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ABSTRACT

In many scenarios services are provided in successive
stages. While tandem queues appropriately reflect
the structure of such scenarios, the typical assump-
tion that service times at different stages are inde-
pendent often does not fit to reality. We examine,
via simulation, the impact of dependencies among
service times on expected customer waiting times.
The usual network simulation overhead caused by
event list handling is avoided by an extension of the
Lindley recursion to the two-stage case. Numerical
results are presented for exponentially and uniformly
distributed service times with different types of de-
pendencies and varying server utilizations.

INTRODUCTION

Providing services in successive stages is a com-
mon feature of many service facilities. Consider for
instance manufacturing operations where different
steps are processed by different machines, airplane
maintenance and refueling, ordering and delivery of
goods or services, or supermarkets where the first
stage is the self service of customers collecting their
items and the second stage is the payment at the
check out. In tandem queues, customers arrive at
the first queueing node, successively pass in fixed or-
der through a number of (not necessarily only two)
nodes and then leave the system. Hence, tandem
queues are particularly suited for modeling services
that are delivered in successive stages.

The investigation of tandem queues has a long tra-
dition starting at the latest with the work by (Reich
1957). Already important for the analysis of tan-
dem queues, (Burke 1956) studied departures from
Markovian single server queues and proved his fa-
mous theorem that the output process of an M/M/1
queue is a Poisson process with the same rate as
the arrival process. Obviously, in a tandem queue

the output process of the first queue constitutes the
arrival process to the second queue. Based upon
Burke’s theorem it is shown in (Weber 1979) that
in case of single server nodes with exponentially dis-
tributed service times and Poisson arrival process in-
terchanging the nodes preserves the behavior of all
nodes and the overall behavior of the original sys-
tem. An overview of known results up to the late
1970s and a collection of approximation methods can
be found in (Newell 1979).

Over the years tandem queues have been fur-
ther studied since the provision of two-stage ser-
vices in real life as well as in technical systems is
still customary. Many new and emerging domains
have significantly renewed current interest in tan-
dem queues. For instance modeling and performance
evaluation of the Internet has become a vital ap-
plication area where it is known that despite their
relative simplicity, tandem queues are suitable mod-
els for the structure of a variety of network com-
ponents such as packet switches, routers and many
more, see for example (Gomez-Corral 2002), (Ryoki
et al 2002), (Palmowski et al 2003), (Mandjes 2004),
(Buchholz 2005), (Klimenok et al 2005), (Dente-
neer 2006). In these recent applications, due to
the requirements of Internet traffic modeling the as-
sumption of exponentially distributed times has been
dropped. However, this significantly increases the
difficulty to analyze such systems, and one has to ap-
ply, e.g., matrix-geometric methods approximation
and bounding techniques, or simulation. Of course,
many other application areas can be considered, too,
and we will not be focused on Internet services.

In any case, be it Internet services or any other
type of service, providing Quality of Service (QoS)
is not possible without assuring some desired level
of performance and QoS guarantees should rely on
proper studies of the performance. Thus, one should
aim at important insights to various performance as-
pects, in particular delays or waiting times. The
Markovian assumption, that is exponentially dis-
tributed interarrival and service times, may be also
questionnable but seems to be better justified in most
applications other than the Internet. In particular,
exponentially distributed interarrival times consti-



tuting Poisson processes well reflect many real-world
arrival processes.

The aforementionned classical works mostly con-
sidered Markovian tandem queues where service
times of any customer at the successive stages are
independent. Unfortunately, this limits the useful-
ness of the results not only for Internet applications.
It seems to be evident that the assumption of inde-
pendent service times at the stages does not appro-
priately reflect reality. For example an airplane that
requires long maintenance time probably tends to re-
quire long refueling time since typically both times
depend on the airplane size. Similarly, a supermar-
ket customer who needs a long time to collect his
items probably collects quite a lot of items and thus
requires a longer time at the check out than a cus-
tomer with fewer items who needs also less time for
item collection.

