
BPEL Conformance in Open Source Engines: The Case of Static Analysis

Simon Harrer, Christian Preißinger and Guido Wirtz
Distributed Systems Group

University of Bamberg
Bamberg, Germany

{simon.harrer,guido.wirtz}@uni-bamberg.de
{christian.preissinger}@morsepost.de

Abstract—In 2007, OASIS finalized their Business Process
Execution Language 2.0 (BPEL) specification which defines
an XML-based language for building orchestrations of Web
Services. As the validation of BPEL processes against the
official BPEL XML schema leaves room for a plethora of static
errors, the specification contains 94 static analysis rules to cover
all static errors. According to the specification, any violations
of these rules are to be checked by a standard conformant
engine at deployment time. When a violation is not detected
in BPEL processes during deployment, such errors remain
unnoticed until runtime, making them expensive to find and fix.
In this work, we investigate whether mature BPEL engines that
claimed standard conformance implement these static rules.
To answer this question, we formalize the static rules and
derive test cases based on these formalizations to evaluate
the degree of support for static analysis of six open source
BPEL engines using the BPEL Engine Test System (betsy). In
addition, we propose a method to get more accurate static
analysis conformance results by taking the feature conformance
of engines into account to exclude false positives in contrast
to the classic approach. The results reveal that support for
static analysis in these engines varies greatly, ranging from
nonexistent to full support. Furthermore, our proposed method
outperforms the classic one in terms of accuracy.

Keywords-BPEL, engine, conformance testing, static analysis

I. INTRODUCTION

The Business Process Execution Language (BPEL), a
standard by OASIS [1], defines a graph and block structured
process language (see [2]), and corresponding execution
semantics. BPEL is based on XML and relies on XML
schema definitions (XSD) [3] which restrict the XML
elements and attributes that can be used in a process.
Processes have activities and orchestrate message exchanges
between services defined in Web Service Definition Language
(WSDL) [4] interfaces. Thus, in a Web Service based service-
oriented architecture (SOA), BPEL is the solution for service
orchestration [5], as a BPEL process consumes external web
services and exposes itself as one or more web services as
well through partner links. The block structure is formed by
activities like <process> and <scope> that encompass
other activities and can define fault, compensation, and
termination handlers (FCT handlers) which deal with the
occurrences of internal and external errors, compensate

any previously initiated external operation, or clean up
anything before the process is terminated. Event handlers are
triggered by timers or incoming messages and define their
own enclosing <scope>. The first activity of a process is
the start activity that receives a message. The information
from such a message is assigned to variables and is used
for other data flow activities or message activities. It can also
be used in correlations that allows multiple message
exchanges for a single process instance. Loop blocks are also
available, as well as <flows> that maintain graph-based
control flow structures through links. The BPEL standard
defines 94 static analysis rules1 that restrict these activities.
These rules extend the language restrictions of the XSD
defined in the BPEL specification. If a process violates a
rule, a BPEL engine is assumed to reject it. In case an engine
does not reject such a process, the error may only be found
at runtime, causing high costs to find and fix the error [6].

The language syntax and semantics of BPEL are topic of
extensive research. Related work focuses on models or static
analysis itself, while we focus on benchmarking the standard
conformance of process engines. Standard conformance of an
engine can be subdivided into feature conformance and static
analysis conformance. Feature conformance has already been
evaluated in [7], and in this case, we benchmark engines
to determine their static analysis conformance with fault
tests as part of the overall BPEL standard conformance
evaluation. In this work, we are only interested in executable
processes. Without executable processes and engines, the
usefulness of a language like BPEL is limited to modeling
purposes only. Hence, correct engine behavior is important for
practical application. Therefore, we concentrate on executable
processes exclusively and neglect opaque XML nodes as
well as abstract processes. The static analysis conformance
of an engine can be measured by the result of a fault test
deployment. We denote this as the classical approach of
static analysis evaluation. Based on previous findings in [7]
regarding feature conformance we know that support for
BPEL features varies greatly between available engines. On
the one hand, this indicates a likelihood of a varying support

1The static analysis rules are numbered from 1 to 95. In total, there are
94 rules because the rule 49 is missing.



for static analysis by the engines which in the best case
reject all invalid processes [1, p. 194]. On the other hand,
the rejection of a process is not necessarily caused by an
erroneous process, but may be caused by an unsupported
feature. To counter this, we propose a pairwise approach
which uses the pair of a feature and a fault test instead of a
sole fault test, taking feature conformance into account. This
allows excluding false positives of the fault test based on the
result of the corresponding feature test for each test pair.

Hence, we tackle the following research questions:
RQ1: How good is the support for static analysis rules
predefined by the standard in open source BPEL engines?
RQ2: Does the pairwise approach outperform the classical
approach of measuring static analysis conformance in terms
of accuracy?

This work extends and implements the proposal outlined
in [8]. This paper itself is structured as follows. In Section II,
we outline related work. The approach and the methods used
in this paper are given in Section III, followed by a short
description of the tests and the open source engines under
test in Section IV. In Section V, the results are presented
by executing the previously developed test suite against the
engines under test, followed by a discussion of these results
and their implications in Section VI. The paper concludes
and outlines future work in Section VII.

