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A Computational Stochastic Modeling Formalism
for Biological Networks

Werner Sandmann and Verena Wolf

Abstract— Stochastic models of biological networks are well
established in systems biology, where the computational treatment of
such models is often focused on the solution of the so-called chemical
master equation via stochastic simulation algorithms. In contrast
to this, the development of storage-efficient model representations
that are directly suitable for computer implementation has received
significantly less attention. Instead, a model is usually described
in terms of a stochastic process or a ”higher-level paradigm” with
graphical representation such as e.g. a stochastic Petri net. A serious
problem then arises due to the exponential growth of the model’s state
space which is in fact a main reason for the popularity of stochastic
simulation since simulation suffers less from the state space explosion
than non-simulative numerical solution techniques. In this paper we
present transition class models for the representation of biological
network models, a compact mathematical formalism that circumvents
state space explosion. Transition class models can also serve as
an interface between different higher level modeling paradigms,
stochastic processes and the implementation coded in a programming
language. Besides, the compact model representation provides the
opportunity to apply non-simulative solution techniques thereby pre-
serving the possible use of stochastic simulation. Illustrative examples
of transition class representations are given for an enzyme-catalyzed
substrate conversion and a part of the bacteriophageλ lysis/lysogeny
pathway.

Keywords— Computational Modeling, Biological Networks,
Stochastic Models, Markov Chains, Transition Class Models

I. I NTRODUCTION

Biological network models significantly suffer from their
enormous size, which is due to the high complexity and
lively interactions of involved molecules. Much effort has
been spent to develop and apply analysis techniques, whereas
reducing the model size or, more specifically, reducing the
required computer storage by providing compact formal model
descriptions has received far less attention. As stated in [12],
the focus of current modeling tools is on simulation, but model
development is a highly iterative process which is currently
only partly supported. Modelers will often end up having
many different versions of one model, probably in a number
of different formats.

The fundamental rule of a chemical reaction between
molecules is given by the stoichiometry

si1Si1 + · · · sim
Sim

−→ sim+1
Sim+1

+ · · · siℓ
Siℓ

(1)

with m, ℓ ∈ N, m < ℓ, where si1 , . . . , siℓ
∈ N are

stoichiometric coefficients, Si1 , . . . , Sim
are calledreactants,
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are calledproducts and both reactants and
products aremolecular species. Such a chemical equation
expresses that the left hand side of the arrow can be trans-
formed to the right hand side of the arrow. Complex chemical
processes are given by sets of such reactions. Although the
stoichiometric coefficients specify the necessary quantities of
substances of each molecular species, (1) basically describes a
qualitative or functional relationship. However, for a chemical
reaction to occur, typically several conditions on temperature,
pressure, or concentration must hold. These are usually indi-
cated by adding information above or below the arrow and
yield quantitative and temporal relationships often givenin
terms ofrates. The scientific branch that studies such rates of
chemical reactions is calledchemical kinetics.

Different types of computational mathematical models for
the description of the quantitative behaviour of systems formed
by chemical processes exist and the specific meaning of
rates depends on the chosen model type. Though motivated
by different viewpoints the model types and thus the rates
are of course intimately related which should not be too
surprising since they represent the same type of systems.
A comprehensive treatment of different computational model
types can be found in [2].

Models are distinguished in terms of their states and state
changes (transitions) where a state consists of a collection
of variables that sufficiently well represents the relevant1

parameters of the original system at any time. The set of
all states, also referred to as thestate space, may be either
discrete, meaning only a countable number of states that can
be mapped to a subset of the natural numbersN, or the state
space may be continuous. Both in discrete and continuous state
space models the state transitions may occur deterministically
or stochastically. For a long time the model type of choice in
computational systems biology was a deterministic one with
continuous state space, based on the law of mass action and
expressed in terms ofchemical rate equationsleading to a
system of nonlinear ordinary differential equations that often
turns out to be quite difficult to solve.

