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Multistep Methods for Markovian Event Systems
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Abstract

We consider multistep methods for accelerated trajectory generation in
the simulation of Markovian event systems, which is particularly useful in
cases where the length of trajectories is large, e.g. when regenerative cycles
tend to be long, when we are interested in transient measures over a finite
but large time horizon, or when multiple time scales render the system stiff.

1. Markovian Event Systems

Markovian models are widespread for modeling stochastic phenomena in a variety
of domains. Typically, the models are given in a high-level description such as
queueing networks, Petri nets, stochastic automata networks, or sets of coupled
chemical reactions, amongst many others. In principle, they can be mapped to
the stochastic process level in that they are uniquely defined by an initial prob-
ability distribution and a generator matrix. But in practice models tend to be
very large. The size of the state space typically increases exponentially with the
number of system components or, in other words, the model dimensionality. This
effect is known as state space explosion and often causes models to be numerically
intractable. One major advantage of simulation is that the state space need not
be explicitly enumerated. Thus, a model description that reflects the event sys-
tem character of the model is well suited, in particular for simulation purposes.
In almost all relevant cases the structure of the underlying Markov chain is not
arbitrary but state transitions correspond to certain events where similar events
essentially have the same effect. Hence, they can be taken as specific discrete event
systems [4], which provides a structured model description on an intermediate lev-
el of abstraction. For Markovian models the events need not be scheduled and the
setting of Markovian event systems is also useful for numerical solution [6].

In order to describe a Markovian event system we have to define its state
space and to specify all relevant events that may trigger state transitions. It
is necessary to define under which conditions a certain event may occur, how it
affects the system state and at which rate it occurs. Diverse formal specifications
of Markovian event systems can be found in the literature. Here, we adopt the
transition class formalism of [10]. Without loss of generality we assume that
the state space is S ⊆ N

d. All events that trigger state transitions are classified
according to their effects which yields transition classes. Formally, a transition
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class is a triplet C = (U , u, α) where U ⊆ N
d is the source state space containing

all states in which the event or the corresponding state transition, respectively,
is possible, u : U → N

d is the destination state function giving the new state
u(x) ∈ N

d according to the state transition when the event occurs in state x ∈ U ,
and α : U → R is the transition rate function giving the rate α(x) ∈ R at which the
event or transition occurs in state x ∈ U . Any Markovian model can be uniquely
described by a set of such transition classes together with an initial distribution.

As a queueing network example consider a d-node tandem network with ex-
ponentially distributed service times where arrivals occur only at the first node
according to a Poisson process with arrival rate λ. The service rates are denoted
by μ1, . . . , μd and the buffer capacities by ν1, . . . , νd. Hence, the different types of
transitions are arrivals at node 1, moves from node i to node i + 1, 0 < i < d and
departures from node d. Therefore, d + 1 transition classes are sufficient:

C1 = (U1, u1, α1), where

• U1 = {(x1, . . . , xd) ∈ N
d : x1 < ν1},

• u1 : N
d → N

d, x �→ u1(x) = (x1 + 1, x2, x3, . . . , xd),
• α1 : N

d → R, x �→ α1(x) = λ;

Ci = (Ui, ui, αi), i = 2, . . . , d, where

• Ui = {(x1, . . . , xd) ∈ N
d : xi−1 > 0, xi < νi},

• ui : N
d → N

d, x �→ ui(x) = (x1, . . . , xi−2, xi−1−1, xi+1, xi+1, . . . , xd),
• αi : N

d → R, x �→ αi(x) = μi−1;

Cd+1 = (Ud+1, ud+1, αd+1), where

• Ud+1 = {(x1, . . . , xd) ∈ N
d : xd > 0},

• ud+1 : N
d → N

d, x �→ ud(x) = (x1, . . . , xd−1, xd − 1),
• αd+1 : N

d → R, x �→ αd(x) = μd;

It becomes clear that state-dependent rates can be easily incorporated just by
corresponding transition rate functions. Also the state space may be infinite,
which is then implicitly given by dropping the restrictions on the source state
spaces. Phase-type distributed interarrival and service times can be modeled by
properly defined transition classes for any change from one to the next phase.

