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Abstract. Importance Sampling is a variance reduction technique possessing the
potential of zero-variance estimators in its optimal case. It has been successfully
applied in a variety of settings ranging from Monte Carlo methods for static models
to simulations of complex dynamical systems governed by stochastic processes.
We demonstrate the applicability of Importance Sampling to the simulation of
coupled molecular reactions constituting biological or genetic networks. This fills a
gap between great efforts spent on enhanced trajectory generation and the largely
neglected issue of reduced variance among trajectories in the context of biological
and genetic networks.
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1 Introduction

As a result of systems’ complexity and the huge amount of data that is nowa-
days available, mathematical modeling and analysis of biological and genetic
systems is an emerging area of growing importance. Molecular reactions are
the basic building blocks of living systems and essentially biological or genetic
networks are formed by coupled molecular reactions. In chemical terminology
the fundamental rule of a molecular reaction is given by a stoichiometry

sm1
Sm1

+ · · · smr
Smr

−→ smr+1
Smr+1

+ + · · · smℓ
Smℓ

(1)

with r, ℓ ∈ N, r ≤ ℓ, where sm1
, . . . , smℓ

∈ N are stoichiometric coefficients,
Sm1

, . . . , Smr
are called reactants, Smr+1

, . . . , Smℓ
are called products and

both reactants and products are molecular species. Such a chemical equation
expresses that the left hand side of the arrow can be transformed to the right
hand side of the arrow. Complex chemical processes are given by sets of such
reactions. The stoichiometry thus defines which molecular species may react
to result in a certain product and how many molecules are involved in a reac-
tion. The temporal behavior is expressed by assigned reaction rates. Several
mathematical model approaches reflecting different (but related) viewpoints
exist for coupled molecular reactions, and the exact meaning of the reac-
tion rates depends on the chosen model type. A comprehensive treatment of
modeling approaches can be found in [Bower and Bolouri, 2001].
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In the stochastic approach that we adopt in this paper the system state
is given by the number of molecules of each species and the transient (time
dependent) state probabilities are given by the so-called chemical Master
equation. The underlying stochastic process is a Markov jump process and
in fact the chemical Master equation is equivalent to the Kolmogorov dif-
ferential equations. Since direct solution of the chemical Master equation
is often analytically intractable, stochastic simulation is in widespread use
to analyze systems of coupled molecular reactions, which in its crude ver-
sion is well-known in the according community as the Gillespie algorithm
[Gillespie, 1977]. However, stochastic simulation is inherently costly and
besides suffers from the random nature of simulation results. While sev-
eral attempts to enhance trajectory generation for specifically structured
systems have been reported, e.g. [Gillespie, 2001], [Rao and Arkin, 2003],
[Rathinam et al., 2003], [Cao et al., 2005], no essential efforts have been spent
to reduce the variance among trajectories. We aim at filling this gap by ap-
plying Importance Sampling, a well-known classical variance reduction tech-
nique, to the simulation of coupled molecular reactions.

The remainder of the paper is organized as follows. Section 2 briefly ex-
poses the stochastic approach to modeling coupled molecular reactions and
its relation to Markov processes. In Section 3 the general measure theoret-
ical Importance Sampling setting is given from which the formulae for the
application to coupled molecular reactions are derived. Then feasible ways
of applying Importance Sampling in this specific setting are investigated.
Finally, Section 4 concludes the paper.

2 Stochastic Modeling of Coupled Molecular Reactions

Stochastic interpretations of chemically reacting systems can be traced back
to the 1960s [McQuarrie, 1967]. A formulation on a physical basis has been
provided in [Gillespie, 1976], [Gillespie, 1977] and later on rigorously derived
in [Gillespie, 1992]. The basic assumptions are that the system is well stirred
and thermally equilibrated, meaning that a well stirred mixture of d ∈ N

+

molecular species S1, . . . , Sd inside some fixed volume interact at constant
temperature. The system state at any time t ≥ 0 is a discrete random vec-
tor X(t) = (X1(t), . . . ,Xd(t)), where for each species Sk, k ∈ {1, . . . , d} and
t ≥ 0 a discrete random variable Xk(t) describes the number of molecules of
species Sk present at time t. The set S ⊆ N

d of all possible system states
constitutes the system’s state space. The conditional transient (time depen-
dent) probability that the system is in state x ∈ S at time t, given that the
system starts in an initial state x0 ∈ S at time t0, is denoted by

p(t)(x) := p(t)(x|x0, t0) = P (X(t) = x | X(t0) = x0) . (2)

