent aspects of a SOA that should allow for such a re-assembling of function-
ality are transparent distribution of functional entities, modularization and fa-
cilitated (re-)ordering of functions. In this world, distributed functions are called
services. Transparent distribution and modularization are of course existent and
exploited for quite a time — even if the modularization of services in terms of
granularity is different e.g. to object orientation. So the promise of this approach
lies in the facilitated composition of services that comes with arising standards
as [1] or [2] that are orchestration mechanisms for web services. Together with
the SOA and the first service orchestration languages, people started thinking
of applying some sort of business oriented protocol (such as business processes)
to basic services and having automated support for the business process right
away. We believe that it requires more than technical standards to make this
dream come true. Furthermore, requirement analysis as well as the development
should be structured by reference architectures and development methodologies.

The quality of a system’s design is partially determined by the quality of the
basic components’ design. Thus, it is important not only to compose services but
also to compose well-designed services. This is why there do exist already so-
phisticated definition processes (such as [3]) or quality metrics (such as [4]) that
support the grouping of functionality into services. But despite of the advantages
of these approaches, services are, no matter how good they are designed in terms
of functional or informational cohesion or the degree of inter-service coupling, by
definition distributed across organizational borders, defined by different people
and executed by different agents. So it is not realistic to expect well-designed
services that are easily to be orchestrated by a business process that is translated
into a service orchestration language. Although we consider the SOA approach
and all the benefits of its agility as promising, we believe that business require-
ments that are expressed by business processes should not be restrained by the
incompatibility of services. As we derived our initial principles from the analy-
sis of case studies, we consider the heterogenity of application landscapes as a
crucial point – even if the landscape is wrapped using services. Hence, our aim
is to provide mechanisms that allow for a requirement engineering that is not
constrained by the definition of existing services.

After an overview of related work in section 2, the reference architecture and
its relevant patterns are outlined in section 3. Afterwards the design phases of
the design methodology are presenteded.



2 Related Work

There do exist a lot of software development methodologies, such as the Rational
Unified Process [5] or — still notably — the waterfall model [6]. However, these
methodologies describe software development methodologies while we focus here
only on the aspect of designing the blueprint for the software.
The workflow patterns presented by van der Aalst et al. [7], the workflow data
patterns by Russel at al. [8], the service interaction patterns by Barrows et al. [9]
as well as the enterprise integration patterns by Hohpe and Woolf [10] are the
patterns that can identified at the architecture’s layers.
Although not working with patterns but in terms service design, the work of
Reijers [4] and Feuerlicht [3] provide means for constructing services. The main
difference between the presented work and these service definition methodolo-
gies is that the presented methodology focuses on re-using functionality of an
existent application landscape rather than adding new services.
A comprehensive introduction to service oriented architectures is given in [11].
Multi-layered reference architectures are of course used as well in the area of
service oriented design. Notably is the work of Decker [12] who also describes
an intermediate layer between business processes and application services that
align process and IT. Whilst this work focuses on the semantical gap between
processes and services, this is one among several aspects one of the reference
architecture used here.
In the area of mapping workflow descriptions to each other Dehnert and van der
Aalst developed an approach to map business process descriptions onto workflow
descriptions using petri-nets [13]. This work is complementary to our work as
they describe how to derive the fourth level of business processes that are exe-
cutable by means of workflows. A methodology for migrating legacy applications
is given in [14]. The butterfly methodology is not focusing on integrating legacy
systems but on migrating them while operating the two worlds in parallel. Any-
way, some aspects of this approach such as the Chrysaliser for data migration
decribe similar concepts as the propsed reference architecture.

3 Architectural Framework for Composite Applications

According to Linthicum, Business Process Integration Oriented Application In-
tegration (BPIOAI) provides another layer on-top of existent system integration
concepts such as information oriented application integration (IOAI) or service-
oriented application integration (SOAI) (cf. [15]). This means, that system-
integration focused technologies such as e.g. JMS messaging (for IOAI) or HTTP-
based web services (for SOAI) are controlled by a top-level orchestration layer
that implements the business logic. Often, to this business-process implementa-
tion, it is referred to as composite application. While the composite application
implements the business logic, the used integration technologies solely provide
the means for calling application systems that in turn provide the logic that is
orchestrated by the composite application. To this part, not implementing any



business logic, it is referred to as coupling system.
In this chapter we present a reference architecture for composite applications
that leverages the development methodology. The framework is structured by
five layers that provide different abstraction levels for composite applications.
An overview of the architecture is given in figure 1.