As a chemical reaction set consider the enzyme-catalyzed substrate conversion

E + S
c1�
c2

ES
c3⇀ E + P (1)

where c1, c2, c3 denote associated reaction rate constants such that the correspond-
ing state-dependent reaction rate computes as ci times the number of possible
combinations of the required reactants. States of corresponding Markovian mod-
els are similarly defined as states of a queueing network, namely by the number
of molecules of each species. If we successively number the species E, S, ES, P , a
state x = (x1, x2, x3, x4) expresses that there are x1 E-molecules, x2 S-molecules,
x3 ES-molecules, and x4 P -molecules. Then the transition classes corresponding
to the stoichiometric equation (1) are the following.
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C1 = (U1, u1, α1), where

• U1 = {(x1, . . . , x4) ∈ N
4 : x1, x2 > 0},

• u1 : N
4 → N

4, x �→ u1(x) = (x1 − 1, x2 − 1, x3 + 1, x4),

• α1 : N
4 → R, x �→ α1(x) = c1x1x2;

C2 = (U2, u2, α2), where

• U2 = {(x1, . . . , x4) ∈ N
4 : x3 > 0},

• u2 : N
4 → N

4, x �→ u2(x) = (x1 + 1, x2 + 1, x3 − 1, x4),

• α2 : N
4 → R, x �→ α2(x) = c2x3;

C3 = (U3, u3, α3), where

• U3 = {(x1, . . . , x4) ∈ N
4 : x3 > 0},

• u3 : N
4 → N

4, x �→ u3(x) = (x1 + 1, x2, x3 − 1, x4 + 1),

• α3 : N
4 → R, x �→ α3(x) = c3x3.

Obviously, compared to a desription via generator matrices the transition class
formalism for Markovian event systems provides a huge gain in storage require-
ments and is also well suited for immediate implementation. An important point
regarding computer implementations is that the state space and the generator ma-
trix of the underlying Markov chain is implicitly coded by logical predicates and
simple functions that are both easy to implement.

2. Multistep Methods

Simulation of Markovian models is straightforward. It essentially consists of gen-
erating trajectories according to the Markov chain dynamics. In discrete-time the
next state is chosen according to the transition probabilities. In continuous-time
the same is done according to the jump probabilities after generating the exponen-
tially distributed state holding time. If the interest is in steady-state distributions,
generation of holding times can be skipped even in the continuous-time case by
simulating the uniformized discrete-time Markov chain instead but for transient
measures trajectories of the CTMC are generated. However, if the time horizon
is large or the system is stiff corresponding to multiple time scales this becomes
exceedingly slow such that accelerated trajectory generation is desirable.

The basic idea of multistep methods is to accelerate the trajectory generation
via advancing the simulation by appropriately chosen time steps rather than sim-
ulating each single event explicitly. Multistep simulation methods for stochastic
models have been proposed in several contexts, including computer and commu-
nication networks [1, 7, 8] that need not be Markovian. Here, we cast multistep
simulation approaches for Markovian networks in the setting of Markovian event
systems, which is inspired by approaches in chemical physics [2, 5, 9]. where state
spaces are potentially infinite, the reaction system typically evolves on multiple
time scales.
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Let C be the number of transition classes. For i = 1, . . . , C define vi = ui(x)−x
and denote by Ki the random variable describing the number of times that an
event/transition according to Ci occurs in the time interval [t, t + τ). Then

X(t + τ) = X(t) +
C∑

i=1

viKi. (2)

Accordingly, a general algorithmic framework for approximate trajectory genera-
tion where the simulation is advanced by pre-defined time steps instead of simu-
lating every single event is as follows:

Init t := t0, x := x0 and tend;

while t < tend

1. Compute all αi(x) and α(x) := α1(x) + · · · + α
C
(x);

2. Choose a step size τ according to some appropriate rule;
3. Compute suitable estimates k̂1, . . . , k̂C for K1, . . . ,KC ;
4. Set t := t + τ and update the system state x according to (2).

