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Abstract. Scheduling policies significantly influence the performance
of queueing systems, and performance measures like response and wait-
ing times, throughput, or related properties have been comprehensively
investigated in queueing and scheduling theory. The important issue of
quantifying user perceived fairness has received less attention. Measuring
fairness suffers from the subjective nature of fairness, and it has received
growing attention only the past few years. Recently, an intuitive dis-
crimination frequency based queueing fairness measure, which possesses
important axiomatic properties, has been introduced. In this paper, we
derive analytical expressions for the expected discrimination frequency
in M/M/1, M/D/1 and M/GI/1 queues operating under FCFS, non-
preemptive LCFS, and SJF scheduling. Variances are evaluated by sim-
ulation and special attention is drawn to Pareto distributed service times.

1 Introduction and Motivation

Queueing models are widely used in performance evaluation of computer and
communication systems. Most often, the literature has dealt with performance
measures like throughput, response and waiting times. Probabilities of buffer
overflows or packet losses have been considered, too. All these performance mea-
sures have in common that they are clearly defined. They do not contain sub-
jective components in the sense that one could interpret them in different ways.

However, queueing also appears in real life scenarios, in interactive computer
and communication systems and in a variety of computer networking applica-
tions, where psychological effects and individual perceptions play a crucial role
in judging a system’s behavior. Think for example of supermarkets, banks, air-
ports, public offices, web servers, load balancers, or call centers. In all these and
many more situations customers expect to receive a fair treatment. This is quite
often even more important than response times or related measures, in particular
from individual customers’ points of view. Empirical evidence of the importance
of fairness has been provided by the recent psychological studies in [11].

One may argue that users in computer and communication systems judge the
quality of the system only through their own response time, and that there is
no need to quantify fairness in such systems. However, we believe, corroborated
by results in [11], that customers do care about discriminations even if they do
not see each other. Hence, fairness measures are highly desirable.
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Of course, fair queueing is intimately related to scheduling, which has been
worked on for a long time and which is an important topic in itself [3, 4]. Fair-
ness in queues heavily depends on the scheduling policy the system is operating
under. Hence, fairness should be evaluated for different scheduling policies, and
scheduling policies should be compared with regard to their fairness.

In [14] we have proposed to measure fairness by discrimination frequencies. To
motivate this approach, imagine what people would think in almost all situations
where discriminations occur. Being discriminated once may be accepted, but
being discriminated again and again provokes the feeling of unfairness, which
significantly grows with the number of experienced discriminations. What are
discriminations in a queue we would call to be unfair? Other customers are served
earlier although they did not arrive earlier or we have to wait for others with
large service requirements, which we call overtaking and large jobs, respectively.
General axiomatic properties are proven in [14], but properties for queueing
systems in steady state were not yet studied.

In the present paper, we analyze the measure for M/M/1, M/D/1 and M/GI/1
systems operating under First Come First Served (FCFS), non-preemptive Last
Come First Served (LCFS), and Shortest Job First (SJF). Analytical expressions
are derived for the steady state expected discrimination frequency. Variance and
standard deviation are evaluated via simulation, and the expected discrimina-
tion frequency is weighted by its standard deviation to account for fairness and
justice in the sense of equal treatment of customers.

Section 2 describes the general framework of models our measures can be
applied to. Section 3 reviews queueing fairness measures, including discrimina-
tion frequency based fairness. The analytical results are derived in section 4,
and simulation results are presented in section 5. Finally, section 6 concludes
the paper and gives some directions for further research.

2 General Framework

We consider general queueing systems which may consist of a single server or
multiple servers and one single queue. Customers or associated jobs, denoted by
J1, J2, . . . , enter the system, are queued and served according to some scheduling
policy. After service completion, jobs leave the system. For any job Ji its arrival
time is denoted by ai, where ai ≤ aj for i < j, i.e. jobs are numbered in increasing
order of arrival. Service requirements of a job Ji are given by the job’s service
time denoted by si, and finally, the departure time of a job Ji is denoted by di.