Fig. 1. Architectural Layers

3.1 Layer Zero - Legacy Application Systems

Composite applications reorganize services as they are provided by application
systems in order to meet specific requirements. The application system’s services
are often predefined by the system’s vendor. Alternatively, it might be required
to define new services of an application system or to develop new agents that
provide new services. As a prerequisite, service oriented architectures need to rely
on a common protocol that is shared both by service consumers and providers
(cf. eg [15][p. 218]). How application services are technically connected to service
consumers, is described at the subsequent layer.

3.2 Layer One - Connectivity

In order to allow the usage of application system functionality in composite
applications, this functionality needs to be exposed in a common way. This ex-
posure is described at this layer of connectivity. Here, multiple state transitions
of the connected application system are exposed as services. So this layer pro-
vides connectivity in between the legacy application system and the composite
application by homogenizing the protocol that is used to call functions. From the



composite application point of view, this layer provides the application services.
Since this layer solely assures connectivity, the actual data format at this layer is
still dependent to the connected systems. The exchange and conversion of data
is provided at the subsequent layer.

3.3 Layer Two - Data Exchange and Data Transformation

This layer is dedicated to deal with technical complexity by integrating het-
erogeneous application systems and providing homogeneous interfaces to more
high-level functionality. Since we do not mix up business logic with data exchange
and transformation functionality here, the probability for re-using functionality
from this layer is higher. In turn, subsequent layers do not need to deal with
this sort of technical issues. Additionally this layer unifies the data format of the
connected application systems to a canonical data format (cf. [10][pp. 355-360]
or [16]). After unification of the data, the data is stored into a data repository
that is part of our reference architecture as well. This data repository provides
the context to the processes that are defined at this and higher layers. Using this
context, all services of a composite application can access and exchange data.
Additionally this layer provides means for validity checking of data in terms of
syntax and semantics as well as error handling procedures that need to be in-
voked whenever errors occur on this layer1. Hence, it provides the functionality
that encapsulates the actual communication semantics with the connected sys-
tems. This means for instance that acknowledgements for asynchronous calls are
transparently handled by this layer. The technical routing is performed here as
well.
All the functionality that is provided by this layer is encapsulated in so-called
integration services (IS). These services are in turn orchestrated to two different
integration processes. One providing data to the upper layers — the integration
in-flow (IIF) — and one for publishing data from upper layers to the connected
legacy systems. The latter process is called integration out-flow (IOF).
For a more detailed description of the integration services, integration flows and
patterns at this layer you might consider [17].

3.4 Layer Three - Service Coordination

From a top-down perspective the integration flows provide together with the
connectivity services at layer one two standardized services for calling services
at or consuming services from underlying application systems. This is irrespec-
tively of communication or computational semantics and provides homogeneous
data access as well.
The functionality that is provided by these services is nevertheless determined
by the functionality offered by the application systems. It might be necessary to

1 The error handling at this layer basically covers support procedures that need to be
initiated whenever errors occur (mostly human errors are the cause for this sort of
errors).



