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Abstract

We consider the estimation of effective bandwidths in single-server queue-
ing networks with finite buffers and regenerative input process. Drawbacks
of batch means estimators in simulation practice are discussed and a new
regenerative estimator is suggested.

1. Introduction

In order to characterize the quality of service (QoS) offered by a communication
network, one of the most relevant parameters is the packet loss ratio, which can
be estimated as the buffer overflow probability where the buffer size b of the
bottleneck router along the path of the traffic is considered as threshold. The
minimum capacity CΓ that guarantees a mean overflow probability of at most Γ
is called the effective bandwidth (EB) of the incoming traffic where in practice Γ
is given as a QoS constraint for the maximum acceptable packet loss rate [1, 2, 3].

Effective bandwidth estimation can be treated on the basis of large deviations
theory (LDT).

If the queueing system is stable, the weak limit Wn ⇒ W of the queue size
(workload) process (Wn)n∈N exists and the stationary workload W (under mild
assumptions (see [10])) satisfies a large deviations principle (LDP) such that the
overflow probability has an asymptotically exponential form [10]. More precisely,
let

Λ(θ) = lim
n→∞

1
n

log Ee
θ

n∑

i=1
Xi

(1)

the logarithmic scaled cumulant generating function (LSCGF) of the arrival process
where Xi denotes the number of arrivals during the ith time unit. Define

δ(C) := sup{θ > 0 : Λ(θ) ≤ Cθ}. (2)
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Then, provided that the limit (1) exists,

lim
b→∞

1
b

log P (W > b) = −δ(C), (3)

which in turn implies the approximation P (W > b) ≈ e−δ(C)b for the overflow
probability. The required effective bandwidth CΓ for a given maximum acceptable
packet loss rate Γ is given by CΓ = min{C : e−δ(C)b ≤ Γ}. As the equation
e−δ(C)b = Γ has a unique root θ∗ := δ(CΓ) = − log Γ/b, it follows from (2) that
CΓ can be expressed as

CΓ =
Λ(θ∗)

θ∗
.

Thus, estimation CΓ is reduced to estimation of Λ(θ∗).
In this paper, we consider two different approaches to the estimation of Λ(θ∗),

the batch means method and the regenerative method. The general framework ad-
dressed by both methods is the construction of confidence intervals for the steady-
state mean of a covariance-stationary discrete-time stochastic process (Xn)n∈N. In
the setting of queueing networks, typical covariance-stationary processes of interest
include the arrival and the service process, the workload process, and the waiting
time process, amongst others. The simplest approach to steady-state simulation is
the replication-deletion approach where multiple independent realizations (repli-
cations) of the stochastic process under consideration are generated and for each
realization an initial transient phase must be deleted, which causes an enormous
overhead if a lot of replications are needed. In contrast, the batch means method
and the regenerative method provide confidence intervals based on one single real-
ization of the process. Before turning to effective bandwidth estimation we briefly
outline the general underlying theory and some key properties of the methods.

2. Batch means method

With the batch means method the data from one single simulation run of length
n is grouped into k batches of size m such that n = km. Hence, for i = 1, . . . , k
the i-th batch mean and the sample variance from k batches are given by

Yi =
1
m

m∑
j=1

X(i−1)m+j , S2
k =

1
k − 1

k∑
i=1

(
Yi − Ȳk

)2
, (4)

where the batch means sample mean equals the overall sample mean of X1, . . . , Xn :

Ȳk =
1
k

k∑
i=1

Yi =
1

km

k∑
i=1

m∑
j=1

X(i−1)m+j =
1
n

n∑
i=1

Xi = X̄n. (5)

Based on the batch means, a 100(1 − α)% confidence interval is constructed by

I =
[
Ȳk − tk−1,1−α/2

Sk√
k

, Ȳk + tk−1,1−α/2
Sk√

k

]
, (6)
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where tk−1,1−α/2 denotes the 1 − α/2 quantile of the Student t-distribution with
k − 1 degrees of freedom.