II. RELATED WORK

Static analysis regarding BPEL has been studied exten-
sively in literature. We have gathered the most relevant
approaches to this work in Table I. Each approach considered
was analyzed by investigating four aspects: the BPEL version,
the number of test cases, the amount of static analysis
rules covered by the tests, and whether imported WSDL
definitions are checked or not. The approaches [9]–[12]
focus on BPEL 1.1 whereas [13]–[17] focus on the latest
specification BPEL 2.0. Because the rules were initially
published in the BPEL 2.0 specification, the first four
approaches could not specify any SA conformance tests.
Nevertheless, Akehurst [9] and Ouyang et al. [12] provide 16
and 30 valid BPEL 1.1 processes as test cases, respectively. In
addition, Ouyang et al. [12] present two incomplete BPEL 1.1
processes detailing an unreachable activity and a conflicting
receive, the latter would violate the rule #60 of BPEL 2.0
which requires the use of explicit messageExchanges in
this case. Returning to the approaches using BPEL 2.0, two
sources, namely [14] and [15] provide tests. Lohmann [14]
provides 56 test cases2, each of them corresponds to a single
static analysis rule. Because of a different focus of [14], the 56
provided tests are not suitable to evaluate the conformance to
the static analysis rules of BPEL engines, as they are abstract
processes. The BPEL engine Orchestra [15] provides a test

2The test cases are available as part of the source code of the BPEL2oWFN
tool at http://www.gnu.org/software/bpel2owfn/download.html - Accessed
on 4th of August 2014

set of four valid processes and 92 invalid processes3. The
invalid ones violate 42 rules in total and have a low quality,
as one third violates more than a single rule in every test, and
the majority is not valid to the XSD schema of BPEL. As
BPEL processes depend on WSDL definitions, it is important
to check the validity of imported WSDL files during static
analysis of a process. Five approaches [11], [13]–[15], [17]
include such a check, but the tests in [14] do not import
every WSDL file that is required by the check. The other
static analysis approaches [9], [10], [12], [16] validate the
BPEL file, only.

Whereas the discussed approaches check the static analysis
conformance of BPEL processes, none of them evaluates the
static analysis conformance of BPEL engines. Harrer et al. [7],
[18] did focus on BPEL engines with their automated testing
tool betsy, but solely evaluated feature conformance using
a large set of valid processes4. Thus, standard conformance
regarding the static analysis rules of BPEL engines, i.e., static
analysis conformance, remains untested [7, p. 7].

Kopp et al. [19] formalize BPEL in a model that in-
cludes constraints of 65 static analysis rules, whereas 4
are mentioned but not formalized, 24 rules are declared
out of scope in their work, and a single rule (#21) is not
mentioned at all. We base our combinations on the model
of Kopp et al. [19]. The negation of 50 rule models [19]
are identical to our formalization. In contrast, 8 rules are
modeled by Kopp et al. [19] that we do not use, and 21
formalizations are insufficient to generate tests, i.e., not
existent or not complete. Hence, we had to model them
ourselves. Moreover, both Kopp et al. and ourselves excluded
15 rules explicitly because they are either engine-specific or
make use of arbitrary XPath expressions5.

Table I
APPROACHES ANALYZING BPEL PROCESSES OR ENGINES

BPEL Test Cases SA Rules Checks
Approach Version Invalid/Valid Covered WSDL

Akehurst [9] 1.1 - / 16 - -
Fisteus et al. [10] 1.1 - / - - -
Foster et al. [11] 1.1 - / - - yes
Gravel et al. [13] 2.0 - / - - yes
Lohmann [14] 2.0 56 / - 56 partial
Orchestra [15] 2.0 92 / 4 41 yes
Ouyang et al. [12] 1.1 2 / 30 (1) -
Yang et al. [16] 2.0 - / - - -
Ye et al. [17] 2.0 - / - - yes

Kopp et al. [19] 2.0 - / - - partial

Harrer et al. [7] 2.0 - / 211 - yes

Our Approach 2.0 762 / 82 71 yes

In our approach, we have created 762 fault tests, i.e., test

3See http://forge.ow2.org/plugins/scmsvn/index.php?group id=266 to
download the tests. – Accessed on 4th of August 2014

4While the test set encompassed approx. 130 tests in their initial
publication, the test set has grown to 211 feature tests to include combinations
of BPEL features as well.

5For more details on the comparison of the two formalizations see the
accompanying technical report [20].



cases for invalid processes, and reused 82 feature tests from
the 211 available feature tests in [7].

III. APPROACH

We base our approach on the tool betsy and the find-
ings in [7] as well as the formalization of BPEL by
Kopp et al. [19]. Our approach is outlined in Section III-A and
described in detail in Section III-B. The tags, which group
rules for better result analysis, are presented in Section III-C.

A. Big Picture

The big picture of our approach is shown in Fig. 1. It
includes the foundation of this work in the left box and our
approach in the right box. The preliminary work from [7]
has been used to determine the feature conformance that
acts as a foundation and requirement for our approach to
determine the static analysis conformance of BPEL engines.