aggregate the application services to more problem-oriented services (enterprise
services). At this layer we see the coordination of two to n application services
with a flow in order to form the enterprise services out of application services.
Conceptually, this coordination layer is recursive. This means that an aggre-
gated service that is composed at this layer might be orchestrated together with
services from this or lower layers to form other high-level services at this layer.
Besides for the sake of bringing together requirements and application services,
coordination at this layer can also be applied to integrate relevant choreogra-
phies into the implementation of a business task.
Ensuring proper state transitions is also matter to this layer’s coordination.
Rather short-term transactions fulfilling the ACID properties as well as long-
running transactions might be required by a composite application.
According to Grefen [18], the transactional coordination consists in the so-called
local transactions with ACID properties and one the global transactions with re-
laxed transactional properties. The latter one uses ACID transactions as black-
boxed functionality to form long-term global transactions.
In our framework we meet these ideas by assigning local transactions as being
encapsulated at this layer into the compositions of the enterprise services that
are exposed by this layer to the business process layer. So the local transaction
layer is completely located at our coordination layer and the coordination pro-
tocol (such as the 2-phase commit) is fully implemented here.
Meeting the long-term characteristics of global transaction, according to Grefen
et al. isolation is relaxed by publishing intermediated results to the global con-
text. Atomicity is relaxed by introducing compensation transactions. Both con-
text publication and compensation transactions are local transactions. Safepoints
are local transactions that are marked by this special property of being a safe-
point. Thus, the fundamental support for global transactions is formed by local
transactions.
[18] proposes as well a way of specifying transactional properties (such as the safe
point properties for local transactions) and an execution model that supports
global transactions based on these specifications.

The service choreography that is incorporated into this layer, describes how
the external services and the service that is formed by the layer interact. In order
to analyze the interactions we used the service interaction patterns by Barrows
et al. [9].

Decker introduces a so-called process support layer that deals with various
aspects of incompatibility between business process tasks and application ser-
vices [12]. To a certain extent some of these ideas are supportive in terms of
designing the third layer. Anyway, the process support layer cannot be mapped
directly to our layer of service coordination but most of the referenced patterns
are relevant here as well. These are the patterns for granularity problems as well
as the patterns for interdependency problems.

The third purpose of the service coordination layer is to leverage transac-
tions between multiple application services. As transactional interaction is a
requirement, these requirements have to be included into the design at this



layer. In order to capture this design knowledge as well by the means of patterns
we introduce two design patterns as they are informally included in Grefen’s
work [18]: Local Transaction Composition (LTC) and Global Transaction Com-
position (GTC).

In order to support these two transactional patterns, we require three prop-
erties for services or transactional compositions as mandatory. These are: Safe-
point, Idempotent and Compensation. Note that the Safepoint property is unary
whilst Idempotent and Compensation are binary properties between transaction
compositions. These properties need to be assigned to the single services of a
GTC in order to allow the calculation of GTCs’ compensations.
While an LTC is a black box and commits changes to the context of a workflow
after a successful completion, GTCs are more interactive in terms of context
updates. In order to describe the interactions with the context, the workflow
data patterns from [8] are referenced as design patterns at this layer as well.
In this context the data visibility patterns are used to determine how single
services of one transaction compositions share their data. The data exchange
between transaction compositions is described by data interaction patterns. The
data transfer patterns can describe the mechanism of how contexts that are only
accessible by a transaction composition can be made available to other services.

3.5 Layer Four - Business Processes

The 5th layer is the layer where business processes are to be executed using work-
flow models. The actual functions of the according business processes are realized
as services that are exposed by the lower layers. At this layer it is of importance
important how process branching based on certain indicators (like states) might
be performed. Thus, the process environment needs to have access to the ac-
tual context of the process. The data transfer between application services and
the actual context is realized by the Data Exchange and Data Transformation
Layer. The visibility of data is controlled by the Service Coordination layer and
transactional properties are incorporated into the process environment this way.
Access to the process context is realized by the services that are provided by the
coordination layer.

In order to analyze, design and automate business processes with regards to
composite applications, the control as well as the data perspective are important
at this layer (cf. [7]). This is because the sequence of underlying tasks that are
represented by services is determined at this layer.
For the perspective of control flows there exist a catalogue of so-called work-
flow patterns. The work of van der Aalst et al. consists in a set of patterns
that are distinguished into basic control flow patterns, advanced branching and
synchronization patterns, patterns involving multiple instances, state-based pat-
terns and cancellation patterns.
For the data perspective there exists a broad set of patterns as well. [8] distin-
guishes the data patterns into patterns for data visibility, data interaction, data
transfer mechanisms and data based routing. Solely the category of data based
routing pattern is relevant for this layer as these patterns describe how data



needs to be accessed in order to guarantee the execution of workflows. As other
aspects are not covered by this layer, are the related patterns also relevant for
other layers.
All these patterns are artifacts that can be identified within a workflow descrip-
tion2. Thus, we consider the mentioned sets of patterns as analysis patterns
that can be used in later phases on lower layers in order to support the design
ibidem.

