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ABSTRACT

Importance sampling is a variance reduction technique that is particularly well suited for simulating rare events and, more
specifically, estimating rare event probabilities. Properly applied, it often results in tremendous efficiency improvements
compared to direct simulation schemes, but it can also yield unbounded variance increase. Its efficiency and robustness
critically rely on a suitable change of the underlying probability measure, which is highly model-dependent. In recent years,
significant progress greatly broadened the classes of models successfully accessible by importance sampling, but several
model classes still require further investigation. We consider importance sampling simulations of finite capacity queues
where interarrival and service times are Erlang distributed. A change of measure is proposed and experimentally studied.
Numerical results for loss rates due to buffer overflows indicate that the change of measure provides accurate estimates and
appears promising for adaptation to other models involving phase-type distributions.

1 INTRODUCTION

Rare events though occurring with extremely small probability are often highly relevant, because they may have serious
consequences such as breakdowns of manufacturing systems, technical defects, system failures in highly reliable systems,
bit errors in digital communications, or packet losses in computer and communication networks. When analytical model
solution techniques fail, for instance because of the model’s complexity or structure, stochastic simulation still remains a
viable approach. However, direct simulation of rare events is not effective, because rare events occur too infrequently in
simulations to compute reliable statistical estimates in reasonable time. The simulation time to realize robust estimators with
desired accuracy such as prescribed confidence interval relative half width must be reduced. Since the accuracy depends on
the variance of the simulation estimators, such a simulation speed-up corresponds to variance reduction.

Importance sampling (IS) is the most widespread, potentially most powerful approach to rare event simulation and has
been successfully applied in a variety of domains (Heidelberger 1995, Heegaard 1998, Srinivasan 2002, Glasserman 2004,
Juneja and Shahabuddin 2006, Asmussen and Glynn 2007, Rubino and Tuffin 2009). Its basic idea is to provoke more
of the rare events of interest by changing the underlying probability measure, simulating under the changed measure, and
unbiasing the corresponding estimator by the likelihood ratio. The crucial point in a successful application is to find an IS
estimator with much smaller variance than the direct simulation estimator. Although an optimal IS estimator always exists,
in most cases it is not available and cannot be implemented as it explicitly depends on the unknown quantity to be estimated.
Nevertheless, its form suggests potentially good candidates as it is reasonable that an efficient change of measure should be
as close as possible to the optimal one and should have at least some properties of the optimal one.

While importance sampling for Markovian queueing models like M/M/1, Markovian tandem networks, or more general
Jackson networks has been extensively studied and many insights have been gained, it was not yet systematically investigated
for phase-type (PH) queues, that is queues with phase-type distributed interarrival and/or service times. However, phase-type
distributions such as Cox, Erlang, Hyper- and Hypoexponential play an important role in the context of queueing models.
They are particularly attractive since they allow for quite general models that still obey the Markovian property.

We study single server queues where both interarrival and service times are Erlang distributed, which might serve as a
starting point for further advanced studies of other PH queues and queueing networks involving phase-type distributions. The
basics of PH queues and IS are given in Sections 2 and 3, respectively. Section 4 provides a change of measure. Numerical
results are presented in Section 5. Finally, Section 6 concludes the paper and outlines further research directions.
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2 PHASE-TYPE QUEUES

Phase-type queues are queues where interarrival and/or service times are phase-type distributed. The concept of phase-type
distributions extends the exponential distribution and is based on the connection with absorption (or similarly first-hitting)
times in continuous-time Markov chains.

Definition 1. A probability distribution on R+ = [0,∞) is a (continuous) phase-type (PH) distribution, iff it is the distribution
of the time until absorption in a finite time-homogeneous continuous-time Markov chain (CTMC).

