
Exposition and Streamlined Formulation of Adaptive

Explicit-Implicit Tau-Leaping∗

Werner Sandmann

January 2009

Abstract

The adaptive explicit-implicit tau-leaping method with automatic tau selection
[Y. Cao, D. T. Gillespie and L. R. Petzold, J. Chem. Phys., 126(22):224101 (2007)]
is a flexible algorithm for accelerated stochastic simulation of chemically reacting
systems. It combines the advantages of different simulation schemes and is partic-
ularly useful when a system changes its dynamical behavior over time in the sense
that it behaves well in some time periods but possesses stiffness in other time pe-
riods. However, the ingredients necessary to fully understand and implement the
algorithm are spread over several papers, not always consistent in terminology and
notation, which considerably hampers and possibly even prevents accessibility and
widespread practical use. We present a streamlined description of the algorithm us-
ing a unified terminology and notation and introduce significantly simplified versions
of two major ingredients, namely the step size selection and the switching mecha-
nism between the sub-algorithms. This should be greatly helpful for researchers not
yet familiar with but interested in tau-leaping methods as well as for practitioners
in actually implementing and applying the method.

1 Introduction and Background

Stochastic modeling of chemically reacting systems has become prevalent in physics, chem-

istry and biology since the stochastic nature of such systems has been more and more often

demonstrated [2, 5, 14, 22, 23, 37, 39]. It is evident that the system dynamics are well

∗Technical Report, Department of Information Systems and Applied Computer Science, University of
Bamberg, Germany

1



represented by continuous-time Markov chains (CTMCs) governed by the chemical mas-

ter equation (CME). System analysis is frequently performed by stochastic simulation,

either by stochastically exact methods such as Gillespie’s [15, 16] stochastic simulation

algorithm (SSA) or by approximate accelerated simulation algorithms such as tau-leaping,

which exists in diverse versions [1, 8, 9, 11, 12, 18, 19, 20, 26, 30, 29, 38, 40].

The adaptive explicit-implicit tau-leaping method with automatic tau selection [8], which

is considered in this paper, combines the SSA with (Poisson) explicit tau-leaping [18],

implicit tau-leaping [30], and recent improvements in the step size selection procedure for

the tau-leaping methods [7, 9]. The goal is to exploit the advantages and at the same

time to overcome major drawbacks of either method. In order to facilitate accessibility,

implementation and practical application of the algorithm, we present it in a unified

manner. We provide a streamlined formulation and clarify important ingredients of the

algorithm. Significantly simplified versions are presented for the step size (tau) selection

procedure and the switching mechanism that dynamically chooses either SSA, explicit, or

implicit tau-leaping in the course of simulation.

The organization of the paper is as follows. In the remainder of the present section,

we provide the mathematical background of stochastic chemical kinetics, the CME, and

stochastic simulation. In Section 2, the general principles and an algorithmic framework

for multi-step simulation approaches is given, followed by brief descriptions of explicit and

implicit tau-leaping. Section 3 addresses the tau selection and contains our unified version,

which basically integrates the tau selection for the explicit and the implicit version in such

a way that both can be taken as special cases of a more general formula. In Section 4,

a concise algorithmic description of the complete adaptive scheme is given, including

our simplification of the switching mechanism. Finally, Section 5 concludes the paper

discusses topics of further research.

1.1 Stochastic Chemical Kinetics

Consider a well-stirred mixture of d ∈ N+ molecular species S1, . . . , Sd interacting through

M ∈ N+ chemical reaction channels R1, . . . , RM in a thermally equilibrated system of fixed

volume, where each reaction channel is defined by a corresponding stoichiometric equation

Rm : sm1Sm1 + · · ·+ smrSmr

cm−→ smr+1Smr+1 + · · ·+ sm`
Sm`

, r, ` ∈ N0, r ≤ ` (1)

with an associated stochastic rate constant cm. Mathematically, the stoichiometry is de-

scribed by the state change vector vm = (vm1, . . . , vmd), where vmk is the change of

molecules of species Sk due to Rm. At any time t ≥ 0 the system state is given by a

discrete d-dimensional random vector X(t) = (X1(t), . . . , Xd(t)), where a discrete ran-

dom variable Xk(t) describes the number of molecules of species Sk present at time t. The

system’s state space is the set X ⊆ Nd
0 of all possible system states and the conditional
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transient (time dependent) probability that the system is in state x ∈ X at time t, given

that the system starts in an initial state x0 ∈ X at time t0, is denoted by

p(t)(x) := p(t)(x|x0, t0) = P (X(t) = x | X(t0) = x0) . (2)