4 A Methodology to Design Composite Applications

The methodology is closely related with the layers and patterns that have been
introduced in the previous section. Thus, describing the methodology basically
consists of discussing the phases that are required to step through that reference
architecture.

4.1 Business Process Modelling and Requirements Engineering

First of all, our approach is very business process centered. Thus, it is absolutely
required to model the relevant business process using a methodology of choice.
Important is that the modelled business process describes not only the control
flow perspective. Furthermore, it is required to also describe the data, organiza-
tional and operational perspective3. Having this process description as an input,
the phases that are described below can be applied.

Enterprise Service Matching Having described the functional requirements
of a to-be built composite application by expressing the control and data flow
perspective of an business process, the single process steps — usually referred
to as functions — need to be matched with services. In order to support the
execution of these functions, the operational perspective needs to be checked in
terms of finding application systems that might already expose suitable services.
Suitable in that case means that the service offers operations that match the
functional requirement. This requirement is usually expressed in a non-formal
(usually verbal) way in terms of required functionality, and in terms of the pro-
cess’s data perspective. The data perspective here describes which input and
output format are to be sent/received by the identified service.4

Whenever there is no suitable service in the organization’s service repository,

2 Of course, they are also useful for designing engine-specific workflow descriptions
out of business process descriptions.

3 Note that the operational perspective is — especially for new systems — often
incomplete at the time of requirements engineering.

4 Even if a lot of work has provided means for matching services, even dynamically at
runtime, we do not consider these possibilities yet, since large organizations usually
lack a formal description of their legacy systems’ functionality. The same is currently
true for more recently built service repositories.



but the operational perspective of the business process refers to one or more
application services, the functionality of these application systems need to be
analyzed in terms of finding functional areas that might be appropriate for real-
izing the required functionality. In large organizations, usually a fraction of the
required functionality is already existent in legacy systems.
Anyway, sometimes there might not exist any application system at all, and the
business process function needs to be implemented from scratch.

The artifact of this phase is either the enterprise service identified in the
repository, the functional areas of relevant application systems that might be
used to implement the enterprise service or the information that a new service
is required to be developed.

Data Interaction Analysis The next step is to analyze the data interaction as
it is roughly described in the data perspective and in the control flow perspective
of the business process. This can be done by identifying data interaction pat-
terns’ (cf. [8]) data-based routing patterns within the process. This information
is required in order to identify which data needs to be accessed by the process
execution layer in order to determine the appropriate process branch.

The artifacts of this phase are the identified patterns as well as the relevant
part of the data-model the pattern operates on as well as specific attributed of
the patterns such as target values or branching conditions.

Transactional Property Identification Identifying transactional require-
ments in the business process is a rather difficult task. Therefore, several it-
erations are required to gather a complete picture. As a first step, it is required
to express the already known transactional spheres in the business process. These
might either be a set of functions5 that need to be grouped into one ACID trans-
action, or more probable, sets of functions that need to be grouped into global
transactions with relaxed ACID properties.

The artifacts of this phase are the subgraphs of the business process and the
information they should be handled as local or global transactions.

Definition of Non-Functional Requirements In the next phase, non-functional
requirements such as required response times have to be collected for the sin-
gle functions of the business process. An artifact of this phase could be e.g. a
catalogue as it is described in [19].

Service Composition This phase marks the transition from the business pro-
cess layer to the service composition layer. Here it is identified whether certain
business protocols are required to be respected while supporting single business
process functions. The part of the protocol that is required to be implemented
by the actual organization has to be expressed by service interaction patterns

5 This set might also solely contain a single function.



(cf. [9]). Eventually, other services than the already identified are involved in
such a protocol. This phase finalizes the description of the service coordination
layer’s interactions.

The artifacts of this phase are the references to the involved services as well
as the description of their interactions by the means of the service interaction
patterns.