Only relatively few studies of tandem queues with
dependent service times were reported. (Wolff 1982)
investigates light traffic asymptotics for expected
waiting times in tandem queues with r stages, that
means the system is considered for server utilizations
approaching zero. However, though it is stated in
Wolff’s paper that light traffic results are important
in some settings, we believe that they are of limited
interest for most practical situations. (Pinedo and
Wolff 1982) consider two node tandem queues where
customers have equal service times at both nodes
but detailed results are only provided for Markovian
queues. Thus, the case of dependent service times
deserves further investigation, in particular for more
general dependencies than just equal service times
and for non-exponential service time distributions.

In this paper we consider two-node tandem queues
with Poissonian arrivals to the systems where the
service times of customers at the two stages are de-
pendent. The service times at the first stage is either
exponentially or uniformly distributed. In addition
to equal service times we examine cases where the
service time at the second stage is a deterministic
linear function (increasing or decreasing) of the ser-
vice time at the first stage, which naturally extends
the case of equal service times where this function is
the identity. Furthermore, we introduce some kind of
”Gaussian noise” affecting the service time at the sec-
ond stage, that is after a deterministic function has
been applied a normally distributed time is added.

Since dependencies among service times do not
affect the behavior of the first stage that thus can
still be treated like a standard single server queue,
we are interested in the impact of the dependencies
on the waiting time at the second stage. For this
purpose, simulation studies are performed for the
described types of dependencies, and waiting times
are compared to that of the independent case where
the complete range of possible (stability providing)
server utilizations is considered, thus neither restrict-

ing to light traffic nor to heavy traffic. To avoid sig-
nificant overhead due to event list handling that is
usually present in queueing network simulations we
make use of an extension of the Lindley recursion to
the two-node tandem queue. Our results show that
the effects of dependencies are substantially differ-
ent for the chosen types of dependencies and varying
utilizations.

In the remainder of this paper we first introduce
our terminology and notation providing a formal
model specification and we present the waiting time
recursion. Then, the simulation methodology and
the experimental settings are described, followed by
numerical results. Finally, we conclude the paper
and give directions for further research.

MODEL SPECIFICATION

In a two-node tandem queue, as depicted in Fig. 1,
customers arrive at the first queueing node, receive
service there and then proceed to the second node
and leave the system after receiving service at that
node. No arrivals from outside occur at the second
node, and no customers leave the system before pass-
ing successively through both nodes. In the following
we introduce the notation used throughout the pa-
per and present the recursion that has been applied
for simulating waiting times. In short-hand notation
similar to the Kendall notation tandem queues are
described by A/B1/c1 → /B2/c2 where A denotes
the arrival process to the system and B1, B2, c1, c2

the service time distributions and the queue capaci-
ties. Hence, for the systems that we consider we have
M/M/1 → /M/1 and M/U/1 → /U/1 but with de-
pendencies among the service times at the first and
second stage not covered in this notation.

. . . . . .

Fig. 1. Two-Node Tandem Queue

The interarrival time between the arrivals of the
n-th and the (n + 1)-th customer is denoted by Tn,
and Sn,1, Sn,2 are the service times of the n-th cus-
tomer at stage 1 and 2, respectively. Wn,1 and Wn,2

denote the waiting times, that means the times from
the arrival of the n-th customer till service starts at
stage 1 and at stage 2. The pure waiting (queueing)
times of the n-th customer in the queues at stages 1
and 2 are denoted by Qn,1 and Qn,2. Hence,

Qn,1 = Wn,1 and Qn,2 = Wn,2 − Sn,1 − Wn,1.

The according steady-state properties are denoted
by T, S1, S2,W1,W2, Q1, Q2 and λ = 1/E[T ], E[S1],
E[S2] are the mean (expected) steady state arrival
rate and service times, respectively. The server uti-
lizations are ρi = λE[S1], ρ2 = λE[S2] and the sys-
tem is stable iff ρ1, ρ2 < 1.