Consider a CTMC with finite state space S = {1, . . . ,n,n+1} and initial distribution (α,αn+1) where the states 1, . . . ,n
are transient and the state n+1 is absorbing. Then the generator matrix Q of the chain can be represented as

Q =

(
T t

0 0

)
, T ∈ Rn×n, t ∈ Rn (1)

and (α,T ) is a representation of the PH distribution. The density, the distribution function and the moments of this PH
distribution are given by f(α,T )(x) = α exp(T x)t,F(α,T )(x) = 1−α exp(T x)~1 and E[X i] = (−1)ii! (αT−i~1),x≥ 0, i∈N, which
implies the Laplace transform E[e−ϑX ] = αn+1 +α(ϑ I−T )−1t,ϑ ≥ 0. If there are multiple absorbing states and we are only
interested in absorption and not in the particular state where absorption occurs, the absorbing states can be aggregated into
one single absorbing class such that the concept applies similarly. Also first-hitting times are covered by modeling the state
(or set of states) of interest as an absorbing state (or class).

The exponential distribution with parameter λ > 0 is the basic building block of any other PH distribution and is itself a
PH distribution corresponding to T = (−λ ),α = (1), t = (λ ). Hence, since state sojourn times in CTMCs are exponentially
distributed, PH distributions can be viewed as extensions of the exponential distribution in that they are composed of
exponentials. This extension is very general as it in fact covers a wide range of practically relevant distributions. It is well
known that the class of PH distributions is closed under convolution, mixtures, minimum and maximum, that it is dense in the
class of all probability distributions on R+ = [0,∞), and that all distributions on R+ can be arbitrarily closely approximated
by an appropriate PH distribution. For proofs and many more details on PH distributions and their properties see (Neuts
1981, O’Cinneide 1990, O’Cinneide 1999, Mocanu and Commault 1999).

One major appeal of PH distributions is that they allow for Markovian modeling of systems where the random times
involved are more general than exponentially distributed. In particular, it can be readily seen that phase-type queues can be
modeled as multi-dimensional CTMCs with a specific structure. With a suitable ordering of states, the generator matrix is
block-tridiagonal. Because of the similarity to the generator matrix of ordinary birth-death processes representing M/M/1
queues this gives rise to the notion of quasi-birth-death (QBD) processes, where the generator matrix entries are now vectors
and matrices rather than scalars. Approached from a different direction, QBD processes are not restricted to modeling single
server phase-type queues but also apply to, e.g., a broad class of Jackson networks.

Numerical solutions of such QBDs can be often tackled by matrix geometric methods as pioneered by Neuts and further
developed by himself and others, see (Neuts 1981, Latouche and Ramaswami 1999, Bini et al. 2005). Here, we are interested
in rare event simulation using importance sampling as applied to phase-type queues. Our focus in this paper is on Ek/Em/1
queues where En denotes the Erlang distribution with n phases, which has the phase-type representation α = (1,0, . . . ,0) and

T =


−λ λ 0 · · · 0

0 −λ λ · · · 0

0 0 −λ
. . . . . .

...
...

. . . . . . λ

0 0 0 · · · −λ

 , t =


0
0
...
0
λ

 .

Figure 1 shows a CTMC model of a Ek/Em/1/N queue. The interarrival time is Erlang-k with intensity λ > 0, while the
service time is Erlang-m with intensity µ > 0. In gray the meta states states representing the number of resources (customers)
in the system (server and queue) are indicated.
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Figure 1: CTMC model for a single server queue with phase type distribution

3 IMPORTANCE SAMPLING

Consider two probability measures P and P∗ on a measurable space (Ω,A ). If P is absolutely continuous with respect to P∗,
that is ∀A ∈A : P∗(A) = 0 ⇒ P(A) = 0, then the Radon-Nikodym derivative L = dP/dP∗ exists and importance sampling
(IS) exploits that for any random variable Y on (Ω,A ),

EP[Y ] =
∫

Y (ω)dP =
∫

Y (ω)L(ω)dP∗ = EP∗ [Y L], (2)

where EP and EP∗ denote expectations with respect to the probability measures P and P∗, respectively. Hence, when a
simulation is performed under P∗ the sample mean of Y L is an unbiased estimator for EP[Y ]. In the context of IS, the
probability measure P∗ is called the IS measure, L is called the likelihood ratio and choosing P∗ in place of P is referred to
as the change of measure. IS applies to very general settings and in particular to stochastic processes.