Application Service Determination At this stage the design decision is
made how the (eventually) identified lack of enterprise service can be overcome.
For that sake the application systems that have been identified during the en-
terprise service matching-phase needs to be refined in terms what functionality
can be combined in order to form the required enterprise service. For that sake,
potential functions of legacy systems, service interaction patterns and the pat-
terns of [12], need to be used in order to describe the interaction between the
legacy systems. In order to not modify standard software, also functions from
the same legacy system might be required to (re-)composed by the interaction
described in this phase.

The artifact of this phase are the detailed description of the legacy functions
as well as the description of their composition by means of the named patterns.

Transactional Composition Analysis Taking the information from the first
transactional analysis phase into account, this phase uses this information to-
gether with the complete description of the service coordination layer in order
to complete the picture of transactional properties.
Again, this involves the identification of workflow sub-graphs in terms of them
being local or global transactions. Additionally, single steps or complete trans-
actions need to be categorized. This involves assigning the properties Safepoint,
Idempotent and Compensation. The Safepoint property is unary and therefore
only to be assigned to a single transaction, whilst Idempotent and Compensa-
tion are binary properties between transactions. These properties can later on
support the runtime to calculate compensations which is necessary to allow for
long-running transactions with relaxed ACID properties.

The artifacts of this phase are both the identification of transactions in terms
of their composition sub-graph as well as their properties.

Top-Down Data Repository Design With the yet produced artifacts, it is
possible to determine which data in the data repository has to be accessed when
and by which component. Additionally, it is determined, how these accesses need
to be protected in terms of transactional properties. As a result, in this phase it
is possible to describe the interaction with the data repository that establishes
the context for the composite applications from a top-down perspective.

The artifacts of this phase is the description of operations that need to be
performed against the data repository. This includes the description of the in-
teraction as well as the possibly necessary design of new interfaces and wrappers
(especially facades for the transactional access to data entities might be required.



Data Exchange and Data Transformation Definition Having described
the service coordination layer in total, the produced artifacts can be used in
order to design the layer of data exchange and data interaction. For that sake
the service interaction patterns can be applied in order to constrain the patterns
that can be used in the design of this layer. Tables 1 and 2 describe how the
service interaction patterns constrain this design. Crosses (X) indicate mapping
between patterns, swung dashes (˜) indicate that the according pattern cannot
be used.

Table 1. Pattern Mapping Concerning the IIF

Applying these dependencies leads to a pre-selection respectively to discard-
ing of several patterns of the data exchange and transformation layer.
In order to complete the design, the integration flows that have been identified as
being relevant have to be checked in terms of which of its patterns is required.
Additionally, all parameters coming along with these patterns have to be de-
scribed as well. The non-functional requirements are used for some decisions at
this point as they further constrain the decisions.

The artifact of this phase is the complete description of the required inte-
gration in-flows as well as the description of the integration outflows. Note, that
this also defines in detail which legacy systems are integrated into the composite
application by which means.

Final Design of the Data Repository with Bottom-Up Aspects Hav-
ing specified the second layer — especially the data that flows into/out of the



Table 2. Pattern Mapping Concerning the I0F

Store/Fetch Canonical Data integration services (cf. [17]), allows for finalizing
the data repositories design from a bottom-up point of view.

As for the top-down iteration, the artifacts of this phase is the description of
operations that need to be performed against the data repository. This includes
the description of the interaction as well as the possibly necessary design of new
interfaces and wrappers (especially facades for the transactional access to data
entities might be required.

Connectivity Check In order to connect the identified legacy systems to the
composite applications, this phase checks whether the connectivity (layer one of
our reference architecture) is sufficient. This is quite straight-forward since only
the idioms for the Event, the Receiver as well as for the Updater service need to
be supported.

The artifacts of this phase is the information whether the supplied connec-
tors are sufficient in terms of these services and idioms. If the support for the
identified idioms by means of connectors is not sufficient, a dedicated project
might be launched that addresses the identified issues.

Service Design As this methodology focuses on re-using legacy application
systems, we do not detail the phase(s) that are required whenever functionality
can not be built by (re-)assembling existent functionality. Due to the immense
complexity of this topic, only as an place-holder this methodology incorporates
a design-phase that has to design missing services.

