Distributed Storage of Tor Hidden Service Descriptors

Karsten Loesing

University of Bamberg, Germany

Karsten Loesing (Bamberg, Germany)

Distributed Tor Storage

Project objectives

- 3 directory nodes store and serve all hidden service descriptors
- Distribute among large subset of all onion routers (\approx 1000)

Karsten Loesing (Bamberg, Germany)

Improve security

- Directories learn about service activity and usage
 - Store descriptors under frequently and unpredictably changing IDs
 - PhD thesis: what if services represented people, not machines?
- Directories learn about location of introduction points
 - Encrypt introduction points for clients using cookie (remaining descriptor content stays unencrypted for verification purpose)

Rendezvous Service Descriptor (V2?)

```
onion-address = h(public-key) + cookie
descriptor-id = h(h(public-key) + h(date + cookie))
descriptor-content = {
   public-key,
   h(date + cookie),
   timestamp,
   { introduction-points } encrypted with cookie
} signed with private-key
```

- Current load:
 - Average of 1000 descriptors at a time
 - Average of 360 publish and 30 fetch requests per 15 minutes
 - Assumed to increase when hidden-service performance gets better
- Apply DHT-like structure
 - Equally distribute load from 3 directory nodes to \approx 1000 onion routers
 - Routing table based on existing Tor router list (avoids maintenance messages)
- Use replication
 - Limit server-initiated replication to fixed number, e.g. 4, independent from possibly growing number of directory nodes
 - Replicate on consecutive nodes to resist node failures, and
 - Replicate on non-consecutive nodes to avoid attacks, e.g. black hole

Distributed Storage of Tor Hidden Service Descriptors

Karsten Loesing (Bamberg, Germany)

Distributed Tor Storage

ъ