Hence, relevant performance properties can be expressed in terms of ai, si

and di. In particular, wi = di−ai−si is the waiting time of job Ji, and the job’s
response time is given by ri = wi + si. We call t − ai the seniority of job Ji at
time t. As usual, small letters indicate that we speak of a specific sample path,
and the letters capitalized are used to denote corresponding random variables.
Here, ai and si can be taken as realizations of random variables. Thus, in the
most general case, we are dealing with G/G/c queueing systems operating under
arbitrary scheduling policies.
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3 Queueing Fairness Measures

A queueing fairness measure should both agree with intuition and yield to anal-
ysis. In [2, 10] desirable axiomatic properties have been introduced. The strong
service-requirement preference principle states that for jobs Ji and Jj , arriving
at the same time and residing concurrently in the system, if si < sj then it will
be more fair to complete service of Ji ahead of Jj than vice versa. In the weak
version this should hold if all jobs arrive at the same time. The strong seniority
preference principle states that for jobs Ji and Jj , residing concurrently in the
system and requiring equal service times, if ai < aj then it will be more fair
to complete service of Ji ahead of Jj than vice versa. In the weak version this
should hold if all jobs have the same service time. Accordingly, there are notions
of a measure adhering to and a scheduling policy following a preference principle.

3.1 Previously Proposed Queueing Fairness Measures

In [16] the slowdown S(x) = T (x)/x is used as a fairness criterion, where T (x)
denotes the steady-state response time for a job of size x. A scheduling policy
is said to be fair for given system load ρ iff E[S(x)] ≤ 1/(1 − ρ). If one takes
the expected slowdown as itself instead of additionally relating it to 1/(1 − ρ),
one gets a fairness measure rather than a criterion. Obviously, slowdown relies
on service requirements and does not take job seniority into account.

In [1] order fairness has been studied, where equal service times are assumed.
As a major axiom monotonicity of the measure under neighbor interchange has
been used, which is simply a mathematical form of the strong seniority preference
principle. In steady state order fairness is equivalent to using the variance of the
waiting time as an unfairness measure or with a negative sign as a fairness
measure. It does not adhere to a service-requirement preference principle.

A resource allocation based queueing fairness measure (RAQFM) that aims
at accounting for both seniority and service-requirements has been introduced
in [13]. It relates warranted service rates to service times by subtracting the
warranted service of a job from the job’s service time. The measure adheres to
the strong seniority preference principle and to the weak service-requirement
preference principle but it does not adhere to the strong version of the latter.

3.2 Discrimination Frequency Based Fairness

The just described measures all have strengths but also some weaknesses, as men-
tioned in the descriptions. This motivates a measure that is intuitive, accounts
for psychological effects, possesses all of the axiomatic properties, and that is
analytically tractable. Here, we give a formal description of the discrimination
frequency based measure followed by a brief discussion.

Definition 1. The amount ni of overtaking a job Ji suffers from is the number
of jobs that arrived not earlier and complete service not later than Ji. That is

ni := |{j : aj ≥ ai ∧ dj ≤ di}|.
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To account for preemptive service disciplines, and in the non-preemptive case
to account for the jobs currently in service when a new job arrives, we need to
define s′j(t) as the remaining service time of a job Jj at time t. With that

Definition 2. The amount mi of large jobs a job Ji suffers from is the number of
jobs not completely served upon arrival of Ji that have at least as much remaining
service requirements and complete service not later than Ji. That is

mi := |{j : di ≥ dj > ai ∧ s′j(ai) ≥ si}|.

Note, that if Ji is overtaken by a job with at least the same service requirements,
this affects both quantities defined above, i.e. such cases are taken as doubly
unfair. This is consistent with personal feelings a customer would experience.

Definition 3. The discrimination frequency of a job Ji is the number of dis-
criminations Ji suffers from, that is the sum of the amount of overtaking and
the amount of large jobs, i.e. DF (i) := ni + mi. The discrimination frequency
of a sample path π is the sum of discrimination frequencies over all jobs.

The measure associates higher values to such scheduling policies that are less
fair. To meet the fairness measure requirements we can simply introduce a neg-
ative sign, or, alternatively, take the reciprocal (for obvious technical reasons
setting to infinity if the above measure is zero). Infinite fairness then has a quite
natural interpretation. The maximum fairness a job can experience is due to
no discrimination at all. The most important general axiomatic properties have
been proven in [14]. Here, we state them without proof as one theorem.

