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Abstract: A discrete-time conversion is applied to the continuous-time Markov
process that describes the dynamics of biochemically reacting systems within the
discrete-state stochastic modeling approach (chemical master equation approach).
This yields a stochastically identical discrete-time Markov chain and an according
formulation of the chemical master equation. Simulating the resulting chain is
equivalent to the well-known Gillespie algorithm but requires less effort. Thus,
exactness as possessed by the Gillespie algorithm is preserved while the simulation
can be performed more efficiently. Numerical examples are presented to compare
the Gillespie algorithm and the discrete-time conversion approach.
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INTRODUCTION

Stochastic modeling of biochemical systems is to-
day well-established as it has been often enough
pointed out that randomness is present in many
systems, see for example (McAdams and Arkin,
1997; McAdams and Arkin, 1999; Turner et al.,
2004; Wilkinson, 2006) to mention but a few of
the publications dealing specifically with stochas-
tic models. Stochastic simulation is in widespread
use to analyze such systems that are governed by
stochastic processes, both (probabilistically) ex-
act methods (Gillespie, 1976; Gillespie, 1977; Gib-
son and Bruck, 2000; Cao et al., 2004) and approx-
imate methods such as the continuously improv-
ing tau-leaping simulation (Gillespie, 2001; Cao
et al., 2005; Cao and Petzold, 2005; Rathinam
et al., 2005; Cao et al., 2006). Accelerating sim-
ulations is motivated by the fact that stochastic
simulation is inherently costly meaning that the
advantage to be able to deal with quite large mod-
els has to be paid by a significant amount of com-
puter time. However, accelerated simulation usu-

ally comes at the prize of approximation and thus
loss of exactness. All the mentioned simulation
methods, exact or approximate, deal with generat-
ing trajectories of the underlying continuous-time
stochastic process that describes the dynamic be-
havior of chemically reacting systems.

In this paper we apply a discrete-time conversion
that we show to yield a discrete-time Markov
chain stochastically identical and thus equivalent
to the continuous-time process. This discrete-time
conversion, also called uniformization is particu-
larly suited for stochastic simulation. Hence, the
purpose and contribution is twofold. First, the
concept of discrete-time conversion is introduced
and formally shown to yield an equivalent repre-
sentation of the original continuous-time stochas-
tic process. Then it is demonstrated how to make
use of this for improving the exact stochastic
simulation of coupled chemical reactions known as
the Gillespie algorithm. The validity and efficiency
improvement is empirically demonstrated by nu-
merical examples. We start with briefly explaining



the discrete-state stochastic modeling approach,
thereby introducing necessary terminology and
notation.

STOCHASTIC MODELING OF
BIOCHEMICAL SYSTEMS

Stochastic interpretations of chemically reacting
systems can be traced back to (McQuarrie, 1967).
A formulation on a physical basis has been pro-
vided in (Gillespie, 1976), (Gillespie, 1977) and
later on rigorously derived in (Gillespie, 1992).
The basic assumptions are that the system is well
stirred and thermally equilibrated, meaning that
a well stirred mixture of d ∈ N

+ molecular species
S1, . . . , Sd inside some fixed volume interact at
constant temperature. The system state at any
time t ≥ 0 is a d-dimensional discrete random
vector X(t) = (X1(t), . . . ,Xd(t)), where for each
species Sk, k ∈ {1, . . . , d} and t ≥ 0 a discrete
random variable Xk(t) describes the number of
molecules of species Sk present at time t. The
set S ⊆ N

d of all possible system states consti-
tutes the system’s state space. The conditional
transient (time dependent) probability that the
system is in state x ∈ S at time t, given that the
system starts in an initial state x0 ∈ S at time t0,
is denoted by p(t)(x) := p(t)(x|x0, t0), that is

p(t)(x) = P (X(t) = x | X(t0) = x0) .

