
Has WS-I’s Work Resulted in WS-* Interoperability?

Andreas Schönberger
Distributed and Mobile Systems Group

University of Bamberg
Bamberg, Germany

andreas.schoenberger@uni-bamberg.de

Johannes Schwalb
Senacor Technologies AG

Schwaig b. Nürnberg, Germany
johannes.schwalb@senacor.com

Guido Wirtz
Distributed and Mobile Systems Group

University of Bamberg
Bamberg, Germany

guido.wirtz@uni-bamberg.de

Abstract—Recently, the Web Services Interoperability Orga-
nization (WS-I) has announced to have completed its interop-
erability standards work. The latest deliverables include the
so-called “Basic Security Profile” and the “Reliable Secure
Profile”. This gives rise to the question whether or not Web
Services adopters can rely on interoperability of Web Services
stacks, in particular in terms of security and reliability features.
To answer this question, we thoroughly analyze two important
Web Services stacks for interoperability of WS-Security and
WS-ReliableMessaging features. Our analysis shows that secu-
rity and reliability features are far from being implemented in
an interoperable manner. Additionally, we reveal that some of
those interoperability problems are not even covered by WS-I
profiles and therefore conclude that WS-I’s work has not yet
resulted in Web Services interoperability.

Keywords-Web Services Interoperability; Interoperability
Testing; WS-Security; WS-ReliableMessaging

I. INTRODUCTION

Quality-of-Service (QoS) features such as security and
reliability are brought to the Web Services world by the
so-called WS-* standards. WS-Security 1.1 (WS-Sec, [1])
and WS-ReliableMessaging 1.2 (WS-RM, [2]) are prominent
representatives of WS-* standards that define data formats and
processing instructions for extending the SOAP [3] messages
that implement Web Services exchanges. For example,
an XML Signature tag together with SignedInfo,
SignatureValue and KeyInfo tags would have to be
inserted into the SOAP Header tag to provide integrity
protection. For convenience, a Web Services developer is not
supposed to ‘manually’ insert all that information into SOAP
messages. Instead, Web Services Security Policy 1.3 (WS-
Sec-Pol, [4]) and Web Services Reliable Messaging Policy
Assertion 1.2 (WS-RM-Pol, [5]) can be used to extend the
WSDL definition of a Web service with assertions that instruct
the Web Services stack implementations (WS stack in the
following) in use to apply WS-Sec and WS-RM features to
the SOAP message exchanges. This policy-based realization
of QoS features for Web services has been postulated in
several publications [6], [7], [8], [9], [10], [11], [12] and
promises better interoperability than letting all Web Services
developers implement QoS features their own way.

On November 10th 2010, the Web Services Interoperability
Organization (WS-I) released a press announcement with the

following title

“WS-I Completes Web Services Interoperability Standards Work
Industry Collaboration Enables Interoperability in the Cloud”1

This announcement followed the release of new versions of
WS-I’s core deliverables, most notably the Basic Security
Profile (BSP, [13]) and Reliable Secure Profile (RSP, [14])
in 2010. WS-I profiles are the core deliverables of WS-I
and document “[..]clarifications, refinements, interpretations
and amplifications of those specifications which promote
interoperability” [14]. The main target of BSP and RSP are
WS-Sec and WS-RM. As WS-I promotes interoperability
and has declared its standardization work to be completed,
this means that Web Services adopters should be able to
rely on the interoperable implementation of Web Services
security and reliability features which are pivotal for Web
Services according to [11], [15]. However, WS-Sec and WS-
RM as well as WS-Sec-Pol and WS-RM-Pol are highly
complex specifications so that interoperability across WS
stacks does not come easy. Consistently, [6] stress that

“although one of the main purposes of the standard [i.e.,
a WS security standard] is to guarantee the interoperability
between different platforms, it might be necessary to test it
on the field.”
This paper investigates in how far WS-I’s work has led
to interoperability across WS stacks regarding the imple-
mentation of WS-Sec(-Pol) and WS-RM(-Pol). In order to
operationalize the question whether or not a Web Services
adopter can rely on interoperability between different WS
stacks, we use two ‘optimistic’ hypotheses:

H1: The overwhelming majority of WS-Sec-Pol/WS-RM-
Pol features are implemented by Web Services stacks.

H2: Out of those WS-Sec-Pol/WS-RM-Pol features im-
plemented by two platforms, the overwhelming majority is
implemented in an interoperable manner.