Theorem 1. The discrimination frequency based queueing fairness measure ad-
heres to the strong service-requirement preference principle, to the strong senior-
ity preference principle and to the weak versions of both principles.

The discrimination frequency of a sample path is monotone increasing in the
sample path length. In particular, for sample path length going to infinity it goes
to infinity, too. Thus, it can be used to measure fairness of a specific schedule
in a specific scenario [14], but not to measure the general fairness of scheduling
policies or queueing systems. System fairness is measured based on the mean
discrimination frequency of an arbitrary job. When arrival and service times
are given by random variables the expected discrimination frequency of a job is
used. In the transient case we take the expected discrimination frequency of a
job entering the system at some time t, and in steady state we take the expected
discrimination frequency of an arbitrary job running through the system.

One may ask if in addition to counting the number of discriminations a
degree of unfairness should be assigned to each single discrimination, like how
much later a job arrived that overtakes another job or how much bigger service
time a large job has. Although this seems reasonable at a first glance, results in
[11] indicate, that it might be not. It has been found that people primarily care
about what happens in their neighborhood. They note to be overtaken but not
at what time the other job arrived. Hence, we need not distinguish the arrival
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times of jobs that overtake, whereas it may be reasonable to take service times
into account, which is a possible but not necessary refinement.

Another question may be if it should not be taken as fair when a very short
job overtakes a large job, i.e. that this is no discrimination at all. We are sure
that overtaken customers will feel discriminated independent of the job size. In
fact ”businessmen waiting for their luggage reported feelings of injustice when
they saw people that arrived after them, but had no luggage with them, leave
before them” [11]. Hence, such cases should be counted as discrimination.

As for fairness not only the amount of discrimination is important but also
justice in the sense of equal treatment of customers or jobs, a fairness measure
should also rely on the variance or the standard deviation of the discrimination
frequency. On the other hand variance or standard deviation alone should not
be taken as a fairness measure, because such a measure would also assign very
high fairness, when all customers experience approximately the same but large
amount of discrimination. Surely, a system would not be taken as fair, when all
customers are discriminated quite often. Therefore, we propose to weight the
expected discrimination frequency by its variance or standard deviation.

4 Analytical Results

We derive analytical expressions for the expected discrimination frequency in
M/GI/1 queues, and we also get expressions for M/M/1 as a special case. M/D/1
requires a bit more care, since all service times are equal, whereas for continuous
probability distributions all services times are almost surely different.

We describe M/GI/1 queues by usual notations. Arrivals constitute a Poisson
process with arrival rate λ > 0, and service times are independent and identically
distributed as a random variable S according to a general probability distribution
with density fS and distribution function FS . The server utilization is denoted
by ρ := λE[S]. For comprehensive treatments of M/GI/1 queues we refer to the
literature [7–9]. To avoid conflicts with other usual notations, from now on we
denote the amount of overtaking by OV, and the number of large jobs by LJ.

As we are dealing with discriminations of individual jobs, it is reasonable
to perform the analysis from individual jobs’ perspectives. That means we in-
spect what jobs experience during their way through the system, instantaneously
starting upon arrival and finishing upon departure. Throughout our derivations
we exploit the PASTA (Poisson Arrivals See Time Averages) property[17], which
basically states that in a queueing system fed by a Poissonian arrival process the
distribution of jobs upon arrival of a new job is the same as in steady state.

4.1 First Come First Served (FCFS)

Obviously, under FCFS no overtaking occurs in single server queues. Thus, the
frequency of this type of discrimination equals zero, and so does the mean over-
taking frequency. It remains to determine the number of large jobs an individual
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job suffers from. Since all service times are independent and identically dis-
tributed, the probability that an arbitrary service time is greater than another
arbitrary service time equals 0.5. To formally verify this, note, that due to the
symmetry of the relation∫ ∞

0

FS(x)fS(x)dx = p,

∫ ∞

0

(1− FS(x))fS(x)dx = p,

it immediately follows

p =
∫ ∞

0

(1− FS(x))fS(x)dx =
∫ ∞

0

fS(x)dx−
∫ ∞

0

FS(x)fS(x)dx = 1− p.