For Markov chains, either in discrete or continuous time, the probability measures P and P∗ are path distributions and
absolute continuity corresponds to the condition that all paths containing the event of interest that are possible under the
original measure P must remain possible under the changed measure P∗. In continuous time this can be obviously achieved
by the condition that for all positive transition rates in the original model the corresponding transition rates under IS are
positive. Similarly, this condition applies for transition probabilities in case of discrete time. For details on IS for stochastic
processes including Markov processes and generalized semi-Markov processes (GSMP) see (Glynn and Iglehart 1989).

Estimating the probability γ := P(R) of a rare event R by IS is performed via P(R) = EP[I(R)] = EP∗ [I(R)L] such
that the sample mean of I(R)L under probability measure P∗ provides an unbiased estimator for P(R). From

σ
2
P∗(I(R)L) = EP∗ [(I(R)L− γ)2] = EP∗ [(I(R)L2]− γ

2, (3)

where σ2
P∗ denotes the variance under P∗, it can be readily seen that the optimal zero-variance IS measure is determined by

the original probability conditioned on the occurrence of the rare event, P∗(A) = P(A|R) = P(A∩R)/P(R) for all events
A ∈A . In other words, the choice of P∗ such that P∗(A) = P(A)/P(R) for all A⊆R and P∗(A) = 0 otherwise, provides a
zero-variance estimator for P(R). Unfortunately, it explicitly depends on the unknown rare event probability and is therefore
not available for implementation. Even if it was it may take a form that makes sampling from it difficult or impossible.

Therefore, the key is to find a change of measure such that the corresponding IS estimator possesses certain efficiency
or robustness properties, which are typically focused on the asymptotic behavior of estimators as the probability of the rare
event approaches zero. The most prominent such properties are bounded relative error and asymptotic optimality but many
others are reasonable, see, e.g., (Tuffin 1999, Blanchet et al. 2007, Sandmann 2007, L’Ecuyer et al. 2009).

Suppose we want to estimate the probability γb := P(Rb) of a rare event Rb that depends on some ’rarity parameter’ b∈N
such as, e.g., the overflow of a buffer of size b. Hence, we consider a sequence of events R1,R2, . . . where P(R1)≥P(R2)≥ ·· ·
and limb→∞ P(Rb) = 0. Denote the unbiased IS estimator for γb by γ̂b and the associated likelihood ratio by Lb.
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Definition 2. The sequence (γ̂b)b∈N of IS estimators possesses bounded relative error (BRE), or equivalently bounded relative
variance (BRV), iff

∃c > 0 : lim
b→∞

σP∗(γ̂b)
γb

≤ c < ∞. (4)

Definition 3. The sequence (γ̂b)b∈N of IS estimators possesses asymptotic optimality (AO), also known as logarithmic
efficiency (LE), iff

lim
b→∞

lnEP∗ [(I(R)L2]
lnγb

= 2. (5)

Note that BRE/BRV implies AO/LE but in general the converse is not true such that AO/LE is weaker than BRE/BRV.

4 CHANGE OF MEASURE IN Ek/Em/1/N MODELS

We consider Ek/Em/1/N models, where the change of measure is done by choosing alternative rates λ ∗ and µ∗ in place
of λ and µ. Note that with IS all rates may be state dependent even if they are state independent in the original system.
Although it is known that in general an efficient change of measure should be state dependent there are cases where a state
independent change of measure provides accurate estimates. In some cases, a state independent change of measure can
even provide BRE or AO. In any case, the great advantage of a state independent change of measure is the simplicity of
implementation in simulators.

We show that state independent changes of measure are efficient in IS simulations of Ek/Em/1/N queues. Our approach
to obtain good state independent changes of measure is focusing on the likelihood ratio along cycles within sample paths,
which is known as a critical determinant of IS estimators’ efficiency. For the optimal zero-variance estimator the likelihood
ratio is constant on all paths containing the rare event of interest, which implies that the likelihood ratio on all cycles on
such paths is equal to one. According to (Juneja 2001), if the likelihood ratio is constant on all paths containing Rb and
P∗(Rb) is lower bounded by some constant β > 0 (R is not rare under P∗ in the sense that it does not converge to zero as
b converges to infinity), then the corresponding IS estimators possess BRE and AO. This has motivated the cyclic approach
in (Juneja 2001) and a similar idea based on the so-called likelihood ratio conditions in (Sandmann 2004a, Sandmann 2004b).