The system state changes due to chemical reac-
tions R1, . . . , RM and the reaction rate of each
Ri, i ∈ {1, . . . ,M} is given by the propensity

function αi, where αi(x)dt is the conditional prob-
ability that a reaction of type Ri occurs in the
infinitesimal time interval [t, t+dt), given that the
system is in state x at time t. That is αi(x)dt =
P (Ri occurs in [t, t + dt) | X(t) = x) . Given that
the system starts in an initial state x0 ∈ S at
time t0, the temporal evolution of the system is
expressed by the chemical master equation (CME)

∂p(t)(x)

∂t
=

M
∑

i=1

(

αi(x−vi)p
(t)(x−vi)−αi(x)p(t)(x)

)

where vi = (vi1, . . . , vid) is a state change vector

and vik, k ∈ {1, . . . , d} denotes the change of
molecules of species Sk due to reaction type Ri.

The reaction rates αi are time-independent since
the probability that a reaction occurs within a
specific time interval only depends on the length
of this interval and not on the interval endpoints.
Thus, given a current system state, the next state
in the system’s time evolution only depends on
this current system state and neither on the spe-
cific time nor on the history of reactions that led
to the current state. Hence, the time evolution
of the system is mathematically described by a
stochastic process (X(t))t≥0 with d-dimensional

state space S ⊆ N
d, and due to the just stated

independence of time and history this stochastic
process is a discrete-state Markov process, also
called Markov jump process or continuous-time
Markov chain (CTMC). Terminology and nota-
tion in the theory of CTMCs, where the state
space is typically assumed to be mapped to N and
most expressions are given in vector-matrix nota-
tion and can be appropriately handled by linear
algebra, is usually rather different from that used
to express the CME. However, it can be shown
that the CME is equivalent to the Kolmogorov
forward differential equations. We will not further
expose this, see for example (Bremaud, 1999; van
Kampen, 1992) for more information.

Stochastic Simulation

The essential part of any simulation is to imitate
the system under consideration. Consequently,
stochastic simulation of coupled chemical reac-
tions consists of generating trajectories of the
underlying CTMC. With the terminology used in
the derivation of the CME this has been intro-
duced to the biochemical literature by Gillespie
(Gillespie, 1976; Gillespie, 1977) and is in this
context usually referred to as the stochastic simu-
lation algorithm (SSA) or the Gillespie algorithm:

Init t := t0, x := x0 and tend

while t < tend

(1) Compute all αi(x) and α
0
(x) :=

∑M

i=1 αi(x)
(2) Generate two random numbers u1, u2,

uniformly distributed on (0, 1)
(3) Generate time τ to next reaction:

τ = − ln(u1)/α0(x)
(4) Determine reaction type:

i = min{k : α1(x) + · · · + αk(x) > u2α0
(x)}

(5) Set t := t + τ ; x := x + vi

(6) Store/Collect/Handle Data

An equivalent version using a different interpre-
tation of the CTMC dynamics is due to (Gibson
and Bruck, 2000). However, though this appeared
to be more efficient at a first glance, it is now
well-known that this not true (Cao et al., 2004).

DISCRETE-TIME CONVERSION

The basic idea of discrete-time conversion is to de-
fine an associated discrete-time stochastic process
that behaves equivalent to the continuous-time
process under consideration. Such an approach
already appeared as early as in (Jensen, 1953)
and is thus sometimes referred to as Jensen’s
method. Similar methods are also known as uni-

formization or randomization and have been used
for computing transient and steady-state solutions



for Markov chains, see for example (Hordijk et

al., 1976; Gross and Miller, 1984; Stewart, 1994).
Here we apply a discrete-time conversion to the
stochastic process formulation describing the tem-
poral evolution of chemically reacting systems. We
define a discrete-time process that is stochasti-
cally identical to the original process (X(t))t≥0.
More specifically, the original continuous-time
process is represented as a discrete-time Markov
chain where the times are implicitly driven by a
Poisson process. We show that this process indeed
behaves equivalent to the original one governed by
the CME and we also give an according discrete-
time reformulation of the CME.

