
Distributed Storage for Tor Hidden Service Descriptors

Karsten Loesing
University of Bamberg, Germany

karsten.loesing@wiai.uni-bamberg.de

March 27, 2007

Abstract

Tor provides a mechanism for responder anonymity
via hidden services. As a part of these, Tor provides
storage on its central directory servers to allow pub-
lishing and retrieving rendezvous service descriptors.
This proposal suggests to replace the centralized ap-
proach by a distributed storage of descriptors to the
larger set of onion routers. Benefits include (1) better
load balancing which is vital for the further growing
of the network, (2) a more scalable way to publish
descriptors, and (3) extensibility of hidden services
to features like human-readable names or client au-
thentication. As possible drawback can be seen that
new threats arise due to decentralization that need
to be discussed and handled.

In this project a structure is applied to the network
of onion routers, based on concepts known from dis-
tributed hash tables and consistent hashing systems.
Every participating router is made responsible for a
limited set of descriptors. It is not necessary to main-
tain an own routing table, but possible to rely on
the router list managed by the Tor directory. Some
amount of replication needs to be added to overcome
node failures and untrustworthy routers. This pre-
vents the worst security threats, as descriptors are
signed and have a limited time-to-live. Thus, they
cannot be forged or replayed. Preliminary measure-
ments show that routers exhibit a very low churn rate
which makes them a perfect field for consistent hash-
ing. The purpose of this project is to extend the cur-
rent Tor sources to a running prototype that contains
a distributed storage of rendezvous service descriptor.

1 Motivation

The Tor system [1] provides a mechanism for respon-
der anonymity via location-protected servers, the so-
called hidden services. These enable any node which
is running a Tor onion proxy to set up a server
(e.g. web server, file server) and make it available
for clients via the network of onion routers. Tor pro-
vides storage on its central directory servers to pub-
lish and retrieve contact information—so-called ren-
dezvous service descriptors (RSDs)—from servers to
clients.

In this proposal we suggest to replace the central-
ized storage of RSDs by a decentralized approach.
We argue that the task to store and lookup RSDs
can equally be performed by the network of Tor onion
routers. The Tor developers state that this task could
be done “on any robust efficient key-value lookup
system with authenticated updates, such as a dis-
tributed hash table” [1]. Øverlier and Syverson argue
that “authoritative directory servers for hidden ser-
vices as a core part of the Tor network are not neces-
sary” and that “the primary motivation for their use
initially has been one of convenience” [2]. However,
we did not find a design for a distributed storage of
RSDs in Tor in the literature, yet.

There are several benefits from distributing storage
to multiple Tor routers. The most obvious is load bal-
ancing: publish and retrieve operations to the direc-
tory nodes cause additional network traffic, require
computation (e.g. for validating signatures) and con-
sume memory. In a decentralized solution, directory
servers would no longer be burdened with these tasks.

1



Load balancing is important for Tor, because hidden
service usage can reasonably be expected to increase
with the growing network size, if not faster.

Another benefit comes from the fact that currently,
RSDs have to be replicated manually by hidden ser-
vice providers to all directory servers. While that
solution might work well with the initial 3—or cur-
rently 5—directory nodes, it does not scale. Due to
the design paper, there might be up to 9 directory
nodes as the network scales [1], but there is no rea-
son for such a fixed upper bound if the network size
increases further on. The benefit of our proposal is
that it restricts replication to a constant number in-
dependently to the number of directory nodes, thus
allowing more Tor directories to be added without
interfering with hidden services.

A third benefit could be extensibility of hidden
services to provide additional services, e.g. resolve
human-readable names to hidden server addresses,
perform client authentication for hidden servers, etc.
Such extensions would likely require additional infor-
mation to be stored at some place inside Tor. With
regard to the fact that Tor directories might already
be the performance bottleneck for the system, they
could not perform these additional tasks very well.
Therefore, a decentralized storage might be useful,
maybe with slight modifications.

On the other hand, a decentralized storage also
implies possible robustness problems and security
or anonymity threats that have to be discussed.
Tor routers are less fail-safe and less trustworthy
compared to the authoritative directory servers. A
distributed solution needs to cope with these new
threats to provide a similar service as the directory
servers do.