The contribution of this paper is threefold. First, we assess
the coverage of WS-Sec-Pol/WS-RM-Pol specifications by
two major Java-based WS stacks. Second, we assess the
interoperability of implemented features. Based on these
results, both hypotheses will have to be rejected. Third, we

1http://ws-i.org/docs/press/pr 101110.pdf, 02/09/2011

http://ws-i.org/docs/press/pr_101110.pdf


analyze in how far the detected interoperability issues could
have been avoided by strict compliance to the BSP and RSP.
In section II, the notion of interoperability is operationalized
for the work at hand and the approach towards interoperability
testing WS-* standards is described. Section III presents the
results of our interoperability and coverage investigation
while section IV analyzes in how far strict compliance
to WS-I’s BSP/RSP could have been of help. Section V
discusses related work and section VI concludes and points
out directions for future work.

II. TEST APPROACH

In order to provide a sound foundation for this work,
we sketch our approach for testing WS-* interoperability
[16], [17] by operationalizing the notion of interoperability,
describing a concept for executing test cases and outlining
the systematic derivation of test cases.

[18] defines ‘interoperability’ as the “the ability of two or
more software components to cooperate despite differences
in language, interface, and execution platform.” While this
definition is good enough for an abstract characterization of
interoperability in arbitrary systems, it has to be refined for
the purpose of WS-* interoperability testing. Remember that
we require the use of WS-Policy for asserting QoS properties
of Web Services interactions. Hence, the following sources
of interoperability issues between two WS stacks have
to be considered. First, one of the WS stacks under test
may not know/refuse a particular WS-Policy assertion that
specifies a particular communication feature. Second, one
of the WS stacks may accept a WS-Policy assertion, but
ignore it. Third, a WS stack may deviate from one or more
of the processing instructions that are specified by a WS-*
standard for the implementation of a particular WS-Policy
assertion. Considering these sources of interoperability
issues and taking into account that a Web service interaction
typically takes place between a client role and a server role,
12 interoperability levels can be identified that range from a
policy being refused/ignored by one of the roles over abrupt
termination of communication to full protocol success (for
details, please see [16]). So, for the purpose of this work,
interoperability is defined as follows:

Definition 2.1 (Interoperability):
Two WS stacks are interoperable with respect to a WS-*
policy assertion if client and server process the assertion
such that the exchange of corresponding SOAP messages
succeeds without errors and such that WS-* processing rules
are applied.

For determining interoperability as defined above, the
approach visualized in figure 1 is applied. WS-Sec-Pol/WS-
RM-Pol definitions are used to specify concrete test cases.
For each test case, the WSDL of a sample Web service
is extended with such a definition to be used by the WS
stacks of the Web service client and provider for determining

the number, sequence and contents of the SOAP messages
to be exchanged (upper part of figure 1). The test case is
then performed for four different WS stack configurations.
Assume that two WS stacks A and B are to be tested for inter-
operability and that a configuration ‘X-Y’ expresses that WS
stack X takes the client role and WS stack Y takes the server
role. Then, the test case is first performed in homogeneous
environments (A-A, B-B) for checking whether or not the
functionality is implemented and afterwards in heterogeneous
environments (A-B, B-A) for checking interoperability. Note
that if only one of the homogeneous environments does not
work, then the heterogeneous environments still are worth
testing. Our practical tests show (cf. [17]) that some features
do not work in a homogeneous environment (A-A or B-B),
but in a heterogeneous one (B-A or A-B).

The interoperability levels are to be examined for each test
case and WS stack configuration. Some of the interoperability
levels can be verified without investigating the SOAP
messages exchanged, e.g., refusal of the policy by the server.
The analysis and determination of other interoperability levels
require the use of network analysis tools like Wireshark2 that
enable capturing the SOAP messages exchanged (lower part
of figure 1). However, we do not check the strict conformance
of SOAP messages to WS-* standards in our interoperability
testing approach. Instead, SOAP messages are only analyzed
for the existence of WS-* headers as well as for unexpected
errors and premature termination. Not checking conformance
allows for the possibility of ‘interoperable’ communication
that violates WS-* standards. Consistently, definition 2.1
deliberately does not require that WS-* processing rules
are applied correctly. From our experience, this is a purely
theoretical limitation for heterogeneous environments.

For deriving the configuration options for a single policy
assertion, we propose to make use of the assertion structure
definitions that are published in the WS-Policy extension
standards. Listing 1 shows the structure definition of the
WS-RM-Pol standard’s RMAssertion assertion (note that
usual regular expression operators are used to define structural
constraints on the assertion). This assertion basically says that
delivery semantics options ExactlyOnce, AtLeastOnce
and AtMostOnce of WS-RM must be combined with
either InOrder delivery or not. Checking these features in
isolation frequently is not possible because a deployable WS-
Policy configuration may require additional assertions, e.g.,
testing a WS-Sec-Pol protection assertion requires declaring
assertions for a valid security binding (options for so-called
Asymmetric-/Symmetric-/TransportBindings). To solve this
issue, we propose to start with sample policy configurations
that ship with WS stacks or are retrievable from the web and
then to permute the options of the assertion under test only.
By using the WS-Policy structure definitions and sample
policy configurations as proposed, it is possible to identify

2www.wireshark.org, 02/09/2011

www.wireshark.org


Figure 1. Setup of Test Environment

test cases that test a WS-* feature almost in isolation and
to achieve reasonable coverage of the WS-Policy standards.
Based on the results of these “isolated” test cases, “combined”
test cases that cover the interplay of several WS-* features
can be derived.