In particular, a state independent change of measure for Markovian models has BRE/BRV as long as the rare event is
lower bounded by some constant and all simulated cycles of the underlying CTMC or its embedded DTMC, respectively,
contribute to the likelihood ratio with a factor of one. Obviously, the likelihood ratio condition alone is not sufficient for
BRE since it trivially holds for the original measure as IS measure. But it seems reasonable to enforce it as far as possible.

We consider cycles in the CTMC representation of Ek/Em/1/N models depicted in Figure 1. A cycle is defined by a
sequence of states where the first and last state are identical and all other states are different, X̃ = (X0,X1, . . . ,Xn),n > 0
where X0 = Xn and Xi 6= X j for i, j = 1, . . . ,n, i 6= j. In an Ek/Em/1 model any shortest cycle consists of k arrival phases and
m service phases and all other cycles are built of multiple shortest cycles such that considering shortest cycles suffices. We
call a cycle an interior cycle if it does not contain any of the states (i,0), i = 0, . . . ,k−1, that is states of the boundary meta
state representing an empty system. Observe that all states in the interior cycles have either a phase change in the arrival
or service process as their next state, and hence the outgoing rate is λ + µ for all states. The probability (considering the
embedded DTMC) of shortest interior cycles X̃ in the original model is

pX̃ =
(

λ

λ + µ

)k(
µ

λ + µ

)m

(6)

and the corresponding probability of these cycles in the IS model is

p∗X̃ =
(

λ ∗

λ ∗+ µ∗

)k(
µ∗

λ ∗+ µ∗

)m

. (7)
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Now, without loss of generality we let λ + µ = 1. Futhermore, we let λ ∗+ µ∗ = 1 to obtain a unique solution. Then, the
likelihood ratio L of X̃ is

LX̃ =
pX̃
p∗X̃

=
λ kµm

(λ ∗)k(µ∗)m . (8)

From the equations above we see that in an Ek/Em/1/N model the simulated cycles have a likelihood ratio LX̃ = 1 for all
interior cycles when

λ
k
µ

m = (λ ∗)k(µ
∗)m (9)

m
λ

k(1−λ )m = (λ ∗)k(1−λ
∗)m

For k = m, this yields

λ
k
µ

k = (λ ∗)k(µ
∗)k (10)

m
λ µ = λ

∗
µ
∗

and, assuming that λ < µ and λ ∗ > µ∗, we obtain λ ∗ = µ,µ∗ = λ , which is the well known asymptotically optimal state
independent change of measure for the M/M/1 queue that also possesses BRE. For k 6= m, equation (9) can be rearranged to

λ
∗ = λ

(
1−λ

1−λ ∗

)m/k

(11)

which has no simple closed form solution. It can be solved numerically but in order to simplify implementation in a simulator
and to facilitate a potentially generalizable way for models where a numerical solution is hard to obtain, we also propose an
approximation that turns out to work particularly well when λ is close to zero. The approximation is based on the assumption
that a possible or approximate solution λ ∗a to (9) might be of the form

λ k ∝ (µ∗a )m

µm ∝ (λ ∗a )k ⇔
λ ∗a = C ·µm/k

µ∗a = C ·λ k/m

With the normalization constant C = (λ k/m + µm/k)−1 we obtain λ ∗a + µ∗a = 1 and apply the approximation

λ
∗ ≈ λ

∗
a :=

µm/k

µm/k +λ k/m . (12)

Figure 2 shows a comparison between the numerical solution λ ∗n of (9) and the approximation λ ∗a in (12). They are plotted
as a function of λ . The upper (blue) is the numerical solution while the lower (red) is the approximation. Observe that the
closer λ is to zero the better the approximation, that is the approximation approaches the numerical solution in light traffic
as the traffic intensity becomes small.