Hence, on average half the jobs in the queue are at least as large as the arriving
job. Due to the PASTA property arriving jobs on average find the expected
number of jobs in the system, in the queue, and in the server, where the latter
equals the probability that the server is busy, given by the utilization ρ. The
job currently in service is at least as large as the arriving job if its remaining
service time S′ upon arrival of the new job is greater or equal than the new job’s
service time. In this case the number of large jobs discriminating the job under
consideration is additionally increased by one. Thus, the expected steady state
number of large jobs can be expressed by

E [LJ] =
E [Nq]

2
+ ρ · P{S′ ≥ S},

where Nq denotes the number of jobs in the queue. Since there is no overtaking,
E[DF] = E[LJ]. The Pollaczek-Khintchine formula and Little’s law yield

E[Nq] =
λ2E

[
S2

]
2(1− ρ)

.

The density fS′ and the distribution function FS′ , respectively, of the remaining
service time S′ are given by

fS′(x) =
1− FS(x)

E [S]
, x > 0,

FS′(x) = P{S′ ≤ x} =
∫ x

0

fS′(s)ds =
1

E [S]

∫ x

0

(1− FS(s)) ds, x > 0.

Thus, we get

P{S′ ≥ S} = 1−
∫ ∞

0

fS′(x) (1− FS(x)) dx.

Combining all the above formulae yields

E [DF] = E [LJ] =
λ2E

[
S2

]
4(1− ρ)

+ ρ ·
(

1−
∫ ∞

0

fS′(x) (1− FS(x)) dx

)
. (1)
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For M/M/1 we could apply the above equation, but simpler and more intuitive
arguments provide the same. The remaining service time is the residual time of
an exponentially distributed random variable. Due to the memoryless property
it is again exponentially distributed with the same parameter. Thus, we need
not make a difference between jobs in the queue and the job possibly in the
server, and the expected steady state number of large jobs is half the jobs in the
systems. Hence, denoting by N the number of jobs in the system,

E [DF] = E [LJ] =
E [N ]

2
=

ρ

2(1− ρ)
. (2)

For M/D/1 all service times are equal and always greater than the remaining
service time. Under FCFS each job suffers from all the jobs it finds in the queue
upon arrival. Hence, denoting by Nq the number of jobs in the queue,

E [DF] = E [LJ] = E [Nq] =
ρ2

2(1− ρ)
. (3)

For fixed ρ, 0 < ρ < 1 the expected discrimination frequency for M/D/1 is less
than for M/M/1, or in other words, M/D/1 is more fair than M/M/1 meaning
that for equal service times less discriminations are expected than for exponen-
tially distributed service times. Note that in M/M/1 and M/D/1 the expected
discrimination frequency under FCFS only depends on ρ, whereas in the general
M/GI/1 case it depends on the specific service time distribution.

4.2 Last Come First Served (LCFS)

Under LCFS each job is overtaken by the jobs arriving during the waiting time
in the queue. The expected steady state waiting time is the same as under FCFS:

E [W ] =
λE

[
S2

]
2(1− ρ)

,

during which on average λE[W ] jobs arrive (cf. [3, 4, 7, 9]) that all overtake the
arbitrary tagged job. On average half the jobs are at least as large as the tagged
job and with probability ρ there may be a job in service upon arrival. Altogether

E [OV] =
λ2E

[
S2

]
2(1− ρ)

, E [LJ] =
λ2E

[
S2

]
4(1− ρ)

+ ρP{S′ ≥ S},

E [DF] =
3λ2E

[
S2

]
4(1− ρ)

+ ρ ·
(

1−
∫ ∞

0

fS′(x) (1− FS(x)) dx

)
. (4)

Note, that this equals the expected discrimination frequency for FCFS except
for the factor of 3 in the first term of the sum. Hence, we have proven

Theorem 2. The expected discrimination frequency in an M/GI/1 queue under
LCFS is always greater than it is under FCFS.
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For M/M/1 we get

E [OV] =
ρ2

1− ρ
, E [LJ] =

ρ

2(1− ρ)
, E [DF] =

ρ(2ρ + 1)
2(1− ρ)

. (5)

For M/D/1

E [OV] = E [LJ] =
ρ2

2(1− ρ)
, E [DF] =

ρ2

1− ρ
. (6)

4.3 Shortest Job First (SJF)

We start with considering large jobs. Under SJF it is only possible that a job
suffers from a large job if upon arrival there is a job currently in service and the
remaining service time S′ is equal or greater than that of the arriving job. Thus,

E [LJ] = ρ · P{S′ ≥ S} = ρ ·
(

1−
∫ ∞

0

fS′(x) (1− FS(x)) dx

)
.