Listing 1. Structure definition of RMAssertion (cf. [5])
1 <wsrmp:RMAssertion (wsp:Optional="true")?

... >
2 <wsp:Policy>
3 (<wsrmp:SequenceSTR /> |
4 <wsrmp:SequenceTransportSecurity /> )

?
5

6 <wsrmp:DeliveryAssurance>
7 <wsp:Policy>
8 (<wsrmp:ExactlyOnce /> |
9 <wsrmp:AtLeastOnce /> |

10 <wsrmp:AtMostOnce /> )
11 <wsrmp:InOrder /> ?
12 </wsp:Policy>
13 </wsrmp:DeliveryAssurance> ?
14 </wsp:Policy>
15 ...
16 </wsrmp:RMAssertion>

III. INTEROPERABILITY ASSESSMENT

For evaluating WS-Sec-(Pol)/WS-RM-(Pol), we have
chosen two of the most reputable JAVA-based WS stacks,
namely Oracle’s (Sun’s) Metro WS-stack that comes with
the GlassFish Application Server3 and Apache’s Axis2
WS stack that is reused in IBM’s WebSphere Application
Server4. Below, we show that considerable interoperability
problems between these WS stacks exist which justify
rejecting both hypotheses H1 and H2.
The following groups of isolated test cases have been

3http://glassfish.dev.java.net, 02/09/2011
4http://www-01.ibm.com/software/webservers/appserv/was/, 02/09/2011

identified for WS-Sec-(Pol) and WS-RM-(Pol). In
anticipation of the results, combined test cases are left out:
1) WS-RM-Pol Assertions
This test group essentially comprises the test cases derivable
from listing 1 and cover the delivery semantics of reliable
messaging.
2) WS-Sec-Pol Protection Assertions
This test group covers the various ways of asserting the
need for signing or encrypting SOAP messages or parts of
SOAP messages.
3) WS-Sec-Pol Tokens
This test group covers assertions for configuring how
security tokens are processed, e.g., whether or not tokens
have to be included in every SOAP message, and the
assertions for declaring the various token types themselves
such as UsernameTokens or X509Tokens.
4) WS-Sec-Pol Security Bindings
Security binding assertions configure the algorithms to
be used for signing/encrypting as well as options for
configuring the basic security mechanisms transport level
security, symmetric key security as well as asymmetric key
security.
5) WS-Sec-Pol Supporting Tokens
This test group covers assertions that are used to augment the
claims provided by the token of the basic Security Binding.
For example, an EndorsingSupportingTokens
assertion may be used to require a signature of the signature
of a SOAP message (cf. [4], section 8.3).
6) WS-Sec-Pol WS-Sec and WS-Trust Options
This test group covers general WS-Sec and WS-Trust
assertions such as what kind of token references must
be supported, whether client or server challenges must
supported, or whether client or server entropy is required.

http://glassfish.dev.java.net
http://www-01.ibm.com/software/webservers/appserv/was/


All in all, the number of test cases derived amounted to 169.
This number proved to still be manageable. For the majority
of test cases, it was possible to retrieve executable sample
configurations for at least one of the WS stacks from the
web. Executable sample configurations for the remaining test
cases then could be derived by just replacing or reconfiguring
an assertion, e.g., using a ‘WssX509V3Token11’ instead
of a ‘WssX509V3Token10’. 109 of the test cases could
successfully be performed in at least one of the homogeneous
environments. This fact taken together with the exception
messages of the WS stacks under test about not supporting
particular features indicates that our policy configurations
in itself were correct (in the sense of complying to WS-
Sec-Pol/WS-RM-Pol) for most test cases and therefore not
the source of the detected interoperability problems. In the
following, section III-A describes the core issues detected
and section III-B summarizes the interoperability results per
group of test cases.

A. Core Interoperability Issues

In order to protect solution provider interests we have
made the following interoperability issues anonymous (more
detailed test results are available as a technical report [17])
and stick to the A,B-notation of section II:

1) No WS-ReliableMessaging Policy Support
Platform A uses a proprietary API for configuring
reliable messaging features that is accessible via a GUI
and does not accept WS-RM-Pol for configuration. So,
if platform A is used for the client, then no interaction
is possible. However, if platform A is used for the
server then platform B can be configured using WS-
RM-Pol such that interaction is possible for some test
cases.

2) No TransportBinding Support
Platform A does not support the Transport-
Binding assertion as defined in WS-Sec-Pol ([4],
section 7.3). This assertion allows for configuring the
use of transport protocol features for securing messages,
in particular using HTTPS. Note that this does not
mean that platform A does not support HTTPS at all,
it just means that the TransportBinding assertion
cannot be used.