If X(t) = x and all transition rate functions are constant in [t, t + τ), the
random variable Ki is Poisson distributed with mean ταi(x), that is for k ∈ N0 :

P (Ki = k) =
(ταi(x))k exp(−ταi(x))

k!
, i = 1, . . . , C. (3)

Note that even state-independent transition rate functions are not necessarily con-
stant over time but some can vanish if the corresponding transition is not any
longer possible in a state that has been reached in the meantime. Handling all
transition rate functions as if they were indeed constant gives an appropriate rule
for Step 2 of the above algorithm, which then yields an approximate scheme for
trajectory generation. The quality of the approximation relies on the validity of
the assumption of approximately constant transition rate functions, which must
be formally specified and can then be used to control the approximation error.

Direct multistepping computes k̂1, . . . , k̂M as realizations of the corresponding
Poisson random variables. Obviously, (2) then becomes an explicit deterministic
expression for X(t + τ) as a function of x and obeys similarities to the explic-
it (forward) Euler method for solving systems of ordinary differential equations
(ODEs). If the state components xi are large and the Poisson random variates
are approximated by their means, (2) becomes the explicit Euler formula for the
deterministic event rate equations. Therefore, direct multistepping is also referred
to as explicit tau-leaping in the context of chemically reacting systems [5, 12].

However, explicit ODEs solvers are known to become instable for stiff ODE
systems and this effect turns over to direct multistepping for stiff Markovian sys-
tems. For stiff ODEs, implicit methods such as the implicit (backward) Euler
method are often better suited, which motivates similar approaches to multistep-
ping for Markovian models. Unfortunately, a completely implicit multistep simu-
lation method would require to generate random variates according to the Poisson
distribution with means ταi(X(t+τ)), i = 1, . . . , C, which depend on the unknown
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random state X(t + τ). Instead, a partially implicit version is considered [9, 12].
Rewriting the random variables Ki as Ki − ταi(X(t)) + ταi(X(t)) and evaluating
all transition rate functions in the last term at X(t + τ) instead of X(t) yields

X(t + τ) = X(t) +
C∑

i=1

vi

(
Ki − ταi(X(t)) + ταi(X(t + τ))

)
. (4)

Then, in a first step, all Ki are approximated by computing realizations of Pois-
son random variables as with direct multistepping. Once these realizations, now
denoted by k1, . . . , kC , have been generated and given X(t) = x, (4) becomes an
implicit deterministic equation that can be solved by, e.g., Newton iteration. Typ-
ically, the resulting estimate x̂(t+ τ) for X(t+ τ) is not integer-valued. Therefore,
in practice, the estimates to be used for the updating in Step 4 of the above al-
gorithm are obtained by rounding the corresponding term in (4) to the nearest
integer. That is

k̂i = round(ki − ταi(x) + ταi(x̂(t + τ))). (5)

As an alternative to (4), motivated by the properties of the trapezoidal rule for
solving systems of deterministic ODEs, [3] proposed to substitute (4) by

X(t + τ) = X(t) +
C∑

i=1

vi

(
Ki − τ

2
αi(X(t)) +

τ

2
αi(X(t + τ))

)
, (6)

which sometimes yields higher accuracy. However, it depends on the specific prob-
lem at hand whether (4) or (6) should be preferred.

3. Summary of Simulation Experiences

The concepts as presented in the previous section have been mostly applied to
chemically reacting systems in recent years. In this context it has been often
empirically demonstrated that the simulation of some stiff systems can be signifi-
cantly accelerated. The integrated framework of Markovian event systems and the
transition class formalism render possible to apply similar multistep methods to
the simulation of Markovian models in a broader class of application domains. We
have studied the simulation of Markovian queueing networks where phase-type dis-
tributions are allowed for both interarrival and service time distributions. Multiple
time scales and associated stiff systems in the queueing network context results
from, e.g., servers that may fail and can be repaired, where failure rates are by
orders of magnitude smaller than repair rates. It turns out that multistep methods
are particularly suitable for accelerated simulation of queueing networks. Even if
the systems are not stiff, they are usually enormously complex and direct mul-
tistepping significantly accelerates simulation at the expense of only a small loss
in accuracy. In particular, for state-independent interarrival and service rates the
loss of accuracy is most often negligible. Moreover, combining direct/explicit and
implicit multistepping is likely to yield further improvements [2, 11, 12]. Hence,
multistep methods for Markovian event systems are very promising to provide
efficient simulation methods within a broad range of application domains.
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