Figure 1. Big Picture of our Approach

The first step in our approach is to formalize the static
analysis rules of the BPEL specification. These formalizations
are either taken and adapted from [19], or have been
created by the authors. With these formalizations, we can
derive permutations that contain all the valid and invalid
combinations of the relevant BPEL elements for this rule.
Hence, we can derive test cases for the invalid combinations.
This is done by selecting an appropriate feature test that
includes a valid combination of BPEL elements and modify
this correct feature test to contain the invalid combination,
hence, creating a fault test. By doing this for every invalid
combination for every rule, we create a complete test set of
fault tests to be able to determine static analysis conformance.
These fault tests are then used to evaluate the quality of BPEL
engines, creating classical error results. Because these results
may contain false positives as the engine could reject the
fault test because it may contain a BPEL feature that the
engine does not support, we also take feature conformance
in the form of the feature results into account. This ends in
the pairwise error results. As there are a lot of rules, it is
hard to interpret the results per rule. Because of this, we tag

the static analysis rules according to what BPEL feature they
validate and how the targeted BPEL features are restricted.

B. Method

In this section, we detail three aspects, namely, the
formalization6 of the static analysis rules, the creation of the
fault tests and the interpretation of the results.

The formalization is required to ensure that the resulting
fault tests are complete and their numbers to not explode.
Also, the quality of the tests increases as we identify minimal
required changes. In this work, we propose to use the existing
BPEL formalization of Kopp et al. [19] whenever possible.
As they formalized the rules positively, i.e., specifying valid
combinations of BPEL features, we have to negate them for
creating invalid combinations which are necessary for the
fault tests. When there is no formalization available, we have
to model the rule ourselves. To ensure a high quality, we
conduct peer review by authors and within our group, as well
as compare our formalization with the one from [19]. By
permuting the formalizations, we get a list of combinations
with valid and invalid ones.

To create our test-pairs, we identify the required processes
by features used in our formalization. In [8] we give the
example of rule #47 with the following partial formalization
for receiving message <onMessage> that receive non-
empty messages:

[@variable, none] × [<fromParts>, none]

For example to violate the rule, in this case the received
message must not be completely assigned to a variable via
the @variable attribute nor any of its parts to variables
via the <fromParts> and its <fromPart> elements.
As feature test, we pick the shortest process from the
betsy test suite that provides all necessary features, in our
example this is Pick-CreateInstance-FromParts.
Our formalization shows the necessary modifications, so
that the processes of a test-pair have a minimal dif-
ference. We derive the erroneous test from the feature
test, by applying the identified modifications, resulting in
NoVariable-NoFromPart-OnMessage for our run-
ning example by deleting the <fromParts> element. In
addition, we change a fault test that it solely violates one rule
alone, same as in the example. For optimal test results, each
test shall violate a single rule and have a minimal difference
to its feature test, however, as a few rules are not disjunct in
their validation, this optimal state cannot be guaranteed for
every test. In our experiment, 6% of the fault tests violate
multiple rules.

The results are obtained by determining whether a given
test has been rejected or deployed for a specific engine. To
ensure that the results are correct, we propose to ensure test

6The formalization of the 71 rules can be found in the accompanying
technical report [20].



isolation. To evaluate the results, we compare the classical
and our pairwise approach. Our method to evaluate the static
analysis conformance is outlined in Table II. The classical
approach consists of only checking the result of the fault
test, being either deployed (d) or rejected (r), with deployed
meaning the fault test was wrongly accepted while rejected
meaning the fault test was correctly rejected.

Table II
EVALUATION OF STATIC ANALYSIS CONFORMANCE USING TEST PAIRS

fault test

deployed (d) rejected (r)

feature test
deployed (d) not conformant pair-wise conformant

rejected (r) not conformant feature unsupported

This method, however, gives too much credit for engines
that reject these faults for other reasons. One could go
through the log files for every test and determine manually
the outcome of the fault test. But instead we propose to
use an automated method by pairing the fault test with a
feature test, taking the correctness of the feature test into
account as well. Because the fault test combines a feature
test with a fault, this pairwise approach can automatically
determine whether the underlying features of the process are
implemented in this engine, and determine the cause of this
rejection. In our proposed pairwise approach, if and only
if the feature test is correct and the fault test is rejected,
we can determine that this fault has been found correctly at
deployment time. Thus, we get a pairwise error result that
provides an accurate means to determine the static analysis
conformance of BPEL engines.

C. Rule Tags

Because of the large number of rules, we have tagged
them according to two groups, namely, to their violation
check (How are the targets checked?) and to their target
elements (What BPEL features are restricted further?). These
tags allow us to gain additional insight as they group the
results in a comprehensive and easy to interpret way. In this
table, only the covered rules from Table III are tagged7. A
rule is tagged at least one time per group, and can be tagged
multiple times within each tag group.