WAITING TIME RECURSION

The famous Lindley recursion (Lindley 1957) for the
successive waiting times of customers in a single
server queue is given by

Wn+1 = max(Wn + Sn − Tn, 0),

where of course superscripts denoting the stage are
redundant and thus dropped.

To intuitively understand how this can be ex-
tended to tandem queues bear the meaning of the
two components of the maximum in mind. Actually
it is the differentiation of two cases as explained in
what follows. If the (n + 1)-th customer must wait
then the preceding customer has not yet completed
his service. Thus, the waiting time of the (n+1)-th is
simply the sum of the waiting and service time of the
preceding customer minus the time the (n+1)-th cus-
tomer arrived later. In case of an empty system upon
arrival of the (n + 1)-th customer this becomes neg-
ative. However, arriving to an empty system means
no wait and thus in this case Wn+1 = 0.

With much the same reasoning an extension to
waiting times in tandem queues can be obtained.
Obviously, Wn,1 is exactly the waiting time in a sin-
gle server queue and thus the Lindley recursion di-
rectly applies to Wn+1,1. Now, consider how long it
takes until the (n + 1)-th customer starts his service
at stage 2, again differentiating two cases. If the cus-
tomer must wait, then the preceding customer has
not yet completed service at stage 2, and the wait-
ing time of the (n + 1)-th customer is again given
by the sum of the waiting time and the service time
of the n-th customer minus the time the (n+1)-th
customer arrived later at the system. In case that
the (n + 1)-th customer need not wait at stage 2 his
overall waiting time until service starts at stage 2 is
given by his sojourn time in stage 1, that is the sum
of the waiting time and the service time. Altogether,

Wn+1,2 = max (Wn,2 + Sn,2 − Tn, Wn+1,1 + Sn+1,1)

= max
(

Wn,2 + Sn,2 − Tn,

max (Wn,1 + Sn,1 − Tn, 0) + Sn+1,1

)

= max
(

Wn,2 + Sn,2 − Tn,

max (Wn,1 + Sn,1 − Tn + Sn+1,1) , Sn+1,1

)

= max
(

Wn,2 + Sn,2 − Tn,

Wn,1 + Sn,1 − Tn + Sn+1,1, Sn+1,1

)

.

Then the waiting time at the second stage can be
obtained by Qn+1,2 = Wn+1,2 − Sn+1,1 − Wn+1,1.

SIMULATION METHODOLOGY

The extended Lindley recursion allows us to avoid
any event list handling. Instead, the waiting times
of the customers are simulated by successive ran-
dom variate generation of the involved random times
T1, T2, . . . , S1,1, S1,2, S2,1, S2,2, . . . and computing the
according waiting times recursively. As stated be-
fore, we are interested in the mean waiting times
at the second stage. These may be estimated via
the unbiased sample mean of Q1,2, Q2,2, . . . , QN+M,2

from one single simulation of length N + M where
the first M waiting times have to be discarded to ac-
count for the initialization bias. However, that way
no information about the accuracy or robustness of
the results is available since variance estimation via
the sample mean requires independent and identi-
cally distributed realizations.

Therefore, we applied the classical replica-
tion/deletion approach as described for example in
(Law and Kelton 2000), that is independent simu-
lation runs with a sufficiently large warm-up period
to determine point estimates and confidence inter-
vals. More specifically, we performed independent
runs, where the observation period for each run was
of length (= number of served customers) 107 to
form 99% confidence intervals with a relative half
width less than 1%. All simulations have been imple-
mented in C++, and to omit exhausting a random
number generator’s cycle length we did not use the
standard C++ random number generator but the
one described in (L’Ecuyer et al 2002).