In the remainder of this proposal, we identify re-
quirements to the existing as well as the proposed
storage for RSDs in section 2. We suggest a possible
design in section 3 and present some early perfor-
mance measurements of Tor routers concerning fail-
safeness in section 4. In section 5 we discuss possible
security and anonymity impacts that result from less
trustworthiness and present conceivable counter mea-
sures. Section 6 concludes the proposal.

2 Requirements

Before presenting a design for decentralized storage of
RSDs, we want to identify both, functional and non-
functional requirements. These include the involved
data and roles. These requirements are independent
from a concrete realization, be it based on the direc-
tory servers or on the routers.

Rendezvous service descriptors The details of
an RSD are described in the Tor Rendezvous Spec-
ification1. An RSD contains contact information,
e.g. the addresses of introduction points to which a
client needs to establish a connection. The size of an
RSD depends on the number of contained introduc-
tion point and ranges in the order of some hundred
bytes. All information inside an RSD is public. RSDs
are signed by the hidden service provider, so that ev-
erybody can validate that a RSD originates from the
provider. An RSD contains a timestamp and has a
limited time-to-live, before it needs to be replaced
by a new RSD by the hidden service provider. An
RSD can be recognized by a pseudo-unique identifier
which is the hash value of the public key of the hidden
service.

Publication to RSD storage Hidden service
providers need to publish their current RSD whenever
their contact information, i.e. the set of introduction
points, changes. This occurs first when entering the
system, at frequent intervals during normal opera-
tion, and possibly when leaving the system. However,
published RSDs should remain available in the stor-
age for a couple of hours, even if not being updated.
For each publication, hidden service providers need
to stay anonymous (hide their location) by tunneling
their requests through a sender-anonymous circuit.
In the special case of a hidden service provider host-
ing multiple hidden services, additional precautions
must be taken to hide correlations between those ser-
vices.

Retrieval from RSD storage Clients need to re-
trieve a current RSD of the hidden service they at-

1http://tor.eff.org/svn/trunk/doc/rend-spec.txt

2



tempt to access. Unless they are aware of an up-
to-date RSD from a previous access, they need to
retrieve one from the storage. As it applies to hidden
service providers, clients also need to stay anonymous
throughout this request. Further, if a client requests
multiple RSDs at the same time, correlations must
be hidden, too.

So far, there are no statistics on the average num-
ber of RSDs stored in the directory or on publication
and retrieval frequencies. However, an anonymity-
preserving measurement of such statistics could pro-
vide information on expected usage characteristics in
a decentralized design. Such a measurement should
be easy to implement in the current directory servers.

3 Proposed design

We propose a design that passes the task of stor-
ing and looking up RSDs from a small number of di-
rectory servers to a large number of onion routers.
Therefore, we employ structure to the network of
routers and enable hidden service providers and
clients to route requests to a particular onion router.
Further, we include means to overcome failing and
untrustworthy nodes.

Network structure In contrast to the existing
directory-based approach, in our design, every router
stores only a small subset of all RSDs. Therefore, a
hidden service provider or client must be able to de-
termine which router is responsible for a given RSD.
An obvious choice for such a task is a distributed
hash table (DHT) like Chord [3] or its precursor, a
consistent hashing system [4]. We could make pro-
found experiences with Chord when implementing a
Java version of it for use in a distributed service dis-
covery system [5]. Chord assigns to every node and
to every item an identifier on an identifier ring and
makes every node responsible for storing the entries
in the identifier range between its predecessor’s and
its own identifier. We can borrow this principle by de-

riving a node’s identifier from a router’s IP address2

and using the public key hash of an RSD as entry
identifier.

Routing table Both, hidden service providers and
clients need an up-to-date router list in order to route
requests to the correct onion router (either directly
or via multiple hops). In fact, an important part of
DHT implementations is to maintain current routing
tables at each node. In Chord, this is done by ex-
changing routing information between nodes in order
to store a logarithmic number of addresses. However,
Tor greatly facilitates the task to maintain routing in-
formation: Every onion proxy and router in the Tor
network maintains a complete router list in order to
be able to construct circuits. This list needs to be as
complete as possible to prevent identification by ob-
serving which routers are chosen for circuit establish-
ment. We can simply rely on Tor to provide hidden
service providers and clients with up-to-date routing
tables, so that they can contact almost every router
in a single hop. We even go further and require every
node to rely only on his own routing table and not
trust in any other node’s routing information.