The system state changes due to chemical reactions between molecules of
some species. These reactions can be decomposed into unidirectional reaction
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channels R1, . . . , RM such that each reaction channel takes the form (1).
The reaction rate of each Rm,m ∈ {1, . . . ,M} is given by a well defined
function αm, called the propensity function of reaction channel Rm, where
αm(x)dt is the conditional probability that a reaction of type Rm occurs in
the infinitesimal time interval [t, t + dt), given that the system is in state x
at time t. That is αm(x)dt = P (Rm occurs in [t, t + dt) | X(t) = x) . Given
that the system starts in an initial state x0 ∈ S at time t0, the temporal
evolution of the system is expressed by the chemical master equation (CME)

∂p(t)(x)

∂t
=

M
∑

m=1

(

αm(x − vm)p(t)(x − vm) − αm(x)p(t)(x)

)

, (3)

where vm = (vm1, . . . , vmd) is a state change vector and vmk, k ∈ {1, . . . , d}
denotes the change of molecules of species Sk due to a reaction of type Rm.

The reaction rates αm are time-independent since the probability that a
reaction occurs within a specific time interval only depends on the length
of this interval and not on the interval endpoints. Thus, given a current
system state, the next state in the system’s time evolution only depends on
this current system state and neither on the specific time nor on the history
of reactions that led to the current state. Hence, the time evolution of the
system is mathematically described by a stochastic process (X(t))t≥0 with
d-dimensional state space S ⊆ N

d, and due to the just stated independence
of time and history this stochastic process is a discrete-state Markov process,
a Markov jump process, or a continuous-time Markov chain (CTMC).

2.1 Equivalence of CME and Kolmogorov Differential Equations

Terminology and notation in the theory of CTMCs is usually rather different
from that used to express the CME. Therefore, we briefly explain how they
correspond to each other. The multidimensional discrete state space can be
mapped to the set N of nonnegative integers, i.e. each state x ∈ S is uniquely
assigned to an integer i ∈ {1, . . . , |S|}. The probability that a transition
from state i ∈ N to state j ∈ N occurs within a time interval of length
h ≥ 0 is denoted by pij(h), and correspondingly P(h) = (pij(h))i,j∈N is
a stochastic matrix, where P(0) equals the unit matrix I, since no state
transitions occur within a time interval of length zero. It is well known (cf.
[Bremaud, 1999], [Van Kampen, 1992]) that a CTMC is uniquely defined by
an initial probability distribution and a transition rate matrix, also referred
to as infinitesimal generator matrix, Q = (qij)i,j∈N consisting of transition

rates qij where Q is the derivative at 0 of the matrix function h 7→ P(h).
The relation of each P(h) to Q and an explanation for the term infinitesimal

generator matrix is given by P(h) = exp(hQ). In that way Q generates the
the transition probability matrices by a matrix exponential function which
is basically defined as an infinite power series. Hence, all information on
transition probabilities is covered by the single matrix Q. In terms of P and
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Q the Kolmogorov forward differential equations, the Kolmogorov backward

differential equations, and the Kolmogorov global differential equations can
be expressed by (from left to right: forward, backward, global)

∂

∂t
P(t) = P(t)Q,

∂

∂t
P(t) = QP(t),

∂

∂t
p(t) = p(t)Q, (4)

where p(t) denotes the vector of the transient state probabilities corresponding
to (2). Explicitly writing the Kolmogorov global differential equations in
terms of the coefficients and some algebra yields

∂p
(t)
i

∂t
=

∑

j:j 6=i

p
(t)
j qji −

∑

j:j 6=i

p
(t)
i qij =

∑

j:j 6=i

(

p
(t)
j qji − p

(t)
i qij

)

. (5)

Now, the equivalence of the CME and the Kolmogorov differential equations
can be easily seen by interpreting i ∈ N as the number assigned to state

x ∈ S, i.e. p
(t)
i = p(t)(x), qij = αm(x) if j is the number assigned to state

x + vm, and qji = αm(x − vm) if j is the number assigned to state x − vm.