The justification of constructing confidence intervals based on batch means
relies on central limit theorems for covariance-stationary processes, according to
which the batch means are asymptotically normal as the batch size approaches
infinity. Furthermore, it is shown in [7] that if

0 <

∞∑
i=−∞

|Cov(Xj , Xj+i)| < ∞, (7)

then all lag-autocorrelations in the batch means process vanish as the batch size
approaches infinity. These results seem to indicate that everything becomes fine
when the batch size is chosen sufficiently large. However, asymptotic results do not
strictly apply in practice and can be misleading for finite simulation run lengths.

The crucial point is to find a reasonable balance between the batch size and
the number of batches. On the one hand, we have to assure by a sufficiently large
batch size that the batch means are at least approximately i.i.d. normal in order to
achieve a coverage probability close to the nominal value given by the confidence
level. On the other hand, we need sufficiently many batches in order to construct
reliable confidence intervals that are reasonably narrow and stable.

The study that probably most influenced the choice of the number of batches in
practical applications of the batch means method is [8], which is often summarized
overly simplified by just citing the recommendation of 10 ≤ k ≤ 30 batches. We
believe that it is important to know the framework and some of the details that led
to this recommendation. In [8], the existence of a maximum number of batches
k∗ ≥ 2 and a corresponding minimum batch size m∗ = n/k∗ is assumed such
that for all k ≤ k∗, the dependency and the nonnormality of the batch means
are “negligible” (in an intuitive sense, where a formalization remains open), and
only the effects of batch sizes m ≥ m∗ are studied. In this setting more batches
imply a smaller expected confidence interval width but also a smaller coverage
probability. According to [8], for all confidence levels the expected width of the
confidence interval monotonically increases but the decrease rate quickly decays
with increasing number of batches. The standard deviation and the coefficient
of variation are much more sensitive to choice of k. Consequently, more than 30
batches can be reasonable if the confidence interval stability is important.

Another important point to note is that in practice we usually do not know
suitable k∗ or m∗ as assumed in [8]. In most simulations some nonnormality or de-
pendencies are actually present and cause biased estimators. Moreover, guidelines
that are useful in a classical queueing setting may break down when considering
realistic Internet traffic models. In particular, condition (7) hardly holds in the
presence of long range dependencies. Despite a great deal work on modifications
has been carried out, no generally satisfactory choices of k and m are available.
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3. Regenerative method

The process (Xn)n∈N is called (zero-delayed) classically regenerative if an infi-
nite sequence 0 = T0 < T1 < . . . of regeneration instants exists such that
the distribution of Xn+Tk

is the same for each k ≥ 1 and independent of the
pre-history Xn, n < Tk, n ≥ 1. The i.i.d. regeneration cycles are defined as
Gn = (Xk, Tn−1 ≤ k < Tn), and the cycle periods τn = Tn − Tn−1 are also i.i.d.,
n ≥ 1.

T0 = 0, Tn+1 = min(k > Tn : Xk = 0), n ≥ 0. (8)

We assume the regenerative process to be positive recurrent, that is Eτ < ∞.
(Throughout the paper we suppress an index to denote a generic element.)

To estimate a stationary characteristic γ = Ef(X) of the process for a mea-
surable function f, assuming the weak limit f(Xn) ⇒ f(X) exists, we define the
i.i.d. variables

Yi =
Ti−1∑

k=Ti−1

f(Xk), i ≥ 1. (9)

If E|Y | < ∞ and the cycle period τ is aperiodic, then with probability 1,

γn =
1
n

n∑
k=1

f(Xk) → EY

Eτ
= Ef(X), n → ∞. (10)

Moreover, assuming that σ2 ≡ V ar(Y − τγ) ∈ (0, ∞), a (regenerative) central
limit theorem states that the 100(1 − α)% confidence interval for γ is[

γn − zα
√

vn√
n

, γn +
zα

√
vn√
n

]
, (11)

where zα satisfies P (N(0, 1) ≤ zα) = 1 − α/2, and the empirical variance

vn =
1
n

∑n
i=1(Yi − γnτi)2

τ2
n

⇒ σ2. (12)

(Here τn stands for the sample mean cycle period.) If the number of regenerative
cycles k ≤ 30 then the 1 − α/2 quantile of the Student t-distribution with k − 1
degrees of freedom is more appropriate to use instead of zα. A minimal sufficient
condition for vn to be weakly consistent is E(Y − γτ)2 < ∞, while under stronger
assumptions, EY 2 < ∞, Eτ2 < ∞, the estimate is strongly consistent [11].