Performing requests Hidden service providers
and clients perform requests to onion routers in the
same way as when retrieving information from the
directory servers. They create a multi-hop initiator-
anonymous circuit to the onion router and ask it to
answer their request. From an outside perspective,
this request cannot be distinguished from other cir-
cuits. Requestors might even choose to keep the cir-
cuit open for some random time after the request is
complete to confuse attackers.

Handling routing and node failures Although
Tor nodes have almost complete routing tables, their
view of the network might slightly differ. Therefore,
it may occur that a router receives a request that it

2While it might appear more obvious to use the router’s
public key hash as identifier, IP-based identities provide better
protection against free identifier choice of an attacker. How-
ever, Tor needs to assure, that only one router is permitted
per IP address, which is currently not the case.

3



is not responsible for. Further, onion routers are less
fail-safe than directory nodes. And even if a directory
node fails, there are still 4 (at the moment) which can
replace it. Thus, we also need some amount of repli-
cation to handle routing and node failures. We again
adopt a mechanism from Chord, that puts replicas of
entries on neighboring nodes (with respect to node
identifiers) [3]. Nodes need to maintain replication
by periodically requesting entries from other nodes to
replicate them. We decided to apply a simple reac-
tive pull-based scheme that only reacts to failing and
leaving nodes whenever such a situation occurs. An
alternative approach could be for example to proac-
tively transfer entries upon leaving the system. We
decided to postpone such extensions to later discus-
sion.

Handling untrustworthy routers Hidden ser-
vice providers and clients cannot rely on onion routers
to correctly store and retrieve RSDs. Again, replica-
tion can help reduce such problems by making more
than one router responsible for RSD storage and re-
trieval. In case of storing, a hidden service provider
should store an RSD at more than one router, includ-
ing the primarily responsible node as well as some
replicating ones. Further, it should perform regular
checks by trying to obtain its own RSD using a dis-
tinct circuit. In case of retrieving, if a client receives
an empty result for an RSD from the primarily re-
sponsible node, it should try to retrieve it from repli-
cating nodes using different circuits, too.

Logging usage statistics We would like to moni-
tor the system in action, just as one can monitor how
much traffic is routed by any router in the system.
Therefore, every router could collect aggregated data,
e.g. the number of published and requested RSDs in
a given time, and publish it to Tor directory.

In summary, we propose to use a DHT/consistent
hashing system with entry replication in combination
with the router list obtained by the directory servers.
The latter greatly reduces complexity compared to
usual DHT implementations.

Figure 1: Graph of the number of Tor servers over
the last 24 months from March 21th 2007. Source:
http://www.noreply.org/tor-running-routers/
totalLong.html

4 Feasibility discussion

Feasibility of realizing our design depends in large
part on the characteristics of onion routers compared
to directory servers. Therefore, we performed a pre-
liminary analysis of the number of routers and their
typical uptimes and churn rates.

Average number of routers The average num-
ber of routers is an important metric to comprehend
the absolute size of the network. However, it does
not allow to make statements on the dynamic behav-
ior of joining and leaving nodes. Figure 1 shows the
development of the number of routers over a period
of 24 months. It shows that there are currently about
900 routers, but when extrapolating the graph, this
number is very likely to increase in the future.

Session time Another typical question to be an-
swered is how long routers stay in the system and
(related to this metric) to which degree router pop-
ulation changes over time. We used the publicly
available Tor directory log history that contains snap-
shots of router statuses for every hour since Decem-
ber 2005.3 We picked the logs from February 2007 of

3Online available via rsync asteria.noreply.org::tordir

4

http://www.noreply.org/tor-running-routers/totalLong.html
http://www.noreply.org/tor-running-routers/totalLong.html


the directory server moria2 to derive average session
times.

Session time is an important metric that measures
the time between joining and leaving the Tor network
[6]. The shorter the session time is, the more often
descriptors have to be transferred from other nodes.
We measured session time by determining the time
between the first and last occurrence of a Tor node
in a snapshot, i.e. the router may not occur in the
previous (next) snapshot with respect to the start
(end) of the interval.