The reaction rate for each Rm is given by a state dependent propensity function αm,

where αm(x)dt is the conditional probability that a reaction of type Rm occurs in the

time interval [t, t+ dt), given that the system is in state x at time t. That is

αm(x)dt = P (Rm occurs in [t, t+ dt) | X(t) = x) . (3)

The propensity function is simply given by cm times the number of possible combinations

of the required reactants and thus computes as

αm(x) = cm ·
mr∏
j=1

(
xmj

smj

)
, (4)

where xmj
is the number of molecules of species Smj

present in state x, and smj
is the

stoichiometric coefficient of Smj
according to (1). Because at any time the system’s future

evolution only depends on the current state, (X(t))t≥0 is a time-homogeneous CTMC.

Therefore, given that the system starts in an initial state x0 ∈ X at time t0, the system

dynamics in terms of the state probabilities’ time derivatives are described by the CME

∂p(t)(x)

∂t
=

M∑
m=1

(
αm(x− vm)p(t)(x− vm)− αm(x)p(t)(x)

)
, (5)

well known as the Kolmogorov differential equations in the general theory of Markov

processes. Stochastic chemical kinetics via Markov chains governed by the CME can be

traced back to the work by Delbrück [13] in the early 1940s and subsequent work by

Singer [36] and Bartholomay [3], see, e.g., [4, 24, 39] for historical surveys. It is important

to note that the CME provides differential equations for the state probabilities rather

than for molecular concentrations as in classical mass action kinetics and that the Marko-

vian approach is a generalization of the traditional deterministic approach rather than an

alternative. In fact, the deterministic ODEs based on the law of mass action (LMA) are

the special case of the CME in the thermodynamic limit, when the number of molecules

and the volume approach infinity but the concentrations remain finite [21, 25]. In gen-

eral, the accordance of the CME with the theory of thermodynamics has been formally

shown by Gillespie [15, 16, 17]. For small numbers of molecules, deterministic models

are inappropriate and Markovian modeling is inevitable in order to properly capture the

stochastic nature of the system.

1.2 Stochastic Simulation

In principle, the CME may be solved numerically via ODE solvers. However, though a

lot of advanced ODE solvers are available and despite a considerable amount of work
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spent on adapting Markov chain solution techniques from other domains, there are still

many situations where the underlying system is too complex and the CME is intractable

by such approaches. Stochastic simulation constitutes an alternative – often the only

viable – approach and is in widespread use for more than three decades. Algorithms

for stochastically exact trajectory generation of the underlying continuous-time Markov

chain were proposed by Bortz et. al. [6] and similarly by Gillespie [15, 16] who formulated

it in the context of stochastic chemical kinetics and the CME. It is today famous, often

referred to as the stochastic simulation algorithm (SSA) and works as follows:

Init t := t0, x := x0 and tend

while t < tend

1. Compute all αm(x) and α0(x) := α1(x) + · · ·+ α
M

(x);

2. Generate two random numbers u1, u2, uniformly distributed on (0, 1);

3. Generate time τ to next reaction, exp. distributed with mean 1/α0(x):

τ := − ln(u1)/α0(x);

4. Determine reaction channel Rm :

m := min{k : α1(x) + · · ·+ αk(x) > u2α0(x)};

5. Set t := t+ τ ; x := x+ vm.

Hence, one such simulation run generates a realization of a Markov chain trajectory and

repeated runs provide a statistical sample from which properties such as means, variances

or higher moments of the numbers of all molecular species at any time and even complete

probability distributions, all along with confidence intervals, can be obtained by statistical

analysis. The SSA is particularly appealing for its simplicity as well as for the feature of

stochastic exactness. Unfortunately, the latter one is also one of the major drawbacks.

In particular, since it simulates every single reaction, the SSA is highly inefficient for

stiff systems and accelerated stochastic simulation algorithms become desirable. One

such approach is tau-leaping which aims at advancing the simulation by larger time steps

and performs a corresponding approximate trajectory generation based on combining

stochastic simulation with some ODE solver principles.