Note that not even in the Ek/Em/1/N models as discussed in this paper all cycles will obey likelihood ratios equal to one
by applying the state independent changes of measure outlined above. Cycles that include a state in {(i,0)}, i = 0, · · · ,k−1
will deviate from the conditions but fortunately they are few. Furthermore, observe that the transition intensities λ of (i,0),
i = 0, · · · ,k−1 are not changed in the IS model, λ ∗ = λ because these states only have one outgoing transition (see Figure 1).
In this sense one might even refer to a state dependent change of measure as it depends on whether the model state is within
or without the boundary meta state representing the empty system. However, of course, it is essentially state independent
and we prefer the interpretation that IS is switched off when the system is empty. In the following section the simulation
efficiency is demonstrated using different state independent changes of measures, including both the numerical solution λ ∗n
and the approximation λ ∗a . Numerical examples indicate that the proposed change of measure is efficient.
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Figure 2: Comparison of numerical λ ∗n (blue, upper) and approximate λ ∗a (red, lower)

5 NUMERICAL EXAMPLES

We have conducted numerical examples for Ek/Em/1/N models with different combinations of k and m and with variable
queue length N. The rare event of interest is the probability of buffer overflow or packet loss in a communication network.
All simulation experiments consist of 20 replications of 20,000 regenerative cycles. All experiments have been conducted
on a MacBook Pro (2.16 Ghz Core 2 Duo, 2 GB RAM, OS X 10.5) using the programming language Simula (Kirkerud
1989) with the DEMOS class (Birtwistle 1997).

5.1 Importance Sampling Parameters

Table 1 summarizes the different combinations of parameters that have been studied by simulation. The table includes the
state independent changes of measure, both λ ∗n and λ ∗a . The results in the following include a selection that represents typical
behavior that has been observed and the selection is indicated by light gray in the table of parameters. In all simulations
the sensitivity of the change of measure around the proposed ”optimal” value is studied empirically.

Table 1: Importance sampling parameters with λ = 0.2 and µ = 0.8

k m λ ∗ µ∗ λ ∗a µ∗a
1 1 0.800 0.200 0.800 0.200
2 2 0.800 0.200 0.800 0.200
2 3 0.626 0.374 0.677 0.323
3 2 0.919 0.081 0.906 0.094
3 3 0.800 0.200 0.800 0.200
5 10 0.488 0.512 0.589 0.411
5 5 0.800 0.200 0.800 0.200

10 5 0.966 0.034 0.967 0.043
10 10 0.800 0.200 0.800 0.200

5.2 Results

The first set of simulations assumes the same number of phases in the interarrival and service times, i.e. k = m = 2 and
k = m = 10. The simulation results given in Tables 2 and 3 show the estimated loss ratio and the standard error for different
values of λ ∗. The results in gray are from using the ”optimal” change of measure. In Figure 3 the relative error is given as
a function of the finite queue size N, while Figure 4 shows the relative error times the CPU time consumption as a function
of the finite queue size N. The straight red line is the loss ratio plotted against the right axis.
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Table 2: Loss ratio mean and standard error in E2/E2/1/N-queue for different λ ∗

N = 5 N = 10 N = 15 N = 20 N = 25 N = 30
λ ∗ mean std.err. mean std.err. mean std.err. mean std.err. mean std.err. mean std.err.

0.72 2.83 0.008.6 2.85 0.0072 2.69 0.0126 2.59 0.0091 2.45 0.0084 2.25 0.0122
0.80 2.82 0.0095 2.81 0.0059 2.68 0.0073 2.57 0.0049 2.43 0.0063 2.33 0.0044
0.88 2.83 0.0112 2.80 0.0184 2.71 0.0102 2.47 0.0100 2.28 0.0171 2.32 0.0635

[×e-06] [×e-12] [×e-18] [×e-24] [×e-30] [×e-36]

Table 3: Loss ratio mean and standard error in E10/E10/1/N-queue for different λ ∗

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8
λ ∗ mean std.err. mean std.err. mean std.err. mean std.err. mean std.err. mean std.err.