In this preliminary measurement, we omitted the
situation that a router leaves the network and rejoins
it between two snapshots; the reason is that one can-
not distinguish such a situation from the ordinary
refreshing of a router descriptor. So, if we counted
renewal of a descriptor as node failure, this would
result in a lot of false positives. For a more precise
analysis, we would have to minimize the snapshot in-
terval, e.g. one minute instead of one hour.

From the given logs, we discarded all sessions that
have existed at the beginning of the examined inter-
val and those that existed beyond the ending of it.
Otherwise, those sessions would have been measured
shorter than they really are. However, those sessions
that started before and ended after the examined in-
terval of one month have been omitted, too. In a
more precise analysis, the examined interval might
be extended, e.g. to one year.

In total, we measured 7723 distinct sessions with
an average duration of 43.94 hours and standard
deviation of 57.27 hours. The high total num-
ber of sessions—compared to the average number of
routers—results from some routers joining and leav-
ing the network multiple times, thus having multiple
sessions throughout the considered interval. There
were 353 sessions beginning before and ending after
the examined interval. Figure 2 shows a box plot of
session times in hours with a logarithmic scale.

Churn rate Another metric for population change
is the churn rate. It determines the fraction of joining
and leaving nodes compared to the whole node pop-
ulation in a certain time, e.g. one hour. The more
nodes join or leave the network, the more descriptors

Figure 2: Box plot of session times in hours with a
logarithmic scale.

need to be transferred to other nodes. Thus, churn
rate is reciprocal to session time. We measured join
and leave rate separately. We define the join rate
as the fraction of newly joined nodes in a snapshot
compared to all nodes in that snapshot. As leave
rate we calculate the fraction of leaving nodes in a
snapshot compared to the previous snapshot in which
they have been present. The different reference pop-
ulations of both metrics result from the assumption
that both metrics should range from 0–100 %.

As above, we did not consider nodes leaving and
rejoining the network within two snapshots. Since
this might considerably increase both, join and leave
rates, a more precise analysis should be based on
shorter intervals between snapshots, e.g. one minute.

In total, we measured 617 join and leave rates re-
sulting from 618 snapshots. The first 54 snapshots
in the sample had to be discarded, because they ap-
peared to be erroneous: The first 53 join and leave
rates would have been 0 % and the 54th would be
22 times the average. We measured an average join
(leave) rate of 1.058 % (1.053 %) with a standard de-
viation of 0.380 % (0.354 %). Figure 3 shows a box
plot of both, join and leave rates.

5



Figure 3: Box plot of join and leave rates, i.e. the
number of joining and leaving nodes per hour com-
pared to the whole node population.

From these measurements we conclude, that the
population of Tor routers does not change too quickly
for applying consistent hashing to it. Even though
the sample excludes the session times of one hour or
less, the average session time of 43.94 hours makes
it very unlikely that such short session times are the
norm. DHTs have been designed for situations in
which session times range in minutes, rather than
in hours [6]. Further, we could design our system
in a way, that only stable routers will be included
in the distributed storage, thus making high churn
even less likely. Therefore, we should figure out if
some classes of routers have higher session times and
lower churn rates compared to others. Anyhow, we
can rely on the fact that Tor itself would face serious
other problems, if its routers had churn rates in the
magnitude of DHT nodes.

5 Security discussion

In general, onion routers are less trustworthy than
directory servers. This comes from the fact that the
currently deployed 5 directory servers are run by the
Tor developers, which are at least less likely to misuse

the trust put in them than arbitrary persons. Onion
routers can be set up by anyone with an Internet
connection. Though it is possible to register an onion
router’s name at the Tor people, this constitutes only
a limited amount of trust. In the following we want to
depict what kind of security threats need to be con-
sidered compared to a centralized storage solution.

Logging publication and retrieval requests In
either a centralized or a decentralized design, the
node which is requested to store or retrieve an RSD
learns about that request. Using this information,
one can generate request logs for a given hidden
service, i.e. the service’s uptime and clients’ access
frequencies and patterns. In the existing design,
this information can only be obtained by the di-
rectory server administrator. In addition to that,
a user can—with a little effort—learn about a hid-
den service’s uptime by regularly polling the direc-
tory servers for the hidden service’s RSD. In a decen-
tralized design an arbitrary user can learn about the
hidden servers for which she is responsible.