2 Tau-Leaping

For m = 1, . . . ,M denote by Km the random variable describing the number of times that

a reaction of type Rm occurs in the time interval interval [t, t+ τ). Then

X(t+ τ) = X(t) +
M∑

m=1

vmKm. (6)
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Accordingly, a general algorithmic framework for approximate trajectory generation where

the simulation is advanced by pre-defined time steps instead of simulating every single

reaction is as follows:

Init t := t0, x := x0 and tend;

while t < tend

1. Compute all αm(x) and α0(x) := α1(x) + · · ·+ α
M

(x);

2. Choose a step size τ according to some appropriate rule;

3. Compute suitable estimates k̂1, . . . , k̂M for K1, . . . , KM ;

4. Set t := t+ τ and update the system state x according to (6).

If X(t) = x and all propensity functions are constant in the time interval [t, t + τ), the

random variable Km is Poisson distributed with mean ταm(x), that is for k ∈ N0 :

P (Km = k) =
(ταm(x))k exp(−ταm(x))

k!
, m = 1, . . . ,M. (7)

With tau-leaping, it is assumed that all propensity functions are approximately constant

in [t, t+ τ), referred to as the leap condition that needs to be formally specified. Handling

all propensity functions as if they were indeed constant gives an appropriate rule for Step 2

of the above algorithm. An essential difference between explicit and implicit tau-leaping

lies in computing the estimates k̂1, . . . , k̂M . Besides, the choice of the step size τ differs.

2.1 Explicit Tau-Leaping

Explicit tau-leaping proceeds by simply computing the estimates k̂1, . . . , k̂M as realizations

of the corresponding Poisson random variables. Obviously, (6) then becomes an explicit

deterministic expression for X(t+τ) as a function of x and obeys similarities to the explicit

(forward) Euler method for solving systems of deterministic ODEs. More specifically, if

the number of molecules of each species is large and the Poisson random variates are

approximated by their means, (6) becomes the explicit Euler formula for the deterministic

reaction rate equations. However, explicit ODEs solvers become instable for stiff ODE

systems, and the same holds for explicit tau-leaping in the case of stiff Markovian systems.

2.2 Implicit Tau-Leaping

Implicit tau-leaping is inspired by the implicit (backward) Euler method which is known to

be well suited for stiff ODE systems. Unfortunately, a completely implicit version of tau-

leaping would require to generate random variates according to the Poisson distribution
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with means ταm(X(t + τ)),m = 1, . . . ,M, which depend on the unknown random state

X(t+τ). Instead, a partially implicit version is considered. Rewriting the random variables

Km as Km − ταm(X(t)) + ταm(X(t)) and evaluating all propensity functions in the last

term at X(t+ τ) instead of X(t) yields

X(t+ τ) = X(t) +
M∑

m=1

vm

(
Km − ταm(X(t)) + ταm(X(t+ τ))

)
. (8)

Then, in a first step, all Km are approximated by computing realizations of Poisson dis-

tributed random variables as with explicit tau-leaping. Once these realizations, denoted

by k1, . . . , kM , have been generated and given X(t) = x, (8) becomes an implicit determin-

istic equation that is solved by, e.g., Newton iteration. Typically, the resulting estimate

x̂(t + τ) for X(t + τ) is not integer-valued. Therefore, in practice, the estimates to be

used for the updating in Step 4 of the above algorithm are obtained by rounding the

corresponding term in (8) to the nearest integer. That is

k̂m = round
(
km − ταm(x) + ταm(x̂(t+ τ))

)
. (9)

It has been empirically demonstrated that implicit tau-leaping significantly speeds up the

simulation of some stiff systems. As an alternative to (8), motivated by the properties of

the trapezoidal rule for solving systems of deterministic ODEs, [9] proposed to substitute

(8) by the trapezoidal tau-leaping formula

X(t+ τ) = X(t) +
M∑

m=1

vm

(
Km −

τ

2
αm(X(t)) +

τ

2
αm(X(t+ τ))

)
, (10)

which sometimes yields higher accuracy. However, it depends on the specific problem at

hand whether (8) or (10) should be preferred.

3 Tau Selection

As the accuracy of both explicit and implicit tau-leaping relies on the leap condition of

approximately constant propensity functions in the time interval [t, t+ τ), it is important

to select an appropriate step size τ. First of all, the leap condition must be formally

specified, that is, it must be mathematically defined what is meant by approximately

constant propensity functions. Accordingly, a selection procedure must be developed

providing a step size τ preferably much larger than with the SSA and efficiently computed

such that the computational overhead is small and does not spoil the potential simulation

acceleration compared to the SSA. Besides, it is obviously possible that the updating

step taken without care can yield a negative number of molecules because certain critical

reactions may exhaust one or more of its reactants. Such a tentative updating step must
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be rejected and in order to be efficient such rejections should be rare. In practice, this

is handled by keeping the probabilities of critical reactions small. A reaction is taken as

critical in state x if it exhausts at least one of its reactants when it occurs nc times, where

nc is a threshold and constitutes a parameter that has to be specified in the algorithm

implementation. Accordingly, we can define the set of indices of critical reactions:

C :=

{
m ∈ {1, . . . ,M} : αm(x) > 0 ∧ min

i:vim<0

⌊
xi

|vim|

⌋
< nc

}
. (11)

The tau selection procedure has been successively improved over the years. In early

versions the goal was to assure the leap condition by bounding for every reaction the

expected change in its propensity function during a time step of size τ by εα0(x), where

ε > 0 is an error control parameter. According to [19] the largest value of τ that satisfies

this condition can be obtained by bounding the mean and the standard deviation of

the expected change in the propensity function of each reaction by εα0(x). It was also

recognized that it is more appropriate to bound the change in the propensity function

individually for every reaction Rm by εαm(x), which corresponds to bounding the relative

changes in each propensity function by ε. Strictly applied, this implies that τ becomes zero

and the simulation does not advance at all if any of the propensity functions evaluated at

state x is very small. But, as noted in [7], if αm changes, then according to Equation (4) it

changes by at least cm such that a change of less than cm does not make sense. Therefore,

the change in αm can be bounded by the maximum of εαm(x) and cm. Furthermore, [7]

presented a procedure that approximately enforces this bound, which is much faster than

estimating the mean and the standard deviation according to [19]. Essentially, instead of

directly considering propensity functions, the relative changes in populations of certain

molecular species are bounded such that the relative changes in the propensity functions

will be all approximately bounded by ε. The details of the derivation can be found in [7].

With implicit tau-leaping for stiff systems the step size can be often chosen much larger

than suggested by [7] when neglecting some of the species [8]. In the following, we present

this current state of the art in tau selection for explicit and implicit tau-leaping in an

integrated manner and further streamline some ingredients, which results in a compact

form that unifies and significantly simplifies the formulae in [7, 8, 9].

In either case, it suffices to consider reactant species. Denote by R the set of indices of

all reactant species and define for all i ∈ R and an arbitrary setM of indices of reactions

µ̂i,M(x) :=
∑

m∈M

vmiαm(x), σ̂2
i,M(x) :=

∑
m∈M

v2
miαm(x). (12)

Then a step size dependent on M can be expressed by

τM = min
i∈R

(
max(εxi/gi(x), 1)

|µ̂i,M(x)|
,
max(εxi/gi(x), 1)2

|σ̂2
i,M(x)|

)
(13)
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where gi is a function defined in order to guarantee that bounding the relative change of

states is sufficient for bounding the relative change of propensity functions. This function

gi appears rather complicated in [7] as it involves a couple of case differentiations. We

have reasonably simplified it and present it in a quite artless closed form. Denote by h(i)

the highest order of reactions in which species Si appears as reactant and by n(i) the

maximum number of Si molecules required by any of the highest-order reactions. Then

gi(x) = h(i) +
h(i)

n(i)

n(i)−1∑
j=1

j

xi − j
. (14)

The step size depends on M only through µ̂i,M(x) and σ̂2
i,M(x), and the only difference

in the step size selection for explicit and implicit tau-leaping is in the choice ofM which

defines exactly those reactions that are considered in the step size selection.

For explicit tau-leaping, these are simply the non-critical reactions. Hence,

τ (expl) = τ{1,...,M}\C. (15)

For implicit tau-leaping, the principle of the partial equilibrium assumption (see, e.g.,

[27, 28, 32, 33, 34, 35] for detailed descriptions) is exploited. As it is difficult to identify

all reactions that are in partial equilibrium, only reversible reactions are checked for partial

equilibrium, which means that their propensity functions evaluated at state x must be

approximately equal. More specifically, [8] assume that two reactions Rm1 , Rm2 where Rm1

reverses Rm2 and vice versa are in partial equilibrium if the difference of their propensity

functions, both evaluated at state x, is less than δ times the minimum of the propensity

functions, where δ is a parameter to be specified in the algorithm implementation:

|αm1(x)− αm2(x)| ≤ δmin(αm1(x), αm2(x)), δ > 0. (16)

Then in the step size selection for implicit tau-leaping only reactions that are neither

critical nor in partial equilibrium (for reversible reactions) are considered. Hence, denoting

by E the set of indices of (reversible) partially equilibrated reactions, we have

τ (impl) = τ{1,...,M}\C\E . (17)

4 Adaptive Tau-Leaping

In practice, when a system has to be simulated it is not always clear in advance whether

or not it possesses stiffness. Quite often, this even changes along the trajectory, i.e. in

some time periods the system ”behaves well” but in other periods it appears highly stiff.