The stochastic approach [8], motivated by the observation
that biochemical reactions occur randomly, leads to discrete
state Markov processes [7], [9], [20], or, equivalently in
other words, to continuous-time Markov chains [3], and it
requires the solution of a system of difference-differential
equations, thechemical master equation. The rules driving
the temporal evolution of the system can be stored in a

1Any model is a simplified abstraction of the real system and bothsuitability
of a model and the relevant parameters depend on the scope of thestudy.
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matrix consisting of reaction rates. The model’s state space
and thus the matrix dimension is determined by the number
of involved molecular species and the number of potentially
present molecules of each species. Unfortunately, the state
space size grows exponentially in the number of molecular
species and in case of potentially infinitely many molecules
it is even infinite. Thus, storage of the rate matrix is not
suitable for models of complex biological networks. Likewise
chemical reaction equations given by the stoichiometry arenot
suitable for efficient modeling with regard to representation in
computers.

In this paper we adopt the stochastic approach and present a
structured mathematical modeling formalism called transition
class model (TCM) that is particularly well suited for imple-
mentation purposes and moreover can serve as an interface
between different model types or model formats. The paper
is organized as follows. Section II gives formalizations of
stochastic models of biological networks thereby introducing
terminology and notations and demonstrating the problem of
efficient storage and implementation. Transition class models
are introduced in Section III, where we also outline their
advantages. Section IV contains transition class representa-
tions for specific biological networks, and finally Section V
concludes the paper.

II. STOCHASTIC MODELING OF BIOLOGICAL NETWORKS

Stochastic interpretations of chemically reacting systems
date back to the 1960s [14]. A formulation on a physical basis
has been provided in [8] and later on rigorously derived in [9].
The basic assumptions are that the system is kept well stirred
and thermally equilibrated, meaning that a well stirred mixture
of N ∈ N

+ molecular speciesS1, . . . , SN inside some fixed
volume interact at constant temperature. In the following we
give a brief description of the formal mathematical basis.

A. Mathematical Model Description

The system state at any time is described by a discrete
random vector

X(t) = (X1(t), . . . ,XN (t)), (2)

where for each speciesSi, i ∈ {1, . . . , N} andt ≥ 0 a discrete
random variableXi(t) describes the number ofSi molecules
present at timet. The conditional transient (time dependent)
probability that the system is in statex ∈ N

N at timet, given
that the system starts in an initial statex0 at timet0, is denoted
by

p(t)(x|x0, t0) = P (X(t) = x | X(t0) = x0) . (3)

The system state changes over time due to chemical reactions
between molecules of some species. Complex reaction sets can
be decomposed into elementary unidirectional reactions such
that each reaction takes the form (1), where additionally a
reaction rate that determines the reaction speed or probability
is assigned to each reaction.

The reaction rates are independent of the time since the
probability that a reaction occurs within a specific time interval

only depends on the length of this interval and not on the
interval endpoints (the specific start and end times). Thus,
given a current system state, the next state in the system’s
time evolution only depends on this current system state and
neither on the specific time nor on the history of reactions that
led to the current state. Hence, the time evolution of the system
is mathematically described by a stochastic process(X(t))t≥0

with N -dimensional state spaceS ⊆ N
N , and due to the just

stated independence of time and history this stochastic process
is a discrete-state Markov process, or equivalently in other
words, a time-homogeneous continuous-time Markov chain
(CTMC). That is, for alln ∈ N and t0 < t1 < · · · < tn

P (X(tn) = xn|X(tn−1) = xn−1, . . . ,X(t0) = x0)

= P (X(tn) = xn|X(tn−1) = xn−1) . (4)

The multidimensional discrete state spaceS of the CTMC can
be mapped to the natural numbersN and the probability that a
transition from statei ∈ N to statej ∈ N occurs within a time
interval of lengthh ≥ 0 is denoted bypij(h). For all h ≥ 0

these state transition probabilities build a transition probability
matrix2 P (h) = (pij(h))ij∈N. Note thatP (0) equals the unit
matrix I, since no state transitions occur within a time interval
of length zero.