The violation check tags describe the type of the check.
The three tags with the highest number of rules, namely,
node requirement, choice and uniqueness compensate the lax
schema definition. The rules tagged with node requirement
requires specific elements or attribute values, where the BPEL
schema provides a greater choice. If a rule demands the
usage of attributes and elements in specific combinations, it
is tagged with choice. In this case, choice can refer to an
inclusive or or an exclusive or. A more strict schema could

7A complete tagging of all rules can be found in the accompanying
technical report [20].

have made these rules obsolete in the first place, e.g., by using
the native schema choice mechanism instead. Rules with the
uniqueness tag check the uniqueness of attributes or elements,
e.g., the name attributes of <variable> definitions have to
be unique per <scope>. The native schema mechanisms for
uniqueness could have rendered these rules redundant. There
are 14 rules tagged with consistent redundancy that deal with
nodes which carry redundant information that can be derived
from the context, e.g., from other attributes, elements or the
location of an activity. The tag location is assigned to rules
that restrict possible parents or ancestors of activities. Such
rules are necessary due to undesired inheritance defects of
the BPEL schema types, e.g., <rethrow> is a common
activity even though it is solely applicable in the context
of <faultHandlers>. The rules with the tag execution
instructions instruct the BPEL engine how to execute the
process, e.g., how to lookup a variable at runtime. Conformant
static analysis can detect errors that occur when the execution
would be performed in the correct order, but invalid execution
at runtime remains unchecked by static analysis, of course.
Hence, these rules can only be checked up to a certain
point with static analysis. Rules are tagged with definition
resolution if the rules require that a BPEL activity references
other BPEL, WSDL or XSD elements by a qualified name
(QName) or other references. Control cycles are forbidden in
BPEL and the rules that describe their detection are tagged
with control cycle detection.

The tags in the target elements group indicate which
BPEL features are restricted further. The majority of the
rules refer to activities related to the message exchanges and
their required WSDL and XSD definitions, whereas only a
minority restricts the structured activities.

IV. TEST SETUP

The test setup consists of the test suite in Section IV-A
with its test cases that are executed on the engines under
test briefly noted in Section IV-B by means of the test tool
which is described in Section IV-C. All three parts are open
source and publicly available.

A. Test Suite

In this work, we have covered 71 of the 94 rules as shown
in Table III, while the remaining 23 are marked as out of
scope. The latter are not covered because they either are
engine-specific and we focus on engine-independent static
analysis conformance, or make use of expression parsing
which would require us to test the expression language
XPath [21] as well. Rules #56 and #77 are the exception
as they are not covered because they would require an
enormous amount of additional positive tests, i.e., feature
tests in varying combinations of nesting multiple activities,
which are not available in the current feature test set and
very time consuming to create.



Table III
STATIC ANALYSIS RULES

rules # of rules

Covered 1-3, 5-8, 10-20, 22-25, 32, 34-37, 44-48, 71
50-55, 57-59, 61-72, 76, 78-93, 95

Out of Scope 4, 9, 21, 26-31, 33, 38-43, 56, 60, 73-75, 77, 94 23

In total we require 762 fault tests8, which are an average
of nine tests per rule. However, the actual amount varies
among the rules due to the different amount of features that
need to be checked. Rule #3 has the most fault tests with
342 whereas 26 rules requires a single one. Another 33 rules
have more than one fault tests but less or equal than ten, and
only eleven rules have more than ten fault tests.

B. Engines Under Test

In this work, we have evaluated six different open source
BPEL engines which state that they conform to the BPEL 2.0
specification and are considered mature. The engines under
test comprises ActiveBPEL v5.0.2, bpel-g v5.3, Apache ODE
v1.3.5, OpenESB v2.2, Orchestra v4.9, and Petals ESB 4.0.

C. Test Tool

As a test tool, we have built upon the already existing
BPEL Engine Test System (betsy) [22], [23]. It allows
evaluating whether a given BPEL process can be executed
successfully onto various BPEL engines while guaranteeing
test isolation. This tool has been used for or has been part
of several other studies [7], [18], [24]–[26], is open source
and publicly available9. In our work, we have used betsy
to detect whether a given BPEL process can be deployed
successfully on BPEL engines by checking whether the main
WSDL file of the BPEL process is available via HTTP after
the deployment. Moreover, for the static analysis test suite
we have adapted the existing feature conformance test suite
of betsy. Apart from methodical reasons, this is necessary
as betsy requires specific naming conventions and allows
only two specific WSDL files being the public interfaces of
deployable BPEL processes.

V. RESULTS

The results10 of the experiment described in Section IV
are shown in Table IV11. Column-wise, the table is structured
according to the six engines using the pairwise (p) approach
to interpret the results of the test cases, including the delta
(∆ = classic − pairwise) to show any differences between
these two approaches, and the average values (∅) as well
as standard deviation (σ) in the last column. Row-wise, we

8The tests are available at https://github.com/uniba-dsg/soca2014/tree/
master/fault-tests.