In some periods it might be even the case that neither explicit nor implicit tau-leaping

provide an acceleration compared to SSA if the leap condition implies a step size τ that is
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so small that the computational overhead eliminates the speed-up. Then, of course, SSA

should be executed. This reasoning motivates an adaptive stochastic simulation algorithm

that switches between the methods depending on which of them is most efficient in the

current region.

In state x, the expected time to the next reaction is 1/α0(x). Consequently, if a candidate

step size is less than na/α0(x) it is considered inefficient and nb single reactions are

simulated according to the standard direct method, where both na and nb are parameters

to be specified. With adaptive tau-leaping, at each updating step during the simulation

either explicit or implicit tau-leaping is chosen dynamically. Hence, a decision rule is

necessary. Adaptive tau-leaping applies the simple rule that the system is considered to

be stiff if the tentative step size for explicit tau-leaping is more than nd times smaller

than the tentative step size for implicit tau-leaping, which introduces another parameter

to be specified.

Now, we have all ingredients we need for formulating an algorithm that, given state

x at time t and step size selection procedures for explicit and for implicit tau-leaping,

dynamically chooses one of the two methods with an appropriate step size and resorts to

SSA if both step sizes are too small to provide simulation acceleration. Our formulation

here streamlines that in Section 4 of [8] and is much more concise but equivalent to it.

1. Define the set C of indices of critical reactions according to Equation (11);

2. Compute candidate step sizes τ (expl), τ (impl) for explicit and implicit tau-leaping;

3. If τ (expl) < na/α0(x) ∧ τ (impl) < na/α0(x)

then simulate nb single reactions, update t and x, and goto 1;

4. Compute candidate step size τ̃ as expected time to next critical reaction:

Generate τ̃ ∼ Exponential

(∑
m∈C

αm(x)

)
;

5. If τ (expl) > min(τ (impl)/nd; τ̃)

then use explicit tau-leaping with τ := min(τ (expl); τ̃);

else use implicit tau-leaping with τ := min(τ (impl); τ̃);

6. If x+
∑

m k̂mvm has negative components

then reduce τ (expl) and τ (impl), and goto 3.

Note that the last step is required because there is still a positive probability of generating

negative population sizes though this probability should be small for appropriately chosen

parameters. Hence, altogether the step size selection procedure can be interpreted as an

acceptance-rejection method. The inventors more specifically reduce τ (expl) and τ (impl) by
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half, but this seems rather arbitrary and may be subject to changes. In any case, the

reduction factor is one more parameter to be specified in the algorithm implementation.

5 Conclusion and Discussion

We have presented a unified description of the adaptive explicit-implicit tau-leaping

method with automatic tau selection. Thereby, some inconsistencies in earlier papers

have been clarified, and simplified versions of the definition of the function gi which is

central for the tau selection and of the switching mechanism for adaptively choosing either

SSA, explicit or implicit tau-leaping have been provided. We believe that this contributes

to the accessibility of the method by researchers and practitioners and facilitates practical

implementation of the algorithm. Therefore, also some necessary theoretical background

has been briefly addressed in order to make the description in some sense self-contained

and the algorithm understandable without consulting too much other material.

A couple of issues for further investigation arise quite naturally, most of which are con-

cerned with concrete implementation details or related practical as well as theoretical

studies of the algorithm’s efficiency and the robustness of corresponding estimators. In

the inventing papers it has been empirically demonstrated that tau-leaping can signif-

icantly accelerate the simulation of chemically reacting systems. The consistency and

stability is formally addressed in [31]. However, in particular the choice of the many pa-

rameters calls for systematic studies. First of all, the choice of ε, δ, na, nb, nc, nd is currently

rather informal and they are specified heuristically. The inventors state that they take

”normally” or ”usually” ε in the range 0.03 to 0.05, na = 10, nb = 10, if the previous step

uses implicit tau-leaping and nb = 100 otherwise, nc = 10, nd = 100 and δ ”around” 0.05.

This seems to rely mainly on empirical comparisons of tau-leaping with SSA. Obviously,

in practically relevant cases of huge models, such a comparison will not be feasible as the

SSA does not provide accurate results in reasonable time. Similarly, the statistical accu-

racy of the estimates was most often only shown by comparison to SSA. The first formal

approach given in [10] considers the Kolmogorov distance, the histogram distance and the

newly introduced self distance for probability measures. Another issue of interest is how

the probability of rejecting a candidate step size depends on the parameters mentioned

above. As mentioned before, the reduction factor in the case of negative components of

the tentative state vector is proposed as 2 to reduce the candidate time steps by half, but

this should be also further investigated. In addition to and in support of these issues,

it would be particularly desirable to see the algorithm in action, working on practically

relevant models from, e.g., systems biology or neuroscience.
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