It is well known [3], [6], [13] that a CTMC with state
spaceS ⊆ N

N is uniquely defined by an initial probability
distribution onS and atransition rate matrix, also referred to
asinfinitesimal generator matrix, Q = (qij)i,j∈N consisting of
transition ratesqij , where

Q = lim
h→0

P (h) − P (0)

h
= lim

h→0

1

h
(P (h) − I). (5)

The relation of eachP (h) to Q and an explanation for the term
infinitesimal generator matrixis given byP (h) = exp(hQ).
In that wayQ generates the the transition probability matrices
by a matrix exponential function which is basically defined as
an infinite power series. Hence, all information on transition
probabilities is covered by the single matrixQ, where in
biological network modeling the transition ratesqij correspond
to reaction rates.

The temporal evolution of a CTMC can be described via
a system of differential equations, the Kolmogorov forward
equations and the Kolmogorov and backward equations, resp.,
in matrix notation given by

∂

∂t
P (t) = P (t)Q,

∂

∂t
P (t) = QP (t), (6)

which yields a system of differential equations for the transient
state probabilities, in vector-matrix notation given by

∂

∂t
p(t) = p(t)Q, (7)

wherep(t) denotes the vector of the transient state probabilities
corresponding to (3). The above equations are equivalent tothe
so-called thechemical master equation[7], [20], a term that is

2A transition probability matrix is also called a stochastic matrix meaning
that all entries are probabilities and all row sums equal one.
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thus nothing else than a synonym for the general terms used
in the theory of stochastic processes [3], [6], [13], in particular
Markov processes.

Although the Kolmogorov differntial equations and the
chemical master equation arise from a stochastic model there
is no need to apply stochastic solution methods. In particular,
there is a significant difference between a stochastic modeland
a stochastic simulation although in the literature ”the stochastic
approach” and ”the stochastic simulation algorithm” are often
taken as the same thing. In fact, as we have outlined above, the
stochastic approach leads to continuous-time Markov chains
that may be analyzed by a large variety of solution techniques,
where stochastic simulation is only one of them.

B. Difficulties in Modeling and Analysis

Explicit algebraic solution of the Kolmogorov equations,
or in the biosystems terminology of the chemical master
equation, is usually impossible, and several techniques have
been proposed for the numerical solution of Markov chains,
see e.g. [18]. Most of these techniques both in the general
context of Markov chains and in the specific application to
biological systems aim to solve the above system of differen-
tial equation or a variant known asFokker-Planck equation.
An alternative approach to analytically cope with stochastic
models of biological networks is by stochastic differential
equations (SDE) that are in terms of Itô calculus (which is
also very popular e.g. in stochastic finance) equivalent to the
Fokker-Planck equation.

The main problem that numerical solution techniques suffer
from is the enormous size of the state space that grows
exponentially in the dimensionality, a problem known asstate
space explosion. In particular, for biological networks the
state space grows exponentially in the number of involved
molecular species, which means that even a moderate number
of species implies extremely huge state spaces that are often
impossible to store in computers. In case of potentially infinite
molecular populations the resulting state space is even infinite.
Several advanced solution techniques have been developed
to deal with the state space explosion problem for specific
models, most of them exploiting a special structure of the
transition rate matrix and partitioning the state space to yield
approximate solutions, see e.g. [4], [18], [21] and references
therein. Unfortunately, if the transition rate matrix doesnot
have the assumed structure such approximation techniques do
not work.

An alternative approach that suffers less from the state space
explosion problem is stochastic simulation. As already stated,
the chemical master equation is equivalent to the Kolmogorov
equations. Likewise, the so-calledstochastic simulation al-
gorithm by Gillespie [8], which is often used to solve the
chemical master equation is a straightforward applicationof
Monte Carlo simulation methods for Markov chains that are
known at the latest since the early 1950s, as indicated by [6],
[10], [15] and the references therein. Although often equated
with the stochastic approach to modeling biochemically re-

acting systems the stochastic simulation algorithm is only
one specific solution technique, and its popularity is mainly
justified by the difficulty of solving the differential equations
with other techniques. Nevertheless, stochastic simulation has
numerous drawbacks, and in many application areas where
stochastic models are used, stochastic simulation is ofteneven
referred to as a method of last resort.