3) No XPath Support for Element Identification
The EncryptedElements assertion ([4], section
4.2.2) and the SignedElements assertion ([4], sec-
tion 4.1.2) of WS-Sec-Pol define an XML tag named
XPath for specifying the elements of a SOAP message
to be encrypted/signed. However, platform B does not
support this tag.

4) No OnlySignEntireHeadersAndBody Support
This optional WS-Sec-Pol element ([4], section 7.4,
7.5) enforces that “[..]digests over the SOAP body and
SOAP headers MUST only cover the entire body and
entire header elements”. ([4], section 6.6). Although

the WS-Sec-Pol standard explicitly recommends to
use this element in order to “[..]combat certain XML
substitution attacks” ([4], section 12), platform A does
not support it.

5) No EncryptBeforeSigning Support
This optional WS-Sec-Pol element ([4], section 7.4,
7.5) can be used to override the default value
SignBeforeEncrypting of the protection order
property ([4], section 6.3). However, only platform B
supports this element.

6) Deviating Processing of UsernameToken
The WS-Sec-Pol UsernameToken assertion can be
used to leverage user name/password authentication
for interactions and version 1.0 of the so-called
UsernameToken profile [19] is accepted by both plat-
forms. However, platform A leaves the Username
and Password elements empty whereas platform
B by default encrypts the whole UsernameToken.
Platform A essentially does not allow for configur-
ing UsernameTokens using WS-Sec-Pol whereas
platform B disregards the following WS-Sec-Pol recom-
mendation by applying encryption by default: “When
the UsernameToken is to be encrypted it SHOULD be
listed as a SignedEncryptedSupportingToken (Section
8.5), EndorsingEncryptedSupportingToken (Section 8.6)
or SignedEndorsingEncryptedSupportingToken (Sec-
tion 8.7)” ([4], section 5.4.1).

7) Deviating Signing Strategy for Timestamp
The optional WS-Sec-Pol IncludeTimestamp ele-
ment ([4], section 7.3,7.4,7.5) can be used to require
the inclusion of a Timestamp element in the SOAP
headers of an interaction and is supported by both
platforms. Additionally, WS-Sec-Pol requires that
if IncludeTimestamp is specified and if there
is no transport layer encryption specified then the
Timestamp has to be integrity protected at the
message level, i.e., signed ([4], section 6.2). However,
platform A does not directly implement this rule
but requires the Web Services developer to add an
according SignedElements/XPath expression to
sign the timestamp.

8) Ignored IncludeToken Values
The optional attribute IncludeToken allows for
specifying in which SOAP messages of an interaction
a corresponding token, e.g., a UsernameToken,
should be present. For example, the IncludeToken
value AlwaysToRecipient specifies that a
token should be present in all messages from the
initiator of the interaction to the recipient, but
not vice versa. Alternative values are Never,
Once, AlwaysToInitiator and Always ([4],
section 5.1.1). Both platforms under test accept all
IncludeToken values, but platform A simply
ignores the actual value and always includes the



corresponding token in the SOAP messages. This leads
to an interoperability error with platform B in case
Never is configured even in the A-B configuration
because platform B rejects SOAP messages that
carry a token if Never is specified. Inconsistently,
platform B does not stop communication if SOAP
messages carry a token that is not permitted due to the
AlwaysToRecipient/AlwaysToInitiator
values.

9) Deviating Processing of SignedParts/Body
The WS-Sec-Pol SignedParts assertion ([4], sec-
tion 4.1.1) can be used to specify the integrity pro-
tection of a SOAP message’s Header, Body or
Attachment parts. Both platforms under test support
the optional element Body which requires that “[..] the
soap:Body element, it’s attributes and content, of the
message needs to be integrity protected” ([4], section
4.1.1). However, platform B signs the first element of
the SOAP message Body whereas platform A signs
the Body element itself.

10) Deviating EncryptedParts Implementation
Both platforms support this WS-Sec-Pol assertion
([4], section 4.2.1) that can be used to specify the
encryption of a SOAP message’s Header, Body
or Attachment parts. However, platform B only
supports the use of EncrpytedParts for the
IncludeToken value Never. So, if platform B is
used as a server, an interoperability issue arises because
platform A always (cf. issue 8) includes a token which
is rejected by the first platform.