9See https://github.com/uniba-dsg/betsy/tree/soca2014.
10The csv files can be found at https://github.com/uniba-dsg/soca2014/

tree/master/results
11The atomic values can be found in the accompanying technical

report [20].

present the results in a more general way using three different
static analysis conformance metrics in the bottom as well as
in a more detailed way per tag within their tag group, which
we describe in Section III-C, at the top of the table.

The table reveals a high variation in the support for static
analysis checks. ActiveBPEL shows full support, OpenESB
shows no support, and the remaining four engines vary widely
in their support for these static analysis rules of the BPEL
specification. Consequently, the highest and the lowest rank
are already set, so we concentrate on the other four engines.

The results for bpel-g are independent from the used
approach. It has its strengths in detecting all violations
regarding execution instructions and definition resolution,
while its minor weaknesses are only 50% support for
detecting control cycles and 67% support for revealing
uniqueness errors. When looking at the BPEL activities that
the rules target, bpel-g handles the partner link, the variable
and the event handler activities perfectly, while its issues
are related to XSD definitions, flow activities, and WSDL
definitionss which are only supported with a degree of 33%,
50% and 59%, respectively. A minor weakness are the start
activities with 67%. The remaining tags in both tag systems
have a very high degree of support varying around 75% or
even higher. Overall, this engine performs very well as it
supports 91% of the test cases, resulting in full support of
75% of the rules and in at least partial support of 86% of
the rules, making it the second best engine in this regard.

Apache ODE clearly has issues with the support for the
static analysis rules as it only supports 30% of the rules fully
and only 51% of the rules at least partially with only a test
case detection rate of 19%. The classical and the pairwise
approach differ only by a few percentage points in the static
analysis conformance ratings. However, when looking at the
ratings of the tags, the changes vary more, ranging from 5
percentage points up to 22, but only eight tags are affected.
Its major weakness is the inability to detect control cycles,
as it is the only tag that this engine has no support at all.
Moreover, location, choice, consistent redundancy and node
requirements checks are only supported weakly, ranging from
17% to 37%, while the remaining ones are only supported
for 47% up to 50%. Regarding the target elements, only the
message assignment, partner link, variable and correlation
activities are supported with at least 50%, while the other
tags have a (considerably) lower support percentage. Overall,
this engine ranks fifth when using the classical approach, but
when looking at the numbers for the pairwise approach, it
ranks fourth.

Orchestra places itself in the middle of the field at rank
three. It has the same major weakness as Apache ODE,
namely, it cannot detect control cycles. Regarding the other
violation checks, support is quite high with 72% up to 75%
for choice, uniqueness, execution instructions, and definition
resolution, while the other three have a support rating of 42%
or 50%, except for the tag location which has only 13% in the



Table IV
CONFORMANCE RESULTS OF OUR PAIRWISE (P) APPROACH AND THE DELTA (∆) TO THE CLASSICAL APPROACH

ActiveBPEL bpel-g Apache ODE OpenESB Orchestra Petals ESB ∅ σ
p ∆ p ∆ p ∆ p ∆ p ∆ p ∆ p ∆ p ∆

violation check
node requirements 100% 0% 79% 0% 37% 16% 0% 0% 42% 11% 11% 36% 45% 11% 35% 13%
choice 100% 0% 78% 0% 17% 5% 0% 0% 72% 6% 6% 44% 46% 9% 39% 16%
uniqueness 100% 0% 67% 0% 47% 0% 0% 0% 73% 7% 0% 47% 48% 9% 37% 17%
consistent redundancy 100% 0% 79% 0% 29% 7% 0% 0% 50% 7% 0% 57% 43% 12% 38% 20%
location 100% 0% 75% 0% 25% 0% 0% 0% 13% 37% 0% 75% 36% 19% 38% 29%
execution instructions 100% 0% 100% 0% 50% 0% 0% 0% 75% 0% 0% 100% 54% 17% 42% 37%
definition resolution 100% 0% 100% 0% 50% 0% 0% 0% 75% 0% 0% 75% 54% 13% 42% 28%
control cycle detection 100% 0% 50% 0% 0% 0% 0% 0% 0% 0% 0% 100% 25% 17% 38% 37%

target elements
WSDL definitions 100% 0% 59% 0% 18% 14% 0% 0% 32% 4% 5% 31% 36% 8% 35% 11%
message activities 100% 0% 90% 0% 33% 15% 0% 0% 52% 0% 0% 76% 46% 15% 39% 28%
message assignment activities 100% 0% 86% 0% 50% 22% 0% 0% 57% 0% 0% 79% 49% 17% 38% 29%
process and scope 100% 0% 86% 0% 20% 0% 0% 0% 43% 14% 0% 36% 42% 8% 39% 13%
FCT handler activities 100% 0% 83% 0% 20% 0% 0% 0% 25% 25% 0% 42% 38% 11% 39% 17%
flow activities 100% 0% 50% 0% 8% 0% 0% 0% 50% 0% 0% 100% 35% 17% 36% 37%
partner link activities 100% 0% 100% 0% 50% 0% 0% 0% 67% 0% 11% 56% 55% 9% 39% 21%
variable activities 100% 0% 100% 0% 50% 11% 0% 0% 56% 11% 0% 33% 51% 9% 41% 12%
XSD definitions 100% 0% 33% 0% 14% 0% 0% 0% 33% 17% 17% 0% 33% 3% 32% 6%
assignment activities 100% 0% 83% 0% 14% 17% 0% 0% 17% 16% 0% 67% 36% 17% 40% 24%
correlation activities 100% 0% 80% 0% 78% 0% 0% 0% 20% 0% 0% 40% 46% 7% 41% 15%
event handler activities 100% 0% 100% 0% 14% 0% 0% 0% 80% 0% 0% 80% 49% 13% 45% 30%
loop activities 100% 0% 75% 0% 33% 0% 0% 0% 75% 0% 25% 25% 51% 4% 35% 9%
start activities 100% 0% 67% 0% 33% 0% 0% 0% 100% 0% 33% 34% 56% 6% 37% 13%