The only assumption is that all propensity func-
tions are finite 1 , that is ∀x ∈ S : αi(x) < ∞.
Thus, also for all x the sum of all propensity func-
tions is finite, α0(x) := α1(x)+ · · ·+αM (x) < ∞.
Obviously, this assumption is trivially given for
finite state spaces and therefore not a serious
restriction since there should be a finite number
of molecules in practical situations. Notice that in
the original process (X(t))t≥0, governed by the
CME and usually simulated with the Gillespie
algorithm, for all states x ∈ S the conditional
probability of reaction type Ri given that any

reaction occurs is αi(x)
α0(x) . In more general Markov

process terminology these are the jump probabil-
ities given that a transition out of state x occurs.

Define a uniformization constant λ such that

sup
x

{α0(x)} ≤ λ < ∞.

Then

∀x ∈ S : 0 ≤
αi(x)

λ
≤ 1, i ∈ {0, . . . ,M}.

Hence, in that way division by λ uniformizes the
reaction rates which explains the term of uni-
formization. Now, define a discrete-time Markov
chain (Yn)n∈N with the same initial distribution
as (X(t))t≥0 (that is for example the distribution
assigning an initial probability of one to state
x0 at time t0 and initial probabilities of zero to
all other states) and with transition probabilities
αi(x)

λ
for (unconditional) transitions out of state

x. Since a transition out of state x means that a
reaction occurs these transition probabilities shall
be taken as reaction probabilities. Obviously,

0 ≤
M
∑

i=1

αi(x)

λ
=

α0(x)

λ
≤ 1

which means that there may be a probability of
less than one for leaving state x, that is that any
reaction occurs, and there is a remaining proba-

bility of 1 − α0(x)
λ

for staying in state x meaning

1 This may be even dropped in planned further investiga-
tions.

that no reaction occurs. Notice that this construc-
tion induces that the times between transitions in
(Yn)n∈N are all exponentially distributed with the
same mean 1/λ. In that sense these times are ran-
domized by a Poisson process with rate λ which
explains the alternative term of randomization.
To see that (Yn)n∈N is stochastically identical to
(X(t))t≥0 consider for (Yn)n∈N the conditional
reaction probabilities given that a reaction occurs.
Using as a short-hand notation Ri for ”reaction of
type Ri occurs” and R for ”any reaction occurs”
and noticing that Ri ⇒ R these are given by

P (Ri|R) =
P (Ri ∧ R)

P (R)
=

P (Ri)

P (R)
=

αi(x)
λ

α0(x)
λ

=
αi(x)

α0(x)

and indeed the conditional probabilities for the
processes (X(t))t≥0 and (Yn)n∈N are the same.
This implies that the original process and the
discrete-time Markov chain with randomized times
between transitions behave equivalently and are
stochastically identical. Formally, we get

P (X(t) = x) =

∞
∑

k=0

P (Yk = x | k reactions in [0,t])

=
∞
∑

k=0

P (Yk = x) e−λt (λt)k

k!

where the latter equality is due to the fact that
for the randomized chain the number of tran-
sitions in any time interval of length t has a
Poisson distribution with rate λ. In principle, the
above derivation also offers an alternative method
for non-simulative computation of the transient
probabilities p(t)(x) = P (X(t) = x). Instead of
numerically solving the CME, one can try to ap-
proximate the above sum. However, this infinite
sum must be definitely truncated and moreover,
numerical difficulties and large models may cause
serious problems requiring a lot of specific extra
investigations that are not the topic of the present
paper. Nevertheless, before we demonstrate how
the above can be used for stochastic simulation,
we give some more theory and evidence by an
according reformulation of the CME.