Similarly as for FCFS this simplifies to ρ/2 for M/M/1. For equal service times
SJF degenerates to FCFS and the expected number of large jobs and the ex-
pected discrimination frequency for M/D/1 under SJF equal that under FCFS.

Overtaking occurs under SJF if an arriving job is smaller than some job in
the queue. Compared to FCFS and LCFS an additional difficulty arises, because
SJF is a job size (service time) based scheduling policy implying that the amount
of overtaking depends on the job size. The conditional expected waiting time for
a job of size t is given by Phipp’s formula

E [W (t)] =
λE

[
S2

]
2 (1− β(t))2

, β(t) =
∫ t

0

λxfS(x)dx,

where β(t) is the cumulative utilization of jobs with service time t or less. During
this waiting time λE[W (t)] new jobs arrive (again cf. [3, 4, 7, 9]), and the proba-
bility for a job smaller than t is given by the distribution function FS(t). Now,
we can uncondition to derive the overall expected number of overtaking:

E [OV] = λ

∫ ∞

0

E [W (t)] fS(t)FS(t)dt

= λ

∫ ∞

0

λE
[
S2

]
fS(t)FS(t)

2 (1− β(t))2
dt

= λ

∫ ∞

0

λE
[
S2

]
fS(t)FS(t)

2
(
1−

∫ t

0
λxfS(x)dx

)2 dt

=
λ2E

[
S2

]
2

∫ ∞

0

fS(t)FS(t)(
1−

∫ t

0
λxfS(x)dx

)2 dt.
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Combining overtaking and large jobs,

E [DF] =
λ2E

[
S2

]
2

∫ ∞

0

fS(t)FS(t)(
1−

∫ t

0
λxfS(x)dx

)2 dt

+ ρ ·
(

1−
∫ ∞

0

fS′(x) (1− FS(x)) dx

)
. (7)

For M/M/1 the above formula for E[OV] yields

E [DF] =
ρ

2
+ ρ2

∫ ∞

0

(µe−µt)(1− e−µt)(
1−

∫ t

0
λxµe−µxdx

)2 dt. (8)

This expression only depends on the utilization ρ (which can be checked by an
appropriate change of variables) and not on the specific values of λ and µ, which
is not true for expected waiting times. Intuitively, it is clear that the quantity
of interest is time-scale independent, and multiplying arrival and service rate by
the same factor amounts to a change in the time scale. Hence, for M/M/1 the
expected discrimination frequency under all of the three scheduling policies only
depends on ρ. These results are illustrated in figure 1.

Fig. 1. Expected Discrimination Frequencies for M/M/1

5 Simulation Results

One may conclude that there is a clear ranking for fairness of FCFS, LCFS and
SJF, where SJF is most fair and LCFS is least fair. But we have neither yet taken
justice into account nor evaluated the expected discrimination frequency for
specific non-exponentially distributed service times. Since analytical expressions
are not available for the variance, we have estimated it via simulation.
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We performed independent runs, where the observation period for each run was
of length (=number of served jobs) 107 to form 99% confidence intervals with
a relative half width less than 1%. Hence, the simulated values should be very
accurate. LCFS yields both largest expected discrimination frequency and largest
variance, and thus we can neglect it in our comparison.

5.1 Exponentially Distributed Service Times

Figure 2 shows the standard deviation and the product of the expected discrimi-
nation frequency and the standard deviation for M/M/1 in the range of ρ > 0.7,
where this product is significantly different for FCFS and SJF.

Now, we get a different impression of the fairness and justice of FCFS and SJF
in M/M/1 queues. It is clear that in case of using variance instead of standard
deviation the curves for FCFS and SJF differ even more. Simulations for Erlang
distributed service times yield similar pictures as above. Obviously, the justice
of SJF is less than the justice of FCFS, although the expected discrimination
frequency is greater under FCFS. This directly implies that in applications where
equal treatment of customers or jobs is most important, FCFS may be preferred.