B. Overall results

Due to space limitations, we only present the most interest-
ing figures of the interoperability tests. The interoperability
levels detected for all test cases are available as a technical
report [17]. In table I, the column headers provide the
following information:

a) # counts the number of test cases per test group
b) A-A (B-B) counts the number of test cases per test

group for which full interoperability could be detected
with platform A (B) as both, client and server.

c) A-A ∧ B-B counts the number of test cases per test
group for which full interoperability could be detected
for both homogeneous environments.

d) A-A ∨ B-B counts the number of test cases per test
group for which full interoperability could be detected
for at least one of the homogeneous environments.

e) A-B ∨ B-A counts the number of test cases per test
group for which full interoperability could be detected
for at least one of the heterogeneous environments.

f) A-B ∧ B-A counts the number of test cases per test
group for which full interoperability could be detected
for both homogeneous environments.

g) (A-A ∧ B-B) ∧ ¬(A-B ∧ B-A) counts the number of
test cases per test group for which full interoperability
could be detected for both homogeneous environments,
but where an interoperability problem was detected for
at least one of the heterogeneous environments.

In turn, the row headers simple distinguish the different
test groups. The overall figures reveal that platform A
implements only 30.2% (51 test cases) and platform B
only 58.6% (99 test cases) of the WS-Sec-Pol/WS-RM-Pol
functionality. Based on this data, hypothesis H1 must be
rejected. Luckily, the functionalities implemented by the two
platforms largely overlap which can be inferred by observing
that (A-A ∧ B-B) is close to Min(A-A,B-B) for all test
groups. Therefore, there are at least 41 test cases that could
be performed successfully on both homogeneous platforms
which allows for testing hypothesis H2. Out of those 41 test
cases there were 13 (31.7%) test cases that could not be
performed successfully in both heterogeneous environments.
Considering the complexity of WS-RM-Pol and especially
WS-Sec-Pol this number does not seem to be too high, but
for practical purposes an error rate of about one third is not
acceptable and therefore H2 must be rejected as well.
Taking the effects of low coverage and bad interoperability
together results in very low WS-Sec-Pol/WS-RM-Pol func-
tionality that is supported in an interoperable manner. Only 47
(27.8%) out of 169 test cases can be performed successfully
in at least one of the heterogeneous environments and only
28 (16.6%) test cases for both heterogeneous environments.
This means that implementing security and reliability for
Web Services based on WS-RM-Pol and WS-Sec-Pol for
the heterogeneous platform configurations investigated here
is at least a challenge. In particular, it is not possible to
exchange a SOAP message between the two platforms that
is both, confidentiality and integrity protected. Platform B
does not support XPath for identifying the elements to be
encrypted. Instead, it relies on using the EncryptedParts
assertion and assumes an InlcudeToken value of Never
for using X509 tokens (which is the only basic token type
supported for the heterogeneous environments). Platform
A ignores any IncludeToken value an always inserts
the token into the SOAP messages which is then rejected
by platform B. Additionally, platform A does not support
the TransportBinding assertion so that SSL encryption
cannot be asserted either. In consequence, deriving combined
test cases from isolated test cases (cf. section II) essentially
is senseless.
At least, there is an integrity and confidentiality protected
interaction that comes close to WS-Sec-Pol/WS-RM-Pol
based QoS implementation. For confidentiality protection,
SSL is used which is configured for platform B using a
standard TransportBinding assertion and for platform
A using proprietary configuration. For integrity protection,
an AsymmetricBinding together with a X509Token is



Test group # A-A B-B A-A ∧ B-B A-A ∨ B-B A-B ∨ B-A A-B ∧ B-A (A-A ∧ B-B) ∧ ¬(A-B ∧ B-A)

Basic 2 1 1 1 1 1 1 0
WS-RM 9 2 8 2 8 2 0 2
Protection Assertions 19 8 4 4 8 2 1 3
Token Assertions 65 10 37 10 37 8 5 5
Binding Assertions 46 22 38 18 42 27 15 3
Supporting Token Assertions 8 0 4 0 4 0 0 0
WS-Sec and WS-Trust Options 20 8 7 6 9 7 6 0
Overall 169 51 99 41 109 47 28 13

Table I
INTEROPERABILITY RESULTS PER TEST GROUPS

specified and the elements to be signed are identified using
the SignedParts assertion. However, apart from not being
fully standards based, only using platform A as server and
platform B as client can be performed successfully because
the other way round a platform A client tries to retrieve
proprietary configuration information in vain.

IV. WS-I TO THE RESCUE?

The two main deliverables of the WS-I that cover the
application of WS-Sec and WS-RM are the BSP and the RSP
(cf. section I). Those profiles are complemented by test tools
and sample applications, but the profiles are authoritative.
In the standard document itself, the purpose of the BSP is
described as follows:

“This document defines the WS-I Basic Security
Profile 1.1, based on a set of non-proprietary Web
services specifications, along with clarifications
and amendments to those specifications which
promote interoperability.” [13]