One of the major drawbacks of stochastic simulation is
the random nature of simulation results. Despite the fact that
Gillespie’s algorithm is termed exact, a stochastic simulation
can never be exact. Mathematically, it constitutes a statistical
estimation procedure implying that the results are subjectto
statistical uncertainty and in order to draw meaningful con-
clusions it is necessary to make statistically valid statements
on the results. The exactness of Gillespie’s algorithm is only
”in the sense that it takes full account of the fluctuations and
correlations” [8] of reactions within a single simulation run
and Gillespie mentions that it is ”necessary to make several
simulation runs from time0 to the chosen timet, all identical
with each other except for the initialization of the random
number generator”. In fact the reliability of simulation results
strongly depends on a sufficiently large number of simulation
runs, and a proper determination of that number has to be
carefully done in terms of mathematical statistics.

Furthermore, stochastic simulation is inherently costly.In
many cases even a single simulation run is extremely computer
time demanding and thus reducing the space complexity
compared to numerical methods has to be paid by a significant
increase of time complexity. Serious difficulties arise in the
presence of multiple time scales or stiffness. Often approxi-
mations are required to achieve simulation speed up, and as
an immediate consequence even the exactness in the sense
stated above gets lost. Thus, if a problem may be tackled both
by stochastic simulation and by numerical analysis, the latter
should be preferred. The difficulties in numerical analysis
mainly arise due to the state space explosion. Hence, it is
highly desirable to develop compact modeling formalisms that
render model representation and storage in a computer possible
and that yield to numerical analysis as well.

III. T RANSITION CLASS MODELS

To avoid the problem of state space explosion, we use tran-
sition class models (TCMs), which are compact and structured
formal descriptions of Markov chains. They are originally
motivated by queueing network state spaces and similarity
of state transitions in this context, but it turns out that they
are also well suited for formalizing biochemically reacting
systems. It is not necessary, but possible, to generate the
complete state space and the transition rate matrix explicitly.
Once a TCM has been developed, many different solution
techniques, including stochastic simulation, can be applied.

Algorithms have been developed to generate transition class
models automatically from formal Petri net and queueing net-
work descriptions [17], [19]. Hence, TCMs have the potential
to serve as an interface between different model specifications
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(queueing models, Petri nets, mixtures of them, amongst many
others) and various solution methods. Different parts of a
model can be described by different modeling paradigms that
may be on different levels of abstraction, e.g. parts are given
as queueing model, other parts as Petri net, some parts may
be specified as a Markov chain on the low abstraction level of
a stochastic process, others via structured stochastic automata
networks as recently done for biochemically reacting systems
in [21]. Transformation into a TCM then yields a unified model
description, which is moreover suitable for immediate solution.

Fig. 1 illustrates how transition class models are integrated
within the development of an implementation for a system
description, in particular showing their interface character.

Implementational Model

Transition Class Model

Abstract High-Level Model(s)

Real-Life System

Fig. 1. Integration of Transition Class Models within the ”Modeling to
Implementation” Process

A. Formal Definitions and Properties

Although in systems biology the interest is usually in
transient state probabilities there are also relevant cases where
steady-state probabilities – probabilities for a system inequi-
librium – provide important insights and are thus of interest.
It is well known from the theory of stochastic processes
[3], [6], [7], [13], [18], [20] that steady-state probabilities
for continuous-time Markov chains can be derived via an
embedded discrete-time Markov chains, where state transitions
occur only after discrete time steps according to transition
probabilities, which is sometimes easier to analyze (depending
on the chosen solution technique). Accordingly, we provide
definitions of transition class models for both the continuous-
time case and the discrete-time case. We follow the presenta-
tion in [16], where a formal definition of transition class mod-
els appeared for the first time. Essentially for the structured
description is the notion of a transition class, which enables us
to interpret and model state transition events efficiently,e.g.
reactions in biological networks.

