
Applied Probability Trust (23 July 2014)

BOUNDED TRUNCATION ERROR FOR LONG RUN AVERAGES

IN INFINITE MARKOV CHAINS

HENDRIK BAUMANN,∗ Clausthal University of Technology

WERNER SANDMANN,∗∗ University of Derby

Abstract

We consider long run averages of additive functionals on infinite discrete-state

Markov chains, either continuous or discrete in time. Special cases include long

run average costs or rewards, stationary moments of the components of ergodic

multi-dimensional Markov chains, queueing network performance measures,

and many others. By exploiting Foster-Lyapunov-type criteria involving drift

conditions for the finiteness of long run averages we determine suitable finite

subsets of the state space such that the truncation error is bounded. Illustrative

examples demonstrate the application of this method.
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1. Introduction

We consider infinite Markov chains, either continuous or discrete in time, on a

countable state space S. In continuous time we denote the Markov chain by (Xt)t≥0

and its generator matrix by Q = (qij)i,j∈S . In discrete time we denote the Markov

chain by (Yn)n∈N and its transition probability matrix by P = (pij)i,j∈S .

For irreducible recurrent Markov chains, an invariant measure ψ = (ψi)i∈S exists,
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which is unique up to a multiplicative constant, and for f (1), f (2) : S → R with

ψ
∣

∣f (1)
∣

∣ , ψ
∣

∣f (2)
∣

∣ <∞ we have

lim
t→∞

t
∫

0

f (1)(Xs) ds

t
∫

0

f (2)(Xs) ds

=
ψf (1)

ψf (2)
, resp., lim

N→∞

N
∑

n=0
f (1)(Yn)

N
∑

n=0
f (2)(Yn)

=
ψf (1)

ψf (2)
, (1)

with probability 1, see [8, pp. 85–86,203–209]. Hence, obtaining ψf for functions f on

the state space of irreducible recurrent Markov chains is of high practical relevance.

Particularly important special cases of irreducible recurrent Markov chains are

ergodic Markov chains where ψ is the unique stationary distribution π = (πi)i∈S that

coincides with the limiting distribution. It satisfies πQ = 0 in continuous time and

πP = π in discrete time, respectively. According to the respective ergodic theorems, if

the expectation Eπ[|f |] for a function f : S → R is finite, then the averages of additive

functionals converge (for time approaching infinity) almost surely to the stationary

expectation Eπ[f ] =
∑

i∈S πif(i) = πf, that is,

lim
t→∞

1

t

∫ t

0

f(Xs) ds = Eπ[f ], resp., lim
N→∞

1

N

N
∑

n=0

f(Yn) = Eπ[f ], (2)

with probability 1, see [2, pp. 52–54], [19, pp. 264–265] for the continuous time case

and [2, pp. 16–19], [19, pp. 45–47] for the discrete time case. Hence, Eπ[f ] is the long

run average of an additive functional on the respective Markov chain.

We are interested in approximating ψf for infinite recurrent Markov chains by using

finite state truncations, which is important in cases where no analytical solution to the

infinite chain is available and the state space must be truncated, e.g. for computational

purposes. While corresponding truncation approximations of stationary distributions

have been studied quite extensively [9, 11, 13, 14, 16, 24, 25], [18, Chap. 7], there is a

lack of similar studies for ψf or its special case of stationary expectations.

The goal is to perform the truncation such that the truncation error is bounded by

an a priori specified constant. Obviously, since in general no information on the value

of ψf is available in advance we have to bound the relative truncation error. Therefore,

provided that ψf is finite, we shall provide a method for determining a finite subset
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C ⊂ S of the state space such that for a small prescribed ǫ ∈ (0, 1):
∑

i∈C
ψif(i)

∑

i∈S
ψif(i)

≥ 1− ǫ. (3)

Note that this yields a ’true’ a priori truncation error bound in that ǫ indeed bounds

the proportion of ψf that is cut off by the finite state truncation. There is no need

to compute the left hand side, in particular the numerator, of the inequality (3) since

we shall guarantee that C is chosen such that the truncation error is bounded by ǫ. In

other words, we do not aim in computing the truncation error a posteriori, but we start

with an a priori fixed maximum truncation error and obtain a suitable truncation.

In Section 2 we establish appropriate ‘Foster-Lyapunov-type criteria’ involving ‘drift

conditions’ and in Section 3 we show how to use them for determining appropriate finite

sets C ⊂ S that meet (3). Subsequently, in Section 4 we give application examples.

Finally, Section 5 concludes the paper and outlines further research directions.