static analysis conformance
detected rules 100% 0% 75% 0% 30% 6% 0% 0% 54% 10% 4% 52% 44% 11% 36% 19%
(partially) detected rules 100% 0% 86% 0% 51% 6% 0% 0% 79% 3% 21% 55% 56% 11% 36% 20%
detected tests 100% 0% 91% 0% 19% 4% 0% 0% 66% 1% 10% 56% 48% 10% 40% 21%

pairwise approach. Orchestra is the only engine in addition
to ActiveBPEL that supports all start activities checks, and
has at least partial support for every target elements tag.
The loop and event handler activities are handled quite well
with 75% and 80%, whereas assignment, FCT handler and
correlation activities are supported the worst with at most
25%. Half of the tags are independent of the used approach,
whereas the other half has minor (starting with 4%) as well
as major (up to 37%) changes in support.

Petals ESB ranks fourth when using the classical approach,
however, when using the more detailed and sophisticated
pairwise approach it falls down to the fifth rank. This is
because in the classical approach, Petals ESB supports 56%
of the rules fully and 76% of them at least partially by
detecting 66% of all test faults. However, when using the
pairwise approach, it merely supports 4% of the rules fully
and 21% at least partially by detecting only 10% of all test
faults. Overall, support is very low. Only seven tags out of
the 22 tags have support at all, ranging from 5% up to 33%
in the best case. Petals ESB only supports choice and node
requirements checks for start, partner link and loop activities
as well as XSD and WSDL definitions. The results of the three
tags execution instructions, control cycle detection and flow
activities are completely inverted as the classical approach
would have stated full support whereas the pairwise one
states no support. Moreover, twelve other rules have been
partially supported in the classical approach and have been
turned to no support in the pairwise approach as well. Only

the support for the tag XSD definitions is independent of the
used approach, the results of all other 21 tags are improved
using the pairwise approach.

Table V
CONFORMANCE RANKING AND PERCENTAGE

pairwise classic feature

ActiveBPEL 1 100% 1 100% 1 82%
bpel-g 2 75% 2 75% 1 82%

Orchestra 3 54% 3 64% 5 45%
Apache ODE 4 30% 5 36% 3 65%
Petals ESB 5 4% 4 56% 6 24%
OpenESB 6 0% 6 0% 4 52%

As answer to RQ1, we can state that the six engines vary
greatly in terms of support for these static analysis rules. The
ranking regarding the static analysis conformance of these six
engines is the same whether the percentage of detected tests,
detected rules or at least partially detected rules is used.
Hence, we use detected rules as our main metric because it
focuses on full support per rule, because in case of at most
partial support we cannot call an engine rule conformant. As
a result, all three metrics can be used for a ranking in our
experiment. But it is not the same ranking as the one using the
feature conformance as shown in Table V, as bpel-g would
rank first with ActiveBPEL in the feature conformance but
regarding static analysis conformance, bpel-g ranks second.
Moreover, Apache ODE also loses one rank, while OpenESB
drops two ranks to the last one. Both Orchestra and Petals
ESB gain one rank. In the case of Petals ESB this is only



because OpenESB supports no static analysis rule at all.

VI. DISCUSSION

This section discusses the outcomes in Section VI-A as
well as threats to validity and limitations in Section VI-B.

A. Outcomes

When looking at the violation check tags in isolation,
we can see that control cycle detection is implemented the
least with an average of 25%, followed by the detection
of the wrong location with 36%. Especially the lack of
control cycle detection is interesting as this can result in very
problematic runtime errors, and <flow> with <links> is
an important part of BPEL that is used in various academic
publications, e.g., the implementation of the workflow control
flow patterns [27]. The other violation check tags are on
average between 43% and 54%, indicating no general lack of
support. In contrast, the support for the target elements tags is
a bit higher as it ranges from 33% up to 56% on average. The
lowest supported BPEL elements are the XSD and WSDL
definitions as well as flow and assignment activities with
support between 33% and 36%, while loop, partner link and
start activities are supported the best with 51%, 55% and
56%. As every BPEL process imports and uses both XSD and
WSDL definitions extensively through assignments, it seems
strange that especially these activities are not well covered
as part of the static analysis implementation of the engines
under test. We assume this is because a few of these errors
are ignored without having effects on process execution or
are repaired by the engine at deploy-time by leveraging the
nature of BPEL which provides redundant information in
several cases.