Definition 1: (Transition Class) A transition class (relative
to some setS) is a tripletτ = (U , u, α) consisting of

• a setU ,
• a functionu : U ∩S → S, where∀x ∈ U ∩S : u(x) 6= x,

•

{

a functionα : U ∩ S → (0, 1] in discrete time,
a functionα : U ∩ S → (0,∞) in continuous time.

For α : U ∩ S → (0, 1] we speak of a discrete transition class
(DTC), and forα : U ∩ S → (0, 1] we speak of a continuous
transition class (CTC).

Next we give an interpretation for what is described by a
transition class, and we introduce an appropriate terminology.

The setU contains states, e.g. describing a system rep-
resented by a model. These states may change when some
events (state transitions) occur. Therefore, we refer toU as
the source state spaceof τ. Note that we allowU \ S 6= ∅,
which means,U may contain some redundant (infeasible)
states. This makes formal model description much easier and
more efficient. Additionally, we emphasize that we need not
explicitly specify the setS when defining concrete transition
classes, and neither all elements of the source state space have
to be enumerated nor have they to be stored completely.

The functionu gives the new state after a transition from
one state to another state (which need not be contained inU)
has occured. Therefore, we callu thedestination state function
(or target state function, which is more familiar in some areas).
Note that from the definition of the destination state function
it immediately follows that the source state space of any
transition class does not contain absorbing states, i.e. states
where the system stays forever if once reached. In the discrete
case the definition additionally implies that state transitions
from a state to itself, so called self–loops, correspondingto
positive diagonal entries in the transition probability matrix
when using classical Markov chain descriptions, need not to
be modeled explicitly as a transition class. Thus, an additional
source of storage waste is eliminated.

Finally, α(x) denotes for a DTC the probability and for a
CTC the rate of such a transition from statex to stateu(x).
For DTC we callα the transition probability function, and for
CTC we callα the transition rate function. We point out, that
in many cases, when transition classes are defined properly,α

is a constant, i.e. it does not depend on the system state, or at
the worst it is a rather simple function on the system state.

Now we are ready to give the formal definition of a
transition class model, both for discrete and continuous time.

Definition 2: (Transition Class Model, TCM)
Let T := ({τ1, . . . , τk}, y) be a pair consisting of a set of
transition classesτi = (Ui, ui, αi), 1 ≤ i ≤ k and a feasible
statey ∈ S ∩ (U1 ∪ . . . ∪ Uk). ThenT is called acontinuous
transition class model(CTCM), if eachτi is a CTC; andT
is called adiscrete transition class model(DTCM), if eachτi

is a DTC, and

∀x ∈ S ∩
k

⋃

i=1

Ui :
k

∑

i=1

I{x∈Ui}αi(x) ≤ 1. (8)
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If in inequality (8) for statesx the condition ”< 1” holds,
then there is a positive probability of a self–loop inx, and
this probability is exactly the difference to one. As we have
stated earlier, self–loops are not modeled explicitly, butare
implicitly contained in the transition class model.

What has been gained compared to the usual Markov chain
description via a transition rate matrix? Typically, the Markov
chain state space grows exponentially, whereas the number
of transition classes grows only linearly in the number of
molecular species. Moreover, it is possible to describe Markov
chains with infinite state space by a finite number of transition
classes. Consider for example a potentially infinite number
of at least one of the involved molecular species. Then the
source state spaces of course become infinite, but they can
still be described by component characteristics meaning by
characteristics of single molecular species.