The artifact of this phase(s) are the design for the implementation of new
enterprise or application services.



5 Summary and Outlook

We have presented an approach how a reference architecture can be used to for-
mulate a design methodology that builds on-top of legacy applications. As we
strongly incorporate both analysis and design patterns, the outlined methodol-
ogy allows for a business problem oriented design. Additionally, the reference
architecture separates different architectural aspects into different layers.

Since re-use is crucial here, we plan to focus in future work on improving the
process of determining appropriate services/legacy functionality.
Additionally, we need to specify a framework for our reference architecture that
provides an execution environment for the designed composite applications. This
will include the specification of interfaces between the single architectural layers
as well as formalizing the access to the data repository. The latter will provide
similar mechanisms as the Service Data Objects (SDO) specification [20] pro-
poses with their Data Access Service. Since the framework is not existent yet
we can only map some aspects of the refernce architecture to existing solutions.
Anyway, in order to gain experience we are currently applying the methodology
for itself in a industry case study. After completion of the design we are going
to realize the design using the SAP Netweaver [21] product stack.

References

1. Andrews, T., Curbera, F., Hitesh, D., Goland, Y., Klein, J., Leymann, F.: Web
service business process execution language for web services version 2.0 - draft.
Technical Report 2.0, OASIS (2005)

2. OASIS Open: Web Services Composite Application Framework (WS-CAF) (2003)
3. Feuerlicht, G.: Application of data engineering techniques to design of message

structures for web services. In: Proceedings of the First International Workshop
on Design of Service-Oriented Applications (WDSOA’05). (2005)

4. Reijers, H.: A cohesion metric for the definition of activities in a workflow process.
In: CaiSE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Desing (EMMSAD, 03). Velden, Austria. (2003)

5. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

6. Royce, W.W.: Managing the development of large software systems: Concepts and
techniques. In: ICSE. (1987) 328–339

7. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

8. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
data patterns: Identification, representation and tool support. (2005) 353–368

9. Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., eds.: Business
Process Management. Volume 3649. (2005) 302–318

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. The Addison Wesley Sig-
nature Series. Pearson Education Inc. (2004)

11. Papazoglou, M.P., Georgakopoulos, D.: Introduction to special issue on SOC.
Commun. ACM 46(10) (2003) 24–28



12. Decker, G.: Bridging the gap between business processes and existing it function-
ality. In: Proceedings of the First International Workshop on Design of Service-
Oriented Applications (WDSOA’05). (2005)

13. Dehnert, J., van der Aalst, W.M.P.: Bridging the gap between business models
and workflow specifications. Int. J. Cooperative Inf. Syst. 13(3) (2004) 289–332

14. Wu, B., Lawless, D., Bisbal, J., Richardson, R., Grimson, J., Wade, V., O’Sullivan,
D.: The butterfly methodology : A gateway-free approach for migrating legacy
information systems. In: ICECCS, IEEE Computer Society (1997) 200–205

15. Linthicum, D.S.: Next Generation Application Integration. Addison-Wesley,
Boston, MA USA (2004)

16. Kaufman, G.: Pragmatic ecad data integration. Technical Report 1, New York,
NY, USA (1990)

17. Hofmeister, H., Wirtz, G.: A pattern taxonomy for business process integration
oriented application integration. In: The 2006 International Conference on Software
Engineering and Knowledge Engineering (SEKE’06). (2006)

18. Grefen, P., Vonk, J., Apers, P.: Global transaction support for workflow manage-
ment systems: from formal specification to practical implementation. The VLDB
Journal 10(4) (2001) 316–333

19. Balushi, T.H.A., Sampaio, P.R.F., Dabhi, D., Loucopoulos, P.: Performing require-
ments elicitation activities supported by quality ontologies. In: The 2006 Interna-
tional Conference on Software Engineering and Knowledge Engineering (SEKE’06).
(2006)

20. Beatty, J., Blohm, H., Boutard, C., Brodsky, S., Carey, M., Dubray, J.J.: Service
Data Objects for Java Specification. Technical report, BEA and SAP and IBM
(2005)

21. SAP: (SAP Netweaver)