Those clarifications and amendments become manifest in
so-called requirements together with some explaining text
and, in case of the RSP, test expressions for evaluating
SOAP messages. In [20], one of the BSP editors explains
that by using the requirements “the BSP limits the set of
common functionality that vendors must implement and
thus enhances the chances for interoperability. This in
return reduces the complexities for the testing of Web
Services security.” Moreover, she explains that “the security
consideration statements provide guidance that is not strictly
interoperability related but are testable best practices for
security.”
For example, requirement R2001 of the BSP says that “A
SENDER MUST NOT use SSL 2.0 as the underlying protocol
for HTTP/S.”. The explanatory text justifies the requirement
by pointing out that “SSL 2.0 has known security issues and
all current implementations of HTTP/S support more recent
protocols”.
A common characteristic of those requirements is that they
define constraints on the level of SOAP messages, i.e.,
the existence, order and content of XML elements within
SOAP message or the actual exchange of SOAP messages is

described. Consequently, the testing tools of the WS-I take
SOAP messages as input and check them for compliance
to the BSP and RSP requirements. From the perspective
of facilitating interoperability, this amounts to replacing
actual interoperability testing as described in section II by
checking standard compliance of SOAP messages. However,
checking standard compliance itself is subject to errors and
therefore merely an add-on to true interoperability testing
but not a replacement. Even worse, the relation between
WS-Sec-Pol/WS-RM-Pol assertions and the corresponding
SOAP messages exchanged is not described in BSP and
RSP at all. In section 5.1.1, the BSP explicitly allows for
out of band agreement for specifying the use of WS-Sec.
Moreover, it states in several sections (9, 10, 13.1) that
“[..]no security policy description language or negotiation
mechanism is in scope for the Basic Security Profile[..]”.
The RSP recommends (though not requires) the use of WS-
RM-Pol for configuring the use of WS-RM in its section
2.4, but it does not define the relation between WS-RM-Pol
assertions and SOAP messages either.
In so far, the interoperability issues 2, 3, 4, 6, 7, 8 and
10 of section III-A are not covered by the BSP/RSP at
all. For issue 1 (no WS-RM-Pol support), platform A can
be considered to ignore a WS-I recommendation. But as
the RSP does not explicitly require the use of WS-RM-
Pol, platform A nonetheless cannot be said to violate the
RSP. For issue 5 (no EncryptBeforeSigning support),
the BSP explicitly states in its section 6.1 (‘Processing
Order’), that both, encryption before signing as well as
signing before encryption, may be appropriate depending on
the application scenario. In so far, both protection orders
must be supported by a WS-I compliant stack. However,
that actually has got nothing to do with supporting the WS-
Sec-Pol EncryptBeforeSigning assertion. As the BSP
explicitly allows for out of band agreement for specifying the
use of WS-Sec, not supporting EncryptBeforeSigning
can be considered to be WS-I compliant. Finally, for issue 9
(deviating Processing of SignedParts/Body), the BSP states in
its section 19.4 that “it is RECOMMENDED that applications
signing any part of the SOAP body sign the entire body.”
However, the WS-Sec-Pol specification is absolutely clear at



this point itself (cf. [4], section 4.1.1).
All in all, none of the core interoperability problems

detected is due to violating WS-I profiles. Only 1 issue
out of 10 is reinforced by the BSP. This, taken together with
the test results of the previous section, seems to imply that the
approach of replacing true interoperability testing by WS-I
compliance checking and neglecting the relation between WS-
Sec-Pol/WS-RM-Pol assertions and SOAP messages is not
sufficient for ensuring interoperability between WS stacks.
Note that WS-I does not question the use of WS-Policy
standards. The RSP recommends using WS-RM-Pol, the
BSP states that “strict policy specification and enforcement
regarding which message parts are to be signed” ([13],
section 19.4) is a countermeasure against attacks and the
so-called delivery package of the RSP ships with a few
WS-Policy definitions (though without defining the effect on
SOAP messages in detail). However, it leaves out a detailed
treatment of WS-RM-Pol or WS-Sec-Pol.

V. RELATED WORK

In SOA research, considerable efforts have been un-
dertaken towards testing QoS, for example [21], [22], in
the traditional sense of measurable network qualities like
throughput or latency. [23] provides an evaluation of the
WS-Sec implementation of the Axis2 WS stack, but only
considers the processing time and message size when using
different WS-Sec features. In contrast, we focus on testing
the interoperability of implementations of QoS features as
provided by WS-* standards and security and reliability in
particular.
[20] discusses challenges of testing Web Services and security
in SOA environments. Interoperability is identified as a core
requirement for testing service compositions, but an interop-
erability assessment of different WS-* implementations is
not provided. Several approaches such as [24], [25] target at
testing interoperability of Web Services, but do not consider
WS-* based QoS features.
In the area of actually testing interoperability of WS-* based
QoS features, the majority of approaches follows [26] in
defining interoperability testing as “Conformance testing
to ensure compliance with SOA protocols and standards”.
[27] describe a tool for statically validating WS-Sec-Pol
configurations and [28] demonstrate how to use predicate
logic to statically validate security policies. [7] present
an approach for checking SOAP messages for WS-Sec-
Pol conformance at run-time. [29] check conformance to
the BSP statically and dynamically by inspecting SOAP
messages. All these approaches analyze the configurations
and message traffic of a single WS stack instance whereas
we focus on the interaction of two WS stack instances of
different solution providers. While we investigate whether
or not communication can be completed successfully these
approaches are able to check conformance to the WS-*
specifications. In so far, these kind of approaches and our