EXPERIMENTAL SETTINGS

We study tandem queues with Poissonian arrival pro-
cesses with arrival rate λ > 0 and either exponen-
tially or uniformly distributed service times at the
first stage. Hence, the first queue is either an M/M/1
queue or an M/U/1 queue. Accordingly, for the in-
dependent cases the systems M/M/1→ /M/1 and
M/U/1→ /U/1 are considered and compared to the
dependent cases. Note that for M/M/1→ /M/1 due
to Burke’s theorem the second stage also behaves like
a single server M/M/1 queue and thus the results for
this system need not be simulated but can be com-
puted exactly. The mean service time E[S1] has been
fixed to one, which means that for M/M/1 queues
service times are exponentially distributed with rate
µ1 = 1 and for M/U/1 queues service times are uni-
formly distributed on the interval (0, 2).

Two basic types of dependency, as outlined in the
introduction, are deterministic functions and Gaus-
sian noise. Applying three simple linear determinis-
tic functions we set the service time of any customer
at the second stage as equal to the service time at
the first stage, half of the service time at the first
stage and twice the service time at the first stage.



Hence, formally expressed for the customer service
times and the mean service times

Sn,2 := Sn,1 ⇒ E[S2] = E[S1] = 1,

Sn,2 :=
1

2
Sn,1 ⇒ E[S2] =

1

2
E[S1] =

1

2
,

Sn,2 := 2Sn,1 ⇒ E[S2] = 2E[S1] = 2.

To let the comparison of dependent and indepen-
dent service times make sense all of the described
dependent cases are of course compared to the in-
dependent ones with the same mean service time,
that is for exponentially distributed service times
with rates 1, 2, 1

2 and with service times uniformly
distributed on the intervals (0, 2), (0, 1) and (0, 4),
respectively. Additionally accounting for the second
type of dependency, we apply in the first step the
above deterministic functions and then add a nor-
mally distributed time. More specifically, the stan-
dard normal distribution, appropriately truncated at
both tails such that no negative service times are ob-
tained and the mean service time has the required
value. This assures that the mean of the truncated
normal distribution still equals zero and the added
distribution remains symmetric.

NUMERICAL RESULTS

Tables 1–6 show the obtained numerical results for
a wide range of possible values for the arrival rate
λ in the different described settings. All tables con-
tain the estimated mean waiting times at the second
stage denoted by Q

(1) for the independent case, Q
(2)

for dependence due to a deterministic function and
Q

(3) for dependence due to a deterministic function
with additional Gaussian noise. Besides, the ratios of
the mean waiting times for dependent service times
to the mean waiting times for independent service
times are given where a ratio less than one means
that dependence decreases the mean waiting time
and a ratio greater than one means that dependence
increases the mean waiting time. Note that because
of E[S1] = 1 the utilization of the first server equals
the arrival rate, that is ρ1 = λ. For E[S2] = E[S1] = 1

this also holds for the utilization of the second server,
that is ρ2 = λ. For E[S2] = E[S1]/2 = 1/2 and
E[S2] = 2E[S1] = 2 the utilization of the second server
is given by ρ2 = λ/2 and ρ2 = 2λ, respectively. Con-
sequently, to meet the stability conditions ρ1, ρ2 < 1
for ρ2 = λ/2 = ρ1/2 only ρ2 < 0.5 is considered and
for ρ2 = 2λ = 2ρ1 only ρ1 = λ = 2ρ1 < 0.5 is consid-
ered. Thus, giving the value of λ in lieu of ρ1 and/or
ρ2 is appropriate and sufficient.

The results indicate that the impact of dependen-
cies is not so obvious as to provide a simple gen-
eral statement of the kind that dependencies increase
mean waiting times in relatively light traffic and de-
creases mean waiting times in relatively heavy traffic.