Reformulation of the chemical master equation

In addition to the already introduced notation let
ps,s′ , s, s′ ∈ S denote the probability of a tran-
sition from state s to state s′ in the uniformized
chain. More specifically, in order to appropriately
reformulate the CME the probabilities px−vi,x for
a reaction of type Ri in state x−vi (which leads to
state x) and px,x for staying in state x are needed.
That is

px−vi,x =
αi(x − vi)

λ
, px,x = 1 −

α0(x)

λ
.



Now, the CME can be rewritten as

M
∑

i=1

(

αi(x − vi)p
(t)(x − vi) − αi(x)p(t)(x)

)

=

M
∑

i=1

αi(x − vi)p
(t)(x − vi) −

M
∑

i=1

αi(x)p(t)(x)

=
M
∑

i=1

αi(x − vi)p
(t)(x − vi) − p(t)(x)

M
∑

i=1

αi(x)

=

M
∑

i=1

αi(x − vi)p
(t)(x − vi) − p(t)(x)α0(x)

=
M
∑

i=1

αi(x − vi)p
(t)(x − vi)

− p(t)(x)(α0(x) + λ − λ)

=
M
∑

i=1

αi(x − vi)p
(t)(x − vi)

− λp(t)(x) + p(t)(x)(λ − α0(x))

=

M
∑

i=1

αi(x − vi)p
(t)(x − vi)

− λp(t)(x) + p(t)(x)λ(1 −
α0(x)

λ
)

=
M
∑

i=1

αi(x − vi)p
(t)(x − vi)

− λp(t)(x) + p(t)(x)λpx,x

= λ
M
∑

i=1

αi(x − vi)

λ
p(t)(x − vi)

− λp(t)(x) + p(t)(x)λpx,x

= λ

M
∑

i=1

px−vi,xp(t)(x − vi)

− λp(t)(x) + p(t)(x)λpx,x.

Now, setting v0 = 0 which expresses that if no
reaction occurs the state change vector is simply
the null vector, we have

p(t)(x)λpx,x = p(t)(x − v0)λpx−v0,x

and altogether the CME becomes

∂p(t)(x)

∂t
= −λp(t)(x) + λ

M
∑

i=0

px−vi,xp(t)(x − vi).

NEW SIMULATION ALGORITHMS

The probabilistic interpretation of the dynamics
of the uniformized chain directly leads us to a
very simple method for stochastic simulation of
coupled chemical reactions. In the following an
according algorithm is formulated. Notice that
due to the derivations in the previous section this

algorithm is exact in the same sense as the Gille-
spie algorithm but does not require generation of
any exponentially distributed time.

Init n := 0, x := x0, tend, λ, N := λtend

while n < N

(1) Generate random number u,
uniformly distributed on (0, 1)

(2) Determine reaction type:
i = min{k : α1(x) + · · · + αk(x) > λu}

(3) Set n := n + 1; x := x + vi

(4) Store/Collect/Handle Data

In the following we present three examples to
demonstrate the validity of our algorithm and the
efficiency improvement compared to the Gillespie
algorithm. We focus on relatively small examples
that are sufficient for this purpose but at the same
time easy enough to verify for the reader. All
algorithms have been implemented in C++.

Example 1: We start with an example that has
been a reference model for testing tau-leaping
methods in (Cao and Petzold, 2005), the simple
model

S1
c1→ S2

c2→ S3

with the initial numbers of molecules of the differ-
ent species X1(0) = 9, X2(0) = 2 ·104, X3(0) = 0
and rate constants c1 = 10, c2 = 0.1 yielding
the propensity functions α1(x) = c1x1 = 10x1

and α2(x) = c2x2 = 0.1x2. It is easy to see
that S = {0, . . . , 9} × {2 · 104 + 9} and for all
x ∈ S : α1(x) + α2(x) < 2091. Thus, λ = 2091
is an appropriate choice for the uniformization
constant. The model was simulated from time
t0 = 0 to time tend = 0.1 performing 106 runs
of both algorithms. Table 1 shows that the mean
values x̄1(0.1), x̄2(0.1), x̄3(0.1) for the number of
molecules of each species obtained via the Gille-
spie algorithm and via the discrete-time conver-
sion almost perfectly coincide and that the latter
algorithm reduces the runtime.