approach can be considered to complement each other.
[30] presents an interoperability assessment of SOA prod-
ucts with respect to WS-* standards for the Hungarian e-
Government infrastructure. They evaluate only two security
related test cases, but six SOA products and conclude that
some products (including Metro/GlassFish) are mature for
WS-* interoperability. The problems identified in the work
at hand, however, reveal that much more thorough testing is
needed.
[31] provide a mature framework for testing, monitoring
and analyzing Web Services that are secured via WS-Sec-
Pol. While interoperability assessment across different stack
vendors is out of scope, it may be useful for streamlining the
interoperability assessment of more WS stacks as described
in this work. Moreover, the pattern-based approach for
deriving WS-Sec-Pol configurations described in [12] may
be used for deriving test cases that go beyond this work’s test
cases in providing application level features such as mutual
authentication.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have thoroughly analyzed the interop-
erable implementation of WS-Sec-Pol/WS-RM-Pol by two
major Java-based WS stacks. Our results show that Web
Services developers cannot rely on interoperability of such
WS-* features as provided by arbitrary WS stacks. While
WS-I’s work indisputably contributed to better Web Services
interoperability, it apparently is not sufficient for guaranteeing
interoperability of WS-Policy-driven QoS implementation.
Using WS-Sec/WS-RM without WS-Policy however places
unacceptable burdens on Web Services developers in re-
quiring them to manually manipulate SOAP messages and
agreeing on security mechanisms without predefined format.
Future work will focus on streamlining interoperability
testing across platforms by tool support and on deriving
a comprehensive set of WS-Policy-based test cases that
can be used among WS stack vendors to assess cross-stack
interoperability.

REFERENCES

[1] OASIS, Web Services Security: SOAP Message Security 1.1
(WS-Security 2004), OASIS, February 2006.

[2] OASIS, Web Services Reliable Messaging (WS-
ReliableMessaging) Version 1.2, OASIS, February 2009.

[3] W3C, SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition), W3C, April 2007.

[4] OASIS, WS-SecurityPolicy 1.3, OASIS, February 2009.

[5] ——, Web Services Reliable Messaging Policy Assertion (WS-
RM Policy) Version 1.2, OASIS, February 2009.

[6] L. Martino and E. Bertino, “Security for web services:
Standards and research issues,” Int. J. Web Services Res.,
vol. 6, no. 4, pp. 48–74, 2009.



[7] N. Gruschka, N. Luttenberger, and R. Herkenhöner, “Event-
based SOAP message validation for WS-SecurityPolicy-
enriched web services,” in Proceedings of the 2006 Inter-
national Conference on Semantic Web & Web Services, SWWS
2006, Las Vegas, Nevada, USA, June 26-29, 2006. CSREA
Press, 2006, pp. 80–86.

[8] N. Gruschka, M. Jensen, and T. Dziuk, “Event-based ap-
plication of WS-security policy on SOAP messages,” in
Proceedings of the 2007 ACM workshop on Secure web
services, ser. SWS ’07. New York, NY, USA: ACM, 2007,
pp. 1–8.

[9] F. Curbera, R. Khalaf, and N. Mukhi, “Quality of service in
SOA environments. an overview and research agenda (quality
of service in soa-umgebungen),” it - Information Technology,
vol. 50, no. 2, pp. 99–107, 2008.

[10] R. Khalaf, A. Keller, and F. Leymann, “Business processes
for web services: principles and applications,” IBM Syst. J.,
vol. 45, pp. 425–446, January 2006.

[11] H. Nezhad, B. Benatallah, F. Casati, and F. Toumani, “Web
services interoperability specifications,” Computer, vol. 39,
no. 5, pp. 24–32, May 2006.

[12] M. Menzel, R. Warschofsky, and C. Meinel, “A pattern-
driven generation of security policies for service-oriented
architectures,” in Proceedings of the 2010 IEEE International
Conference on Web Services, Miami, Florida, USA, ser. ICWS
’10. IEEE Computer Society, 2010, pp. 243–250.

[13] WS-I, Basic Security Profile Version 1.1, WS-I, January 2010.

[14] ——, Reliable Secure Profile Version 1.0, WS-I, November
2010.

[15] L. E. Moser, P. M. Melliar-Smith, and W. Zhao, “Building
dependable and secure web services,” Journal of Software,
vol. 2, no. 1, pp. 14–26, 2007.