Intuitively, it seems clear, that Markov chains can be
described as transition class models, and indeed it can be
formally proven, that each Markov chain can be described
by a TCM, and that each TCM can be interpreted as and
thus describes a Markov chain [16]. Formally, a transition
class model is an abstract mathematical notation, which gets a
practical meaning and a relation to other modeling paradigms
only by interpreting its components. The interpretation asa
Markov chain thus yields in this sense a semantics of transition
class models. Eachτi is a transition class relative to some setS
without S explicitly given in the definition. This means, that
a TCM implicitly contains the state space of the described
Markov chain. In particular, using TCMs does neither require
any numbering of states nor explicit enumeration of the state
space, and TCM can be stored very efficiently.

Obviously, TCMs both in continuous and in discrete time
can be simulated in a similar manner as Markov chains by
repeatedly generating trajectories, as e.g. in its easiestand
most straightforward way adopted by Gillespie in his stochas-
tic simulation algorithm [8]. Again note that [8] is by no means
the first paper where direct Markov chain simulation appears.
Moreover, although not specifically concerned with simulation,
TCMs are well-suited for improved fast simulation methods
that are far more advanced than the Gillespie algorithm and
its variants, for instance variance reduction techniques based
on importance sampling [16]. Even more important with
transition class models there is no need to resort to stochastic
simulation since non-simulative numerical techniques canbe
directly performed on TCMs. Hence, as a natural by-product of
circumventing the problem of state space explosion, transition
class models open access to a much wider range of analysis
methodologies.

IV. T RANSITION CLASS REPRESENTATIONS

We demonstrate how transition class representations of
concrete biological networks look like by illustrating it via
example for an enzyme-catalyzed substrate conversion and a
part of the bacteriophageλ lysis/lysogeny pathway.

A. Enzyme-catalyzed Substrate Conversion

As the first example consider a representative system that
has been also served as a reference example, e.g. very recently
in [4], [5], the enzyme-catalyzed substrate conversion

S1 + S2

c1−−⇀↽−−
c2

S3
c3−−⇀ S1 + S4 (9)

of a substrateS2 into a product S4 via an enzyme-substrate
complexS3, catalyzed(accelerated) by an enzymeS1.

If we assume that initially (at time0) there arex(0)
1 enzyme

molecules,x(0)
2 substrate molecules, and no molecules of the

enzyme-substrate complex and the product are present, then
the maximum numbers of molecules ofS1 and S3 that can
be present at any timet arex

(0)
1 , and forS2 andS4 they are

x
(0)
2 . Hence, the state space size of the corresponding Markov

chain equals|S| = (x
(0)
1 +1) · (x

(0)
2 +1) which yields e.g. for

x
(0)
1 = 200 andx

(0)
2 = 3000 the size of201 ·3001 ≈ 6 ·105. If

we do not have bounds for the initial molecule population it
is infinite. In our representation we need only three transition
classesτ1, τ2, τ3 even in case of an infinite state space:

τ1 = (U1, u1, α1), where

• U1 = {(x1, . . . , x4) : x1, x2 > 0},
• u1 : N

4 → N
4,

x 7→ u1(x) = (x1 − 1, x2 − 1, x3 + 1, x4),

• α1 : N
4 → R, x 7→ α1(x) = c1x1x2;

τ2 = (U2, u2, α2), where

• U2 = {(x1, . . . , x4) : x3 > 0},
• u2 : N

4 → N
4,

x 7→ u2(x) = (x1 + 1, x2 + 1, x3 − 1, x4),

• α2 : N
4 → R, x 7→ α2(x) = c2x3;

τ3 = (U3, u3, α3), where

• U3 = U2 = {(x1, . . . , x4) : x3 > 0},
• u3 : N

4 → N
4,

x 7→ u3(x) = (x1 + 1, x2, x3 − 1, x4 + 1),
• α3 : N

4 → R, x 7→ α3(x) = c3x3;

Obviously, the TCM provides a huge gain in storage re-
quirements and is well suited for immediate implementation.
An important point regarding computer implementations is that
the state space and the transition rate matrix of the underlying
Markov chain is implicitly coded by logical predicates and
simple functions that are both easy to implement.