Table 1: M/M/1 → /M/1 with E[S2] = E[S1]

λ Q
(1)

Q
(2) Q

(2)

Q
(1) Q

(3) Q
(3)

Q
(1)

0.10 0.111 0.182 1.640 0.205 1.847

0.20 0.250 0.381 1.522 0.433 1.732

0.30 0.429 0.600 1.400 0.689 1.606

0.40 0.667 0.848 1.271 0.985 1.477

0.50 1.000 1.135 1.135 1.344 1.344

0.60 1.500 1.481 0.987 1.805 1.203

0.70 2.333 1.920 0.823 2.454 1.052

0.80 4.000 2.537 0.634 3.551 0.888

0.90 9.000 3.605 0.401 6.342 0.705

0.95 19.000 4.714 0.248 11.463 0.603

Table 2: M/M/1 → /M/1 with E[S2] = 1
2E[S1]

λ Q
(1)

Q
(2) Q

(2)

Q
(1) Q

(3) Q
(3)

Q
(1)

0.10 0.026 0.050 1.901 0.065 2.472

0.20 0.055 0.097 1.748 0.126 2.270

0.30 0.088 0.138 1.568 0.183 2.080

0.40 0.125 0.175 1.400 0.236 1.888

0.50 0.167 0.206 1.234 0.284 1.701

0.60 0.214 0.233 1.089 0.328 1.533

0.70 0.269 0.256 0.952 0.366 1.361

0.80 0.333 0.275 0.826 0.400 1.200

0.90 0.409 0.290 0.709 0.429 1.049

0.95 0.452 0.297 0.657 0.442 0.978

Table 3: M/M/1 → /M/1 with E[S2] = 2E[S1]

λ Q
(1)

Q
(2) Q

(2)

Q
(1) Q

(3) Q
(3)

Q
(1)

0.05 0.222 0.311 1.401 0.327 1.473

0.10 0.500 0.679 1.358 0.714 1.428

0.15 0.857 1.126 1.314 1.186 1.384

0.20 1.333 1.691 1.269 1.785 1.339

0.25 2.000 2.445 1.223 2.585 1.293

0.30 3.000 3.529 1.176 3.741 1.247

0.35 4.667 5.275 1.130 5.608 1.202

0.40 8.000 8.678 1.085 9.256 1.157

0.45 18.000 18.715 1.040 20.040 1.113



Table 4: M/U/1 → /U/1 with E[S2] = E[S1]

λ Q
(1)

Q
(2) Q

(2)

Q
(1) Q

(3) Q
(3)

Q
(1)

0.10 0.054 0.067 1.248 0.101 1.857

0.20 0.120 0.138 1.152 0.214 1.782

0.30 0.202 0.212 1.051 0.347 1.717

0.40 0.309 0.290 0.941 0.509 1.647

0.50 0.456 0.375 0.821 0.716 1.568

0.60 0.676 0.465 0.688 1.004 1.485

0.70 1.042 0.566 0.543 1.454 1.396

0.80 1.777 0.681 0.383 2.307 1.298

0.90 4.003 0.817 0.204 4.771 1.192

0.95 8.477 0.900 0.106 9.609 1.134

Table 5: M/U/1 → /U/1 with E[S2] = 1
2E[S1]

λ Q
(1)

Q
(2) Q

(2)

Q
(1) Q

(3) Q
(3)

Q
(1)

0.10 0.011 0.014 1.318 0.025 2.336

0.20 0.022 0.027 1.252 0.050 2.289

0.30 0.034 0.040 1.179 0.073 2.173

0.40 0.046 0.051 1.106 0.096 2.074

0.50 0.060 0.062 1.032 0.117 1.963

0.60 0.074 0.071 0.962 0.137 1.851

0.70 0.090 0.080 0.892 0.155 1.726

0.80 0.107 0.088 0.822 0.173 1.612

0.90 0.127 0.096 0.753 0.189 1.489

0.95 0.138 0.099 0.717 0.196 1.420

Table 6: M/U/1 → /U/1 with E[S2] = 2E[S1]

λ Q
(1)

Q
(2) Q

(2)

Q
(1) Q

(3) Q
(3)

Q
(1)