While we cannot provide an easy solution to pre-
vent logging, we can make life for an attacker a little
harder by sticking her to a fixed node identifier, thus
making her responsible for a specific identifier range
only. We propose to choose identifiers based on IP
addresses, that cannot be changed arbitrarily. On the
other hand, hidden service providers who are afraid
of this kind of attack might change their identifiers on
a regular basis. Further, we can require that routers
have to be marked as stable by the Tor directory in
order to become part of the distributed storage. At
least this raises efforts that are necessary for an ad-
versary to control larger areas of the identifier ring.

After all, it is not clear, if hiding online activity
is a primary goal for the current hidden service de-
sign. If there was a strong need to do so, it could
merely be provided by introducing authentication to
hidden services, i.e. by restricting knowledge to a hid-
den service’s RSD to authorized clients only. But this
implies changes to several parts of the network, not
only to the directory mechanism. It is part of future
work, not of the design proposed here.

6



Dropping valid entries and providing false
empty results The facts that RSDs are signed by
the hidden service provider and that they have a lim-
ited time-to-live makes it impossible for an attacker
to forge or replay them. On the other hand, routers
could drop valid entries or provide false empty re-
sults.

As a counter measure, hidden service providers and
clients should never trust a single router to work cor-
rectly. The former should publish their RSDs on
more than only the primarily responsible router, and
the latter should cross-check empty results by re-
questing the same RSD from a neighboring router.

In order to perform an effective denial of a hidden
service, an adversary would need to control all nodes
controlling replicas for this RSD. This is rather dif-
ficult to accomplish, because of the mapping of IP
addresses to identifiers and the requirement to have
all stable routers.

In the future, we might consider a system that re-
ports repeated cases of misbehaving nodes to the Tor
directory which could easily recheck the misbehavior
and possibly remove the router from the list.

Flooding a router with false requests An ad-
versary could perform a denial of service attack by
flooding a router with false requests. While publica-
tion requests with RSDs containing random data are
discarded, correctly signed RSDs have to be stored
until their time-to-live expires. A special form of this
attack could be performed by an onion router flood-
ing her neighbor with false RSDs when they try to
copy replicas.

At the moment, we consider the efforts for per-
forming such an attack to be higher than the caused
damage. There are other possible attacks on onion
routers that are more effective, e.g. flooding it with
false circuit establishment requests. However, possi-
ble counter measures could be to require a calcula-
tional expensive puzzle that can be efficiently vali-
dated for storing RSDs and to restrict the number of
copied replicas to a reasonable number.

This security discussion might not be complete due

to threats we have not thought about yet. However,
the assumptions—unencrypted, but signed contents,
no need for anonymity of routers—prevent a lot of
security threats right from start.

6 Conclusion

In this proposal we have suggested to replace the
centralized storage of RSDs by a decentralized ap-
proach. We proposed a design that combines a
DHT/consistent hashing approach with entry repli-
cation with the router list obtained by the directory
servers. We performed some measurements on the
dynamics of router population in Tor and found that
routers should be feasible to be structured in a con-
sistent hashing network. We also discussed possible
security impacts caused by our design.

The next step would be to perform a prototype
realization of our proposal. This could be used to
measure reliability of routing. Further, the concrete
implementation might also raise questions overlooked
in the design.

Possible future work might be the extension of
hidden services to provide additional services, e.g.
resolve human-readable names to hidden server ad-
dresses. The difficulty lies in the fact that human-
readable names are not provably related to the pub-
lic key of a hidden service—in contrast to onion ad-
dresses. However, a solution would be required to
conveniently refer to services or users in Tor.

Another work to be performed in the future would
be the inclusion of client authentication to hidden ser-
vices. We already made use of authenticated hidden
services by using an external DHT on top of Tor [7,8],
but we envision to include such a protocol in Tor.
However, this requires RSDs to be encrypted (like it
is done in [2] which contradicts the premises of our
proposed design and requires to realize authenticated
updates in another way for some thoughts on this).
Though authenticated hidden services aim at differ-
ent types of applications compared to normal hidden
services, they promise to be an interesting area for
research.