The averages per tag are lower for the pairwise approach
in contrast to the classical one. This is shown by the positive
non-null values in the ∆ column of the ∅ values. This is
mostly caused by Petals ESB as its ∆ values have the highest
impact on the average. For each tag, there is a wide range
of support, as can be seen by the high standard deviation
ranging from 32% up to 45%, because ActiveBPEL has full
support and OpenESB has none.

In summary, the pairwise approach provides more insight
for three out of the six engines in this case study. For these
three engines, the pairwise approach revealed lower values.
While Apache ODE and Orchestra only lost on average 6 and
5 percentage points, Petals ESB lost 54 percentage points on
average. This results in a change in the overall static analysis
conformance ranking as shown in Table V, changing the
fourth rank of Petals ESB with the classical approach to the
fifth rank with the pairwise approach. Thus, we can see the
effect of having a very low feature conformance on the static
analysis conformance for the engine Petals ESB. In addition,
we cannot see substantial effects for engines with a feature
conformance of 45% or more. Thus, we have shown that the
pairwise approach helps to determine the real support for

the static analysis rules However, it is best for engines with
a low feature conformance, thereby answering RQ2.

B. Limitations and Threats to Validity

Ensuring the quality of the tests is a critical part of
this method s experiment because it directly influences the
quality of the test results. While we tried to create tests that
only violate a single rule, 6% of the tests, namely, 44 out
of the 762 tests, violate more than a single rule. Due to
this small number, their effect on the aggregated results in
Table IV is small. In addition, we have used only 82 out
of 211 feature tests as a base test for the fault tests. If an
engine supports these 39% feature tests, our method cannot
reveal any additional information, hence, in this case the
classical and our pairwise approach would yield the same
results. Because not every feature is restricted further in the
static analysis rules, this is not problematic. What is more,
52% of the fault tests are based on four different feature
tests. This, however, is not an issue as three out of the four
feature tests work on every of the six open source BPEL
engines, and the other one is mainly required for a single
static analysis rule. Furthermore, the test suite has been kept
small to minimize test explosion. Because of this, we only
tested the activities themselves and cut the combinations
by ignoring arbitrary nesting of activities, specifying very
strict and limited nesting combinations. As we only focus
on executable processes, we could ignore the concepts for
abstract BPEL processes, simplifying the formalization and
reducing the number of test cases required further. While the
tests are executed and evaluated automatically, they have been
created manually which may open the possibility for human
error. An automated generation of the tests would have been
very time consuming, whereas the manual creation was very
straight forward. Because the tests are basically identified
by the difference to their base feature test, we have kept the
differences as minimal as possible and have reviewed exactly
these minimal changes within the group of authors of this
paper as well as within our working group. Automating the
test creation is an interesting research challenge for future
work. Moreover, we analyzed the test results for patterns to
detect any failures in our tests as well.

After having made sure that the tests themselves are correct,
we had to ensure that the results are correctly produced. For
this, we have used the test isolation capabilities of betsy
which provides a fresh installation of an engine for each test.
Moreover, we have executed the tests three times to prevent
any alterations to influence the results.

At the moment, the tests can only be executed on the
BPEL engines that are supported by betsy. The experiment
was not executed on the latest version for three engines,
namely Petals ESB, OpenESB and Apache ODE which we
have tested with the second last version. This, however, is
not problematic as this work can only answer the research



questions and cannot give an accurate and always up-to-date
state-of-the-art picture of these engines.

The test suite itself is not limited to open source BPEL
engines, it can be used for proprietary BPEL engines as
well. We did focus on the open source ones as benchmarking
results of proprietary engines must be anonymized due to
licensing issues, making them less interesting to publish. The
created test suite is not directly applicable to other process
engines, e.g., BPMN engines. Nevertheless, the method itself
is portable and can be transferred to evaluate BPMN engines
in the same way, but it requires the existence of a feature
conformance test suite and tool.

In most cases, developers do not code the BPEL processes
by hand in the XML editor but use sophisticated BPEL
designers which may also include static analysis checks. In
this work, however, we focus on standard conformance, or
static analysis conformance to be more precise, of BPEL
engines, while leaving the static analysis capabilities of BPEL
designers for future work.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach to evaluate
the static analysis conformance of BPEL engines. We have
evaluated our proposed approach in a case study encom-
passing six open source BPEL engines and 762 fault tests
for 71 static analysis rules. Results revealed that the static
analysis conformance varies greatly between the six open
source engines, ranging from no support up to full support.
What is more, our proposed pairwise approach outperforms
the classical one in terms of accuracy by excluding false
positives. The gained knowledge can be used both by engine
developers to improve their engines and by process designers
to decide whether additional static analysis tools have to be
used for their currently used engine.

Future work comprises evaluating BPEL designers and
proprietary engines as well, covering the remaining rules that
have been declared out of scope for this paper, and applying
the method of this work onto other process standards and
their engines, e.g., BPMN [28] and its corresponding engines.