[16] J. Schwalb, A. Schönberger, and G. Wirtz, “Approaching
interoperability testing of QoS based on WS-* standards
implementations,” in The 4th Workshop on Non-Functional
Properties and SLA Management in Service-Oriented Comput-
ing (NFPSLAM-SOC’10), co-located with 8th IEEE European
Conference on Web Services (ECOWS 2010), Ayia Napa,
Cyprus. IEEE, December 2010.

[17] J. Schwalb and A. Schönberger, “Analyzing the Interoperability
of WS-Security and WS-ReliableMessaging Implementations,”
Otto-Friedrich-Universität Bamberg, Technical Report: Bam-
berger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik 87, 09 2010.

[18] P. Wegner, “Interoperability,” ACM Comput. Surv., vol. 28,
no. 1, pp. 285–287, 1996.

[19] Web Services Security UsernameToken Profile 1.0, OASIS,
March 2004.

[20] A. Barbir, C. Hobbs, E. Bertino, F. Hirsch, and L. Martino,
“Challenges of testing web services and security in SOA
implementations,” in Test and Analysis of Web Services,
L. Baresi and E. D. Nitto, Eds. Springer Berlin Heidelberg,
2007, pp. 395–440.

[21] Gerardo Canfora and Massimiliano Di Penta, “Service-
Oriented Architecture Testing: A Survey,” in Revised Tutorial
Lectures of the International Summer Schools for Software
Engineering (ISSSE 2006 - 2008), Salerno, Italy, ser. Lecture
Notes in Computer Science, A. D. Lucia and F. Ferrucci, Eds.,
vol. 5413, 2006 - 2008, pp. 78–105.

[22] A. Bertolino, G. D. Angelis, and A. Polini, “A QoS Test-
Bed Generator for Web Services,” in Proceedings of the 7th
International Conference on Web Engineering (ICWE 2007),
Como, Italy, July 2007, ser. Lecture Notes in Computer Science,
L. Baresi, P. Fraternali, and G.-J. Houben, Eds., vol. 4607,
July 2007, pp. 17–31.

[23] M. Shopov and N. Kakanakov, “Evaluation of a single
WS-Security implementation,” in Proceedings International
Conference on Automatics and Informatics, Sofia, Bulgaria,
October 2007, pp. 39–42.

[24] S. Shetty and S. Vadivel, “Interoperability issues seen in Web
Services,” International Journal of Computer Science and
Network Security (IJCSNS), vol. 9, no. 8, pp. Seoul, Republic
of Korea, pp. 160–169, August 2009.

[25] A. Bertolino and A. Polini, “The audition framework for
testing web services interoperability,” in Proceedings of the
31st EUROMICRO Conference on Software Engineering and
Advanced Applications, ser. EUROMICRO ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 134–142.

[26] W.-T. Tsai, X. Zhou, Y. Chen, and X. Bai, “On testing and
evaluating service-oriented software,” Computer, vol. 41, pp.
40–46, August 2008.

[27] K. Bhargavan, C. Fournet, A. D. Gordon, and G. O’Shea, “An
advisor for web services security policies,” in Proceedings
of the 2005 workshop on Secure web services, ser. SWS ’05.
New York, NY, USA: ACM, 2005, pp. 1–9.

[28] Y. Nakamura, F. Sato, and H.-V. Chung, “Syntactic validation
of web services security policies,” in Proceedings of the 5th
international conference on Service-Oriented Computing, ser.
ICSOC ’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
319–329.

[29] S. Prennschütz-Schützenau, N. K. Mukhi, S. Hada, N. Sato,
F. Satoh, and N. Uramoto, “Static vs. dynamic validation
of BSP conformance,” in Proceedings of the 2009 IEEE
International Conference on Web Services, Los Angeles, CA,
USA, ser. ICWS ’09. IEEE Computer Society, 2009, pp.
919–927.

[30] B. Simon, Z. László, B. Goldschmidt, K. Kondorosi, and
P. Risztics, “Evaluation of WS-* standards based interop-
erability of SOA products for the hungarian e-government
infrastructure,” in Proceedings of the 2010 Fourth International
Conference on Digital Society, ser. ICDS ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 118–123.

[31] M. Menzel, R. Warschofsky, I. Thomas, C. Willems, and
C. Meinel, “The service security lab: A model-driven platform
to compose and explore service security in the cloud,” in
Proceedings of the 2010 6th World Congress on Services,
Miami, Florida, USA, ser. SERVICES ’10. IEEE Computer
Society, 2010, pp. 115–122.


	I Introduction
	II Test Approach
	III Interoperability Assessment
	III-A Core Interoperability Issues
	III-B Overall results

	IV WS-I to the Rescue?
	V Related Work
	VI Conclusion and Future Work
	References