Method x̄1(0.1) x̄2(0.1) x̄3(0.1) Runtime

Gillespie 3.314 19763.1 199.02 199s

Discrete 3.311 19763.1 199.04 108s

Table 1. Mean values for the number
of molecules of each species at time 0.1
and runtime required for 106 simulation
runs for the Gillespie algorithm and the

discrete-time conversion method.

Example 2: Now, we extend the example to

S1
c1→ S2

c2→ S3
c3→ S4

c4→ S5

with the same initial molecule numbers as in the
previous example and two different sets of rate
constants c1 = 10, c2 = · · · = c5 = 0.1 and c1 =
· · · = c5 = 0.1, respectively. Again, 106 simulation
runs of both algorithms were performed, each up
to time 0.1. The uniformization constant remained



unchanged. The computed mean values and the
runtimes are shown in Tables 2 and 3, respectively
(for obvious reasons with a rotated orientation
compared to Table 1). Again, the mean values
almost perfectly coincide and the discrete-time
conversion is faster.

Gillespie Discrete-Time

x̄1(0.1) 3.314 3.311

x̄2(0.1) 19763.0 19763.1

x̄3(0.1) 198.04 198.05

x̄4(0.1) 0.992 0.989

x̄5(0.1) 0.00330 0.00337

Runtime 215s 113s

Table 2. Mean values and runtimes for
Example 2 with choice of rate constants

c1 = 10, c2 = · · · = c5 = 0.1.

Gillespie Discrete-Time

x̄1(0.1) 8.911 8.911

x̄2(0.1) 19762.3 19762.3

x̄3(0.1) 198.00 198.02

x̄4(0.1) 0.990 0.991

x̄5(0.1) 0.00323 0.00331

Runtime 215s 112s

Table 3. Mean values and runtimes for
Example 2 with choice of rate constants

c1 = c2 = · · · = c5 = 0.1.

So far, so good. Although the runtime is not
as much reduced as reported for some cases of
tau-leaping methods, as we already emphasized,
the discrete-time conversion is exact. Moreover,
research on the specific application to chemically
reacting systems is still at quite an early stage
and further improvements shall further speed up
the algorithm. Before discussing that, we address
an important problem that we neglected till now
and give a suitable modification of the discrete-
time conversion algorithm. The reader may have
noticed that in case of propensity functions that
differ significantly (which is in particular the case
for stiff reaction sets) the uniformization constant
is much larger than many of the propensity func-
tions. Then in the uniformized chain a lot of
transitions occur from a state to itself meaning
that no reaction occurs and thus computer time
is wasted by simulating something that is in re-
ality simply not present. Fortunately, this can be
circumvented, again by a probabilistic argument
that preserves exactness. Since our uniformized
chain is a discrete-time Markov chain, the differ-
ence between staying in a state (no reaction) and
leaving a state (reaction) can be expressed as a
Bernoulli trial where leaving a state is interpreted
as a success. Hence, because the number of un-
successful Bernoulli trials until the first success
is geometrically distributed with mean (expected
value) (1−p)/p where p is the success probability,
in our case (where success means leaving a state)

the number of transitions that do not change
the current state x is geometrically distributed
with p = α0(x)/λ and mean λ/α0(x) − 1. Hence,
instead of simulating all the ”non-reactions” we
can compute the expected value and just update
the number of steps in our algorithm accordingly.
Then a ”real reaction”, that is a state transition to
another state occurs with the jump probabilities
αi(x)/α0(x) just as in the Gillespie algorithm but
again we avoid the time-consuming generation of
exponentially distributed times, now via comput-
ing the number of steps in the uniformized chain
that do not change the state. Hence, the modified
algorithm to deal with the problems due to sig-
nificantly different propensity function is given as
follows