ACKNOWLEDGEMENTS

We would like to express our gratitude to David Bimamisa
and Stephan Schuberth for their initial work on part of the
test cases used in this work.

REFERENCES

[1] OASIS, Web Services Business Process Execution Language,
April 2007, v2.0.

[2] O. Kopp, D. Martin, D. Wutke, and F. Leymann, “The Dif-
ference Between Graph-Based and Block-Structured Business
Process Modelling Languages,” EMISA, 2009.

[3] W3C, XML Schema (XSD), October 2004, v1.0.
[4] ——, Web Services Description Language (WSDL), 2001,

v1.1.

[5] R. Khalaf, A. Keller, and F. Leymann, “Business processes
for Web Services: Principles and applications,” IBM Systems
Journal, vol. 45, no. 2, pp. 425–446, 2006.

[6] V. R. Basili and B. T. Perricone, “Software Errors and
Complexity: An Empirical Investigation,” Communications of
the ACM, vol. 27, no. 1, pp. 42–52, January 1984. [Online].
Available: http://doi.acm.org/10.1145/69605.2085

[7] S. Harrer, J. Lenhard, and G. Wirtz, “BPEL Conformance in
Open Source Engines,” in Service-Oriented Computing and
Applications, 2012, pp. 1–8.

[8] C. R. Preißinger, S. Harrer, S. J. Schuberth, D. Bimamisa, and
G. Wirtz, “Towards Standard Conformant BPEL Engines: The
Case of Static Analysis,” in Proceedings of the 6th Central
European Workshop on Services and their Composition (ZEUS
2014), N. Herzberg and M. Kunze, Eds., 2014.

[9] D. H. Akehurst, “Experiment in Model Driven Validation
of BPEL Specifications,” in Interoperability of Enterprise
Software and Applications. Springer, 2006, pp. 265–276.

[10] J. A. Fisteus, L. S. Fernández, and C. D. Kloos, “Formal
verification of BPEL4WS business collaborations,” in E-
Commerce and Web Technologies. Springer, 2004, pp. 76–85.

[11] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “LTSA-WS: a
tool for model-based verification of web service compositions
and choreography,” in ICSE, 2006, pp. 771–774.

[12] C. Ouyang, E. Verbeek, W. M. van der Aalst, S. Breutel,
M. Dumas, and A. H. ter Hofstede, “WofBPEL: A Tool for
Automated Analysis of BPEL Processes,” in ICSOC. Springer,
2005, pp. 484–489.

[13] A. Gravel, X. Fu, and J. Su, “An Analysis Tool for Execution
of BPEL Services ,” in CEC. IEEE, 2007, pp. 429–432.

[14] N. Lohmann, “A feature-complete Petri net semantics for
WS-BPEL 2.0,” in LNCS, 4th WS-FM, 2007.

[15] OW2, “Orchestra,” http://orchestra.ow2.org/, v4.9.
[16] X. Yang, J. Huang, and Y. Gong, “Defect Analysis Respecting

Dead Path Elimination in BPEL Process,” in ASPCC, 2010.
[17] K. Ye, J. Huang, Y. Gong, and X. Yang, “A Static Analysis

Method of WSDL Related Defect Pattern in BPEL,” in ICCET,
2010, pp. 472–475.

[18] S. Harrer, J. Lenhard, and G. Wirtz, “Open Source versus
Proprietary Software in Service-Orientation: The Case of
BPEL Engines,” in ICSOC, 2013.

[19] O. Kopp, R. Mietzner, and F. Leymann, “Abstract Syntax of
WS-BPEL 2.0,” Universität Stuttgart, Tech. Rep. 6, 2008.

[20] C. R. Preißinger and S. Harrer, “Static Analysis Rules of
the BPEL Specification: Tagging, Formalization and Tests,”
University of Bamberg, Bamberger Beiträge zur Wirtschaftsin-
formatik und Angewandten Informatik no. 94, August 2014.

[21] W3C, XML Path Language (XPath), November 1999, v1.0.
[22] S. Harrer and J. Lenhard, “Betsy–A BPEL Engine Test System,”

University of Bamberg, Tech. Rep., 2012.
[23] C. Röck and S. Harrer, “Testing BPEL Engine Performance:

A Survey,” University of Bamberg, Tech. Rep., 2014.
[24] S. Harrer, J. Lenhard, G. Wirtz, and T. van Lessen, “Towards

Uniform BPEL Engine Management in the Cloud,” in INFOR-
MATIK, 2014, in press.

[25] J. Lenhard, S. Harrer, and G. Wirtz, “Measuring the Installa-
bility of Service Orchestrations Using the SQuaRE Method,”
in SOCA, 2013.

[26] J. Lenhard and G. Wirtz, “Measuring the Portability of
Executable Service-Oriented Processes,” in EDOC, 2013.

[27] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and
A. Barros, “Workflow Patterns,” Distributed and Parallel
Databases, vol. 14, no. 1, pp. 5–51, 2003.

[28] OMG, Business Process Model and Notation, 2011, v2.0.