2.2 Stochastic Simulation

The essential part of any simulation is to imitate the system under consid-
eration. Consequently, simulation of coupled molecular reactions consists of
generating trajectories of a CTMC. With the terminology used in the deriva-
tion of the CME this is celebrated (though nothing else than a crude direct
generation of trajectories, which is known at the latest since the 1950s) as
the Gillespie algorithm [Gillespie, 1977] in the biochemical literature:

Init t := t0 und x := x0

repeat

1. Compute all αm(x) and α
0
(x) :=

∑M

m=1 αm(x)
2. Generate two random numbers u1, u2, uniformly distributed on (0, 1)
3. Generate time τ to next reaction: τ = − ln(u1)/α0(x)
4. Determine reaction type: m = min{k : α1(x)+· · ·+αk(x) > u2α0

(x)}
5. Set t := t + τ ; x := x + vm

6. Store/Collect/Handle Data
until ”terminating condition”

An equivalent version using a different interpretation of the CTMC dynamics
is due to [Gibson and Bruck, 2000].

3 Importance Sampling

Importance Sampling is a variance reduction technique that makes use of
a change of measure. The original system is simulated under a different
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probability measure, and the systematically biased results are weighted by
a correcting factor, the likelihood ratio, to yield unbiased estimates. In
a general measure theoretic setting, Importance Sampling is based on the
Radon-Nikodym theorem, and all applications of Importance Sampling can
be derived from this setting. Consider two probability measures P and P ∗

on a measurable space (Ω,A), where P is absolutely continuous with respect
to P ∗, which means that for all A ∈ A, P ∗(A) = 0 ⇒ P (A) = 0. Then,
the Radon-Nikodym theorem guarantees that the Radon-Nikodym derivative
L = dP/dP ∗ exists, and that

∀A ∈ A : P (A) =

∫

A

L(ω)dP ∗. (6)

In the context of Importance Sampling the probability measure P ∗ is called
the Importance Sampling measure, and L is referred to as the likelihood ratio.
The basic property exploited by Importance Sampling is that expectations
with respect to P are identical to expectations with respect to P ∗ when
weighting by the likelihood ratio. Let L be a version of the likelihood ratio
and Y a random variable on (Ω,A). Then

EP [Y ] =

∫

Y (ω)dP =

∫

Y (ω)L(ω)dP ∗ = EP∗ [Y L]. (7)

Using a different density or probability distribution/measure is called a change

of measure, and it is the essential part and the art of Importance Sampling
to perform this change of measure such that more accurate estimates can
be achieved. Many early applications of Importance Sampling can be found
in [Hammersley and Handscomb, 1964]. The framework for stochastic pro-
cesses, which is of special interest in our setting of coupled molecular reactions
has been given in [Glynn and Iglehart, 1989].

3.1 Application to Coupled Molecular Reactions

Applying Importance Sampling to coupled molecular reactions first of all re-
quires the distribution or density, respectively, of reaction paths. The discrete
state of the system changes due to molecular reactions. Let t1 < t2 < . . . de-
note the successive time instants at which reactions occur, and Rmi

the reac-
tion type that occurs at time ti, where mi ∈ {1, . . . ,M}. Define τi := ti+1−ti
the time between the i-th and the (i + 1)-th reaction. Hence, state x(ti) is
reached due to the i-th reaction Rmi

at time ti and remains unchanged for
a sojourn time of τi after which the (i + 1)-th reaction Rmi+1

occurs at time
ti+1 and changes the state to x(ti+1). Hence, the time evolution of the system
is completely described by the sequence of states and corresponding sojourn
times, and in compact form (x(t0), τ0), (x(t1), τ1), (x(t2), τ2), . . . describes a
trajectory. For a trajectory up to the R-th reaction, considering the Marko-
vian property implying exponentially distributed sojourn times, the reaction
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path density is given by

p(t0)(x0) ·

R
∏

i=1

αmi−1
(x(ti−1)) exp (α0(x(ti−1))τi−1) , (8)

where α0(x(ti−1)) := α1(x(ti−1)) + · · ·αM (x(ti−1)) just as in the Gillespie
algorithm.