Init n := 0, x := x0, tend, λ, N := λtend

while n < N

(1) Generate random number u,
uniformly distributed on (0, 1)

(2) Compute number of ”no reactions”:
n0 = λ/α0(x) − 1

(3) Set n := n + n0; if n ≥ N exit
(4) Determine reaction type:

i = min{k : α1(x) + · · · + αk(x) > λu}
(5) Set n := n + 1; x := x + vi

(6) Store/Collect/Handle Data

Now we are ready to present an example of a stiff
reaction set.

Example 3: As the third example we consider the
decaying dimerization as a representative for very
stiff systems that was also chosen for instance in
(Gillespie, 2001; Rathinam et al., 2005; Cao et

al., 2005) to study the performance of different
tau-leaping methods. The reaction set is given by

S1
c1→ ∅, S1 + S1

c2−⇀↽−
c3

S2, S2
c4→ S3

and the parameter choices in order to achieve a
high degree of stiffness according to the afore-
mentioned literature is c1 = 1, c2 = 10, c3 =
1000, c4 = 0.1 for the rate constants and thus
the propensity functions are α1(x) = x1, α2(x) =
5x1(x1 −1), α3(x) = 1000x2, α4(x) = 0.1x2. The
model is simulated from time t0 = 0 up to time
tend = 0.2 with the initial numbers of molecules
X1(0) = 400, X2(0) = 798, X3(0) = 0. Table 4
shows the mean values and runtimes for 104 sim-
ulation runs with the Gillespie algorithm and the
(modified) discrete-time conversion method. Once
more, the results coincide and the discrete-time
conversion is faster.

Method x̄1(0.1) x̄2(0.1) x̄3(0.1) Runtime

Gillespie 386.96 749.55 15.55 3554s

Discrete 386.35 747.89 16.09 2527s

Table 4. Mean values and runtimes of
104 runs for Example 4.



CONCLUSION AND DISCUSSION

The presented discrete-time conversion yields an
equivalent discrete-time Markov chain represent-
ing the original continuous-time process. Simulat-
ing the resulting uniformized chain is still exact
as the Gillespie algorithm but requires less ef-
fort if appropriately applied. However, research
on uniformization for simulating biochemical sys-
tems is at an early stage. For stiff systems one
improvement has been already done and promis-
ing approaches are currently under investigation.
The choice of the uniformization constant λ is
one major factor influencing the the efficiency of
uniformization. At any time, λ must be an upper
bound on the current α0(x) but determining a
fixed λ in advance may be both difficult and ineffi-
cient for large and/or stiff models. It is thus highly
desirable to determine λ automatically which can
be done, for instance, by a few pre-simulations.
Moreover, dynamically updating λ during each
simulation run appears to be promising. In some
sense, similar challenges as for tau-leaping are
posed. Nevertheless, other than tau-leaping the
discrete-time conversion remains exact, and more-
over these challenges may be easier tackled in
discrete-time than for tau-leaping. Apart from
specific challenges for uniformization we empha-
size the necessity to judge a method’s accuracy
without comparing to the Gillespie algorithm.
Given that improved methods are motivated by
the large amount of computer time required by the
Gillespie algorithm in many models of practical
interest the Gillespie algorithm will not provide
reliable results in reasonable time. Thus we con-
sider statistical output analysis such as forming
confidence intervals. Since the width of confidence
intervals relies on the variance of the statisti-
cal estimator (defined by the simulation method)
variance reduction is highly desirable. Importance
sampling as a technique with the great potential of
yielding zero-variance in its optimal case has been
recently shown in (Sandmann, 2007) to be appli-
cable to the Gillespie algorithm, and applicability
to the discrete-time conversion is immediate.
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