Fig. 2. Justice related measures for M/M/1

5.2 Pareto Distributed Service Times

Consider Pareto distributed service times with density and distribution function

f(x) =
aba

xa+1
, F (x) = 1−

(
b

x

)a

a > 0, x > b.

The expectation only exists for a > 1, the second moment only for a > 2 :

E[X] =
ab

a− 1
, a > 1; E[X2] =

ab2

a− 2
, VAR[X] =

ab2

(a− 2)(a− 1)2
, a > 2.
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Unfortunately, for Pareto distributed service times, evaluation of the formerly de-
rived analytical expressions requires computations of the transcendental Lerch-
Phi function [5, 6, 15]. Thus, we utilize simulation. It can be easily checked that
the expected discrimination frequency in M/Pareto/1 queues does not depend
on the location parameter b, but only on the scale parameter a. Therefore, we
can restrict to b = 1, a special version of the Pareto distribution. We present
results for two values of a, namely a = 10 and a = 2. Note, that in the first case,
the variance of the Pareto distribution is very small, whereas in the second case,
the variance even does not exist.

Figures 3–5 show the expected discrimination frequency for a = 2 and a = 10,
and the justice related measures, i.e. the discrimination frequency’s standard de-
viation and the product of the expected discrimination frequency and its stan-
dard deviation, both for a = 2 and a = 10.

Fig. 3. Expected discrimination frequency for a = 10 (left) and a = 2 (right)

Fig. 4. Justice related measures for a = 10
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Fig. 5. Justice related measures for a = 2

For a = 10 we observe that SJF is more unfair than FCFS in terms of all
the three measures, which is an important difference to the M/M/1 system.
One could conclude, that FCFS should be taken as more fair than SJF for
M/Pareto/1 queues, but the three measures for a = 2, where the variance of the
Pareto distributed service time does not exist, take us to a different conclusion.

In this case, as for M/M/1 queues, SJF is more fair regarding only the
expected discrimination frequency and FCFS is more fair regarding the stan-
dard deviation of the expected discrimination frequency. In opposite to M/M/1
queues, the product of the expected discrimination frequency and its standard
deviation is less for SJF than it is for FCFS.

Obviously, it is not clear, which scheduling policy should be taken in general.
When designing a fair system, the scheduling policy should be chosen with regard
to the specific involved distributions and its parameters. One cannot generally
say, that if fairness or justice is the main system design goal, then take policy x
or y. This is an important difference to minimizing waiting or response times as
the main goal. In this case, it is well known, that one has to take SJF.

6 Conclusion and Further Research

We have derived analytical expressions for the expected discrimination frequency
in M/M/1, M/D/1 and M/GI/1 queues under FCFS, LCFS and SJF. For Pareto
distributed service times the discrimination frequency has been evaluated by
simulation. Simulation results for the standard deviation and for weighting the
expected discrimination frequency by its standard deviation have been provided.

The results indicate, that LCFS is the least fair of the considered policies. In
M/M/1 queues FCFS is less fair than SJF when only accounting for expected
discrimination frequency, whereas FCFS is more fair than SJF when additionally
accounting for justice. In M/Pareto/1 queues a fairness ranking of scheduling
policies depends on the specific distribution parameters. Our results particularly
imply that in system design the decision on how to schedule customers has to
be made very carefully and should consider specific system parameters.
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Some refinements may improve our fairness measure by a differentiated view on
the severity of discriminations. It may be reasonable to rate a discrimination in
such a way, that the first overtaking is weighted less than the second overtaking,
the second overtaking weighted less than the third overtaking and so on. Besides,
overtaking by very much smaller jobs may be weighted less than overtaking by
jobs with nearly the same or even larger service requirements. Discriminations
due to waiting for large jobs may be weighted by the job size.

Comprehensive simulation studies for non-preemptive and preemptive schedul-
ing in G/G/c queues are part of current research. Further analytical investiga-
tions for M/GI/1 and more general models are particularly desirable, e.g. deriv-
ing expressions for the variance and the standard deviation or for the distribution
of discrimination frequency. Another important topic is to extend fairness mea-
sures in general, and in particular the discrimination frequency based fairness
measure, to networks of queues.
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