0.72 1.42 0.007 3.08 0.019 3.35 0.024 3.04 0.026 2.75 0.021 2.65 0.031
0.80 1.44 0.010 3.08 0.020 3.31 0.017 2.98 0.016 2.79 0.017 2.66 0.014
0.88 1.45 0.0024 3.05 0.041 3.27 0.052 2.94 0.060 2.60 0.077 2.40 0.076

[×e-11] [×e-17] [×e-23] [×e-29] [×e-35] [×e-41]
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Figure 3: The relative error for different N when k = m

The second set of simulations includes k = 3, m = 2 and k = 5, m = 10. The simulation results are given in Tables 4
and 5. The results in gray are from using the numerically obtained change of measure while the light gray are results using
the approximation. The estimated loss ratio and the standard error are included. In Figure 5 the relative error is given as a
function of the finite queue size N, while Figure 6 shows the relative error times the CPU time consumption as a function
of the finite queue size N.

5.3 Key Observations

The results clearly show that the ”optimal” state independent change of measure is efficient in the case with k = m in
an Ek/Em/1/N queue. The relative error is insensitive to the rarity of the problem, while the CPU consumptions times
relative error show a slow linearly increase. The sensitivity experiments indicate that it seems to be indeed the optimal state
independent change of measure in the sense that it is superior for all studied cases, including the cases where k 6= m. The
proposed approximation for obtaining the IS parameters works particularly well when the λ is close to one.
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Figure 4: The CPU consumption times relative error for different N when k = m

Table 4: Loss ratio mean and standard error in E3/E2/1/N-queue for different λ ∗

N = 5 N = 10 N = 15 N = 20 N = 25 N = 30
λ ∗ mean std.err. mean std.err. mean std.err. mean std.err. mean std.err. mean std.err.
0.800 1.82 0.0061 2.40 0.0111 3.12 0.0356 4.84 0.0370 4.13 0.0273 4.06 0.2560
0.880 1.81 0.0041 2.47 0.0057 2.89 0.0059 3.37 0.0076 3.92 0.0181 4.68 0.0097
0.906 1.81 0.0034 2.47 0.0049 2.89 0.0065 3.43 0.0073 3.94 0.0077 4.60 0.0101
0.919 1.81 0.0054 2.46 0.0045 2.91 0.0054 3.37 0.0076 4.00 0.0071 4.59 0.0092
0.940 1.81 0.0042 2.46 0.0056 2.88 0.0070 3.37 0.0106 4.00 0.0109 4.69 0.0116
0.960 1.82 0.0085 2.43 0.0075 2.85 0.0104 3.41 0.0101 4.10 0.0181 4.25 0.0137

[×e-09] [×e-19] [×e-29] [×e-39] [×e-49] [×e-59]

6 CONCLUSION AND FURTHER RESEARCH

We have studied importance sampling for estimating the probability of buffer overflows or loss rates in Ek/Em/1 systems.
A state independent change of measure strategy assuring that the likelihood ratio equals one on most cycles (all except for
cycles involving states representing the empty system) has been obtained with the proviso that arrival phase rates should be
increased while service phase rates should be decreased.

For k = m the obtained change of measure generalized in a straightforward manner the asymptotically optimal exponential
change of measure for M/M/1 (i.e. E1/E1/1) in which the arrival and the service rate are switched. For k 6= m the IS rates
are obtained numerically. In both cases, our numerical results indicate the efficiency of the change of measure. Empirical
sensitivity studies suggest that the change of measure might be the optimal state independent one. We have also proposed
an approximation for the case with k 6= m in place of numerically obtaining the IS rates, which works well, in particular for
λ ∗ close to one. It seems that the relative error remains is bounded, and the relative error times CPU consumption increases
linearly with the rarity (and system capacity N)

Theoretical investigation of the proposed change of measure is desirable such as proving or disproving its robustness
properties and its optimality within the class of state independent changes of measure. Further research includes extensions
to other phase-type distributions such as hypoexponential, hyperexponential and Cox distributions as well as extensions to
multi-server and multi-class queues and queueing networks starting with tandem networks.
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Table 5: Loss ratio mean and standard error in E5/E10/1/N-queue for different λ ∗
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