Now, in order to perform an Importance Sampling simulation, we need to
change the underlying probability measure, which is in the case of coupled
molecular reactions determined by the propensity functions. The require-
ment of absolute continuity leaves us a great freedom in how to change the
measure. It is only necessary that all reaction paths that are possible (have
positive probability) under the original measure remain possible with Impor-
tance Sampling. That means each measure on the sample path space that
meets the aforementioned can be considered, even non-Markovian models
are allowed as long as they assign positive probabilities to all possible re-
action paths. Nevertheless, we should avoid a large increase in trajectory
generation efforts compared to the original measure. Thus, obviously the
most natural change of measure is to remain in the Markovian world and the
easiest way is to simply change the original propensity functions to ”Impor-
tance Sampling propensity functions” α∗

m such that for all m ∈ {1, . . . ,M}
α∗

m(x) = 0 ⇒ αm(x) = 0, x ∈ S, or equivalently, starting with the orig-
inal propensity functions, αm(x) > 0 ⇒ α∗

m(x) > 0, x ∈ S. Importance
Sampling then generates trajectories according to the changed propensity
functions and multiplies the results with the likelihood ratio to get unbiased
estimates for the original system. Trajectory generation is thereby performed
as before, e.g. by the Gillespie algorithm, where now the changed propensity
functions are used, yielding a sequence of states with according sojourn times
and reaction path density as in (8). Thus the likelihood ratio becomes

L(ω) =

∏R

i=1 αmi−1
(x(ti−1)) exp (α0(x(ti−1))τi−1)

∏R

i=1 α∗
mi−1

(x(ti−1)) exp (α∗
0(x(ti−1))τi−1)

, (9)

where we have kept the initial distribution unchanged. Rewriting this likeli-
hood ratio yields

L(ω) =
R

∏

i=1

αmi−1
(x(ti−1)) exp (α0(x(ti−1))τi−1)

α∗
mi−1

(x(ti−1)) exp (α∗
0(x(ti−1))τi−1)

, (10)

which shows that the likelihood ratio can be efficiently computed in course
of the trajectory generation without much extra computational effort by suc-
cessively updating its value after each reaction. In particular, the unbiased
number of molecules can be obtained at any time.

Although naturally arising the change of measure as described above may
be too restrictive. In cases where more flexibility is needed, it is possible
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to use a different change of measure in each simulation step or propensity
functions that depend on the number of already occured reactions (corre-
sponding to a nonhomogeneous model) or the history of the just executed

simulation steps. Formally, define functions β
(r)
m (x(t0), . . . , x(tr)), where for

all m ∈ {1, . . . ,M} : αm(x(tr)) > 0 ⇒ β
(r)
m (x(t0), . . . , x(tr)) > 0. Then the

reaction path density under Importance Sampling is

p(t0)(x0) ·

R
∏

i=1

β(i−1)
mi−1

(x(t0), . . . , x(ti−1)) exp(β0(x(t0), . . . , x(ti−1))τi−1) (11)

and the corresponding likelihood ratio (leaving the initial distribution un-
changed) becomes

L(ω) =
R

∏

i=1

αmi−1
(x(ti−1)) exp (α0(x(ti−1))τi−1)

β
(i−1)
mi−1

(x(t0), . . . , x(ti−1)) exp(β0(x(t0), . . . , x(ti−1))τi−1)
, (12)

which can be easily updated after each reaction in course of the simulation.

3.2 Further Issues

Now we are done with demonstrating the applicability of Importance Sam-
pling to coupled molecular reactions in that we have given a framework and
general rules. An issue that remains open is to concretize these change of
measure rules, i.e. how to change the propensity functions in order to achieve

variance reduction in practice. The functions α∗
m or β

(r)
m , respectively, must

be chosen dependent on the specific model under consideration. In fact, this
is an art of Importance Sampling, and a large body of literature exists on
change of measure guidelines for specific model classes, e.g. in the context of
rare event simulation, a review of which is far beyond the scope of the present
paper. The reader is referred to, e.g. [Heidelberger, 1995], [Bucklew, 2004],
[Sandmann, 2007].

Stiff systems are of particular interest and difficulty in analyzing coupled
molecular reactions. In stiff systems reaction rates differ in orders of magni-
tude, which arises because reactions occur on multiple time scales meaning
that some reactions are much slower than others and occur significantly rarer.
Thus, even the generation of one single trajectory becomes very computer
time demanding. In this setting Importance Sampling can result in both ac-
celerated trajectory generation and reduced variance among the trajectories.

4 Conclusions

We have shown how to apply Importance Sampling to stochastic simulations
of coupled molecular reactions. General conditions and different feasible ways
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to perform the change of measure have been given, all of which render effi-
cient computation of the involved likelihood ratios possible. Further research
includes the study of specific change of measure strategies and its application
to a variety of models. In particular, excessive case studies are required to
demonstrate the efficiency gains achieved by Importance Sampling.
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