B. Lambda Bacteriophage

In this example we develop a TCM model for a part of
the bacteriophageλ lysis/ lysogeny pathway. We focus on
the PR − PRM operator regions sharing several overlapping
operator sites. The expression of theλ repressor genecI is a
well characterized autoregulated genetic network (see [1], [11]
and the references therein). The mutant system has operator
sites OR2 and OR3 where theCI dimer3, denoted byX2,
binds as a transcription factor either 1) atOR2, 2) atOR3 or

3Here, gene names start with lower case letters and the corresponding
proteins are denoted by upper case letters
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3) at both sites. In case 1, i.e.X2 binds atOR2, transcription
is enhanced whereas binding atOR3 (cases 2 and 3) inhibits
transcription which means that the production of proteinCI

is turned off. Let D denote the DNA promotor site. The
stoichiometry of the model is given in Table I and since there
are 13 different reaction types and 6 species its TCM model
requires 13 transition classes andS = N

6. We assume that in
statex = (x1, x2, . . . , x6) the population sizes of the 6 species
X,X2,D,DX2,DX∗

2 ,DX2X2 arex1 for X, x2 for X2, . . . ,

andx6 for DX2X2.

TABLE I

STOICHIOMETRY OF THE LYSIS-LYSOGENY SWITCH IN BACTERIOPHAGEλ.

2X
c1
−⇀↽− X2 dimerization

D + X2

c2
−⇀↽− DX2 binding 1)

D + X2

c3
−⇀↽− DX∗

2
binding 2)

DX2 + X2

c4
−⇀↽− DX2X2 binding 3)

DX∗

2
+ X2

c5
−⇀↽− DX2X2 binding 3)

D
cs
−→ D + X slow transcription

X
cd
−−→ ∅ degradation

DX2

cf
−−→ DX2 + X enhanced transcription

Then, for instance, reaction2X
c1−→ X2 is described by

transition classτ1 = (U1, u1, α1) where
• U1 = {(x1, x2, . . . , x6) : x1 ≥ 2},
• u1 : N

6 → N
6,

x 7→ u1(x) = (x1 − 2, x2 + 1, x3, x4, x5, x6)

• α1 : N
6 → R,

x 7→ α1(x) = 2c1x1.

Since the population ofD is at most one, the transition class
of reactionD + X2

c2−→ DX2 is τ2 = (U2, u2, α2) where
• U2 = {(x1, x2, . . . , x6) : x2 > 0, x3 = 1},
• u2 : N

6 → N
6,

x 7→ u2(x) = (x1, x2 − 1, 0, x4 + 1, x5, x6)

• α2 : N
6 → R,

x 7→ α2(x) = c2x2.

ReactionDX2X2
c5−→ DX∗

2 + X2 is described by transition
classτ3 = (U3, u3, α3) where

• U3 = {(x1, x2, . . . , x6) : x6 = 1},
• u3 : N

6 → N
6,

x 7→ u3(x) = (x1, x2 + 1, x3, x4, x5 + 1, 0)

• α3 : N
6 → R,

x 7→ α3(x) = c5.

The three transition classes given above should suffice for
illustration. The remaining ones are built in the same manner.
Again, TCMs provide a huge gain in required computer
storage. It becomes clear that this gain rapidly increases with
the model size, because for a Markov chain description the
model size grows exponentially in the number of involved
molecular species whereas the size of a transition class model
grows only linearly.

V. CONCLUSIONS

We have presented transition class models as a mathematical
formalism for the compact and structured representation of

stochastic models for biological networks. Transition class
models provide huge gains in computer storage requirements,
are well suited for implementation and may also serve as an
interface between different high level modeling paradigms.
Moreover, they open access to a wide range of analysis
methodologies that are not feasible when using classical
Markov process descriptions. Transition class representations
have been illustrated for an enzyme-catalyzed substrate con-
version and a part of the bacteriophageλ lysis/lysogeny
pathway. Ongoing research is concerned with improving and
extending already existing numerical solution techniquesthat
directly work with the transition class representation andalso
with advanced stochastic simulation algorithms for transition
class models.
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