7



7 Project timetable

The refinement of this proposal towards an imple-
mentation as well as the implementation itself is
scheduled for summer 2007. We conceive the follow-
ing timetable to be reasonable in order to finish the
work at the end of August 2007.

1. Phase one: Refine concepts, perform preliminary
tasks (April 11 – May 27, 6.5 weeks)

(a) Discuss concepts given in this proposal with
Tor developers and refine proposed design

(b) Setup own test environment to compile Tor
from sources

(c) Implement test management application to
start/stop a number of pre-configured Tor
processes on a local machine that create a
local Tor network

(d) Identify possible interfaces in the Tor
sources where to fit in the new code (by
logging and code review)

(e) Specify exact protocol including message
formats; integrate proposed changes with
existing specification documents

(f) Propose code to monitor usage of directory
servers for RSDs in the deployed Tor net-
work

2. Phase two: Implement perfect-world prototype
(May 28 – July 16, 7 weeks)

(a) Implement prototype that performs basic
routing of requests for a specific identifier
to the appropriate router

(b) Implement prototype in which routers are
able to forward inadequate requests to their
more appropriate neighbors

(c) Implement prototype that stores and re-
trieves RSDs at the one responsible node
for the RSD’s identifier

3. Phase three: Implement real-world prototype
(July 17 – August 31, 6.5 weeks)

(a) Implement fail-safe prototype by employing
replication of entries

(b) Implement secure prototype that can cope
with untrustworthy routers by evading mis-
behaving routers

(c) Implement prototype that collects usage
statistics and publishes them to the direc-
tory

(d) Write web page that evaluates logged statis-
tics and presents them

(e) Document collected results of the imple-
mentation project in a technical report

8 Acknowledgements

Some questions raised during writing this proposal
could not have been answered without input and sup-
port from Roger Dingledine and Nick Mathewson.
Further, some ideas (e.g. introducing naming to hid-
den services, restriction of one router per IP address)
have been adopted from discussions in the public Tor
mailing list. Some ideas related to hidden service
authentication originate from discussions with Lasse
Øverlier and Paul Syverson. Finally, thanks to Guido
Wirtz for fruitful discussion on this topic.

References

[1] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX Se-
curity Symposium, pages 303–320, 2004.

[2] Lasse Øverlier and Paul Syverson. Valet services:
Improving hidden servers with a personal touch.
In Proceedings of the Sixth Workshop on Privacy
Enhancing Technologies (PET 2006), Cambridge,
UK, June 2006. Springer.

[3] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet ap-
plications. In Proceedings of the 2001 ACM SIG-
COMM Conference, pages 149–160, 2001.

8



[4] David Karger, Eric Lehman, Tom Leighton, Rina
Panigrahy, Matthew Levine, and Daniel Lewin.
Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the
world wide web. In STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on The-
ory of computing, pages 654–663, New York, NY,
USA, 1997. ACM Press.

[5] Sven Kaffille, Karsten Loesing, and Guido Wirtz.
Distributed Service Discovery with Guarantees in
Peer-to-Peer Networks using Distributed Hashta-
bles. In Hamid R. Arabnia, editor, Proceedings
of PDPTA ’05, volume II, pages 578–584, June
2005.

[6] Sean Rhea, Dennis Geels, Timothy Roscoe, and
John Kubiatowicz. Handling churn in a dht. In

Proceedings of the General Track: 2004 USENIX
Annual Technical Conference, June 2004.

[7] Karsten Loesing, Markus Dorsch, Martin
Grote, Knut Hildebrandt, Maximilian Röglinger,
Matthias Sehr, Christian Wilms, and Guido
Wirtz. Privacy-aware Presence Management
in Instant Messaging Systems. In 20th IEEE
International Parallel and Distributed Processing
Symposium, April 2006.

[8] Karsten Loesing, Maximilian Röglinger, Chris-
tian Wilms, and Guido Wirtz. Implementation of
an Instant Messaging System with Focus on Pro-
tection of User Presence. In Proceedings of the
Second International Conference on Communica-
tion System Software and Middleware, January
2007.

9


	Motivation
	Requirements
	Proposed design
	Feasibility discussion
	Security discussion
	Conclusion
	Project timetable
	Acknowledgements