0.05 0.134 0.161 1.197 0.182 1.354

0.10 0.303 0.355 1.171 0.401 1.324

0.15 0.521 0.596 1.145 0.676 1.299

0.20 0.814 0.912 1.121 1.035 1.272

0.25 1.229 1.347 1.094 1.533 1.248

0.30 1.859 1.996 1.074 2.274 1.223

0.35 2.926 3.079 1.052 3.510 1.200

0.40 5.091 5.259 1.033 5.996 1.178

0.45 11.673 11.858 1.016 13.506 1.157

Such relations could be suggested by results given in
(Pinedo and Wolff 1982). The only common features
that we observe in all experiments is that the ratio of
the mean waiting time for dependent service times to
the mean waiting time for independent service times
decreases with increasing utilization, and that this
ratio is greater for service times that are subject to
an additional Gaussian noise than for service times
without that noise. Taking a look at Table 1 where
the setting of equal service times in M/M/1 → /M/1
queues considered in (Pinedo and Wolff 1982) is in-
cluded, we indeed obtain results consistent with that
in (Pinedo and Wolff 1982). In particular, between
utilizations of 0.50 and 0.60 the mean waiting times
for equal service times become smaller than for inde-
pendent service times. By further simulation exper-
iments the cross-over point has been determined to
be approximately 0.58.

However, Table 1 also shows that in the same set-
ting with additional Gaussian noise this cross-over
point is reached only between utilizations of 0.70
and 0.80. Moreover, as presented in Table 2, the
cross-over point for S1 = S2/2 is between 0.60 and
0.70 and with additional Gaussian noise between 0.90
and 0.95. Table 3 shows similar effects where now in
all dependent settings the mean waiting times are
greater than for independent service times. Note
again that the given values of λ correspond to uti-
lizations ρ2 ∈ {0.1, . . . , 0.9}.

Tables 4–6 show similar effects for M/U/1 → /U/1
but there are also significant differences to M/M/1
→ /M/1. It is remarkable that the ratio of the mean
waiting time for equal service times to the mean wait-
ing time for independent service times here for all
utilizations is smaller than the corresponding ratio
in the M/M/1 → /M/1 setting. However, this does
not hold for the other types of dependency.

Given that the impact of dependencies is not ob-
vious even for relatively simple types of dependency,
we claim that more complicated dependencies will
possess even significantly more complicated impacts
on the mean waiting time. In the light of complex
dependencies that may arise in real-world settings
this should motivate further investigations of models
with dependent service times.

CONCLUSION

We investigated tandem queues where service times
of customers at successive services stages are de-
pendent. Simulation results obtained via an exten-
sion of the Lindley recursion have been presented for
M/M/1 → /M/1 and M/U/1 → /U/1 with different
types of dependency. The results show that depen-
dencies significantly affect the mean waiting time at
the second stage. Compared to the independent case,
in some settings the mean waiting time is increased



only for moderately light traffic and decreased for
heavier traffic. In other settings the mean waiting
time is always increased. Thus, a simple general re-
lation between mean waiting times for independent
and dependent service times seems not to exist and
further investigations are desirable to better under-
stand the impact of dependencies on system perfor-
mance and QoS.

Further research aims at more simulation results
as well as analytical and numerical results. Besides
more complex types of dependency, many more in-
terarrival and service time distributions should be
considered. With regard to Internet services as spe-
cial applications, heavy-tailed distributions must be
incorporated. Studying multiple service stages, that
is a series of more than two queues, is also desirable.
In particular, the Lindley recursion can be further
extended to multiple stages and utilized for simula-
tions similarly to the two-stage case.

Concerning the performance properties, it is also
of interest to estimate the waiting time distribution
or to study variances, higher moments and quan-
tiles of the waiting time and probabilities of extreme
or rare events such as the probability of excessive
waiting times. The estimation of the latter is very
difficult even in the independent case and can be
expected to be more complicated in the dependent
case. Hence, despite their relative simplicity, tandem
queues still pose various great challenges for research,
all of which are of high practical relevance.
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