4. Application to effective bandwidth estimation

With regard to effective bandwidth estimation based on the batch means method,
assuming that the batch means Yi according to (4) are i.i.d. as a random variable
Y , we obtain

log Ee
θ∗ n∑

i=1
Xi

= log Ee
θ∗ k∑

i=1
mYi

= log Eeθ∗mkY = log Eeθ∗nY = n log Eeθ∗Y , (13)
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which suggests the estimator

Λ̂(θ∗) =
1
n

n log
1
k

k∑
i=1

eθ∗Yi = log
1
k

k∑
i=1

eθ∗Yi . (14)

Alternatively, if we consider the batch sums X̂i = mYi and assume that they are
i.i.d. as a random variable X̂, we obtain

log Ee
θ∗ n∑

i=1
Xi

= log Ee
θ∗ k∑

i=1
X̂i

= log Eeθ∗kX̂ = k log Eeθ∗X̂ , (15)

which suggests the estimator [13]

Λ̂(θ∗) =
1
n

k log
1
k

k∑
i=1

eθ∗X̂i =
1
m

log
1
k

k∑
i=1

eθ∗X̂i (16)

For both versions, an estimator of the effective bandwidth is given by

ĈΓ =
Λ̂(θ∗)

θ∗
. (17)

However, the problems with appropriately choosing the batch size m and the
number k of batches as outlined in Section 2 for the general framework carries
over to effective bandwidth estimation and the Yi or X̂i, respectively, are only
approximately i.i.d. even with a good choice. Therefore, we supposed in [13] not
to group into batches of fixed size but to consider regenerative cycles. Indeed, if
the arrival process has regeneration instants Tk, then the variables

X̂k =
Tk+1−1∑

i=Tk

Xi, k ≥ 1 (18)

are really i.i.d., not only approximately as with the batch means method. Grouping
in such a way we form an alternative estimator of the LSCGF function:

Λ̂(θ∗) =
k

Tk
log

1
k

k∑
i=1

eθ∗X̂i , (19)

where k is the number of regeneration cycles. Assuming Eeθ∗X̂ < ∞, we obtain
with probability 1

lim
n→∞ Λ̂k(θ∗) =

1
Eτ

log Eeθ∗X̂ . (20)

Preliminary analysis shows that the desired equality Λ(θ) = log Eeθ∗X̂/Eτ seems
plausible [12, 13].

1007



5. Summary of simulation results

Due to lack of space, we do not present excessive simulation results but rather
briefly describe our simulation setup and summarize our findings. To compare
the properties of the two estimators, we consider a two-station tandem network
with Poisson input to the first station, a (desired) constant service rate C2 at the
second one, and with the finite buffers b1, b2, respectively. In such a system the
arrival process to the second station regenerates when an arriving customer sees
an empty first station. This allows to construct the regenerative estimator by an
evident way. Our goal is to find (by estimation) the required constant rate C2

which guarantees given loss probability Γ.
The simulation has revealed an advantage of the regenerative estimator of

Λ(θ) over the batch mean one (in the terms of variance reduction) when expo-
nential or constant service time at the first station is used [12, 13]. On the other
hand, simulation shows that the batch mean estimator, being optimistic, has an
advantage when regenerative period has a large variance. Also we consider the
state-dependent service rate at the first station: it is C1

1 until queue size exceeds
a threshold L, and becomes C2

1 (> C1
1 ) when buffer exceeds level L.
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