2. Foster-Lyapunov-type criteria

For discrete-time Markov chains (Yn)n∈N the drift function dg : S → R with respect

to a function g : S → R is defined by

dg(i) = E[g(Yn)− g(Yn−1)|Yn−1 = i] =
∑

j∈S
pijg(j)− g(i), (4)

that is, when writing g and dg in the form of column vectors, dg = Pg − g. Hence,

dg(i) is the (generalized) drift in state i with respect to g.

For continuous-time Markov chains (Xt)t≥0 the drift function dg : S → R with

respect to a function g : S → R is defined by

dg(i) =
d

dt
E[g(Xt)|Xt = i] =

∑

j∈S
qijg(j), (5)

that is, when writing g and dg in the form of column vectors, we have dg = Qg.

For finite C ⊂ S, γ > 0 and f, g : S → R≥0 we consider the conditions

(C1) ∀i ∈ S \ C : dg(i) ≤ −γf(i),

(C2) ∀i ∈ C : dg(i) <∞,

(C3) ∀r <∞ : |{i ∈ S : g(i) ≤ r}| <∞.
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Conditions of this form are often referred to as Foster-Lyapunov-type criteria since they

are generalizations of classical criteria for positive recurrence or ergodicity, respectively,

of Markov chains. For discrete-time Markov chains, in the special case where f(i) = 1

we have a criterion for positive recurrence, which in fact is very famous. In the case

|C| = 1 it is due to Foster [10], in the slightly more general case of arbitrary finite C
it was proven by Pakes [17]. For continuous-time Markov chains, in the special case

where f(i) = 1 we have a famous criterion for regularity and positive recurrence, which

is due to Tweedie [21, Theorem 2.3]. Appropriate functions g with respect to which

the drift function dg is defined are often called Lyapunov functions and the conditions

on dg as (generalized) drift conditions.

Theorem 1. Let (Yn)n∈N be an irreducible discrete-time Markov chain with transition

probability matrix P = (pij)i,j∈S , C ⊂ S finite, γ > 0 and let f, g : S → R≥0 meet the

conditions (C1)–(C3). Then (Yn)n∈N is recurrent and for any invariant measure ψ the

sum ψf =
∑

i∈S ψif(i) is finite.

The recurrence of (Yn)n∈N follows from [21, Theorem 3.3], so that an invariant measure

ψ exists. The finiteness of ψf follows as a special case of [23, Theorem 1], where Markov

chains in discrete-time on a general state space are considered without any irreducibility

assumption, which generalizes an earlier result for ergodic discrete-time Markov chains

on a general state space [22, Theorem 1].

Theorem 2. Let (Xt)t≥0 be an irreducible continuous-time Markov chain with gen-

erator matrix Q = (qij)i,j∈S , C ⊂ S finite, γ > 0 and let f, g : S → R≥0 meet the

conditions (C1)–(C3). Then Q is regular (it uniquely defines (Xt)t≥0, the Feller process

of Q), (Xt)t≥0 is recurrent and for any invariant measure ψ the sum ψf =
∑

i∈S ψif(i)

is finite.

The regularity and the recurrence follow from [21, Theorem 2.2], so that an invariant

measure ψ exists. The finiteness of ψf can be shown by applying Theorem 1 to the

embedded jump chain of (Xt)t≥0 (cf. [6]). Hence, consider the embedded discrete-time

jump chain (Yn)n∈N with transition probability matrix P ∗ = (p∗ij)i,j∈S given by

p∗ij =
1

qi
qij + δij , (6)

where qi = −qii. Since our continuous-time Markov chain (Xt)t≥0 is irreducible
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recurrent, the jump chain (Yn)n∈N is irreducible recurrent, too (see, e.g., [1, pp. 184–

188]). An invariant measure ψ∗ for the jump chain is given by ψ∗
j = qjψj . The

continuous-time drift condition

∞
∑

j=0

qijg(j) ≤ −γf(i) (7)

yields the drift condition

∞
∑

j=0

p∗ijg(j)−g(i) =
∞
∑

j=0

(

qij
qi

+ δij

)

g(j)−g(i) = 1

qi

∞
∑

j=0

qijg(j) =
dg(i)

qi
≤ −γf(i)

qi
(8)

for the embedded chain. Thus, according to Theorem 1, ψ∗f∗ with f∗(i) = f(i)
qi

is

finite. Since obviously ψ∗f∗ = ψf the proof is completed.

The following is fundamental for obtaining the state space truncation procedure in

the next section.

Theorem 3. Let (Yn)n∈N be an irreducible recurrent discrete-time Markov chain with

transition probability matrix P = (pij)i,j∈S , let ψ be an invariant measure, and let

dg = Pg − g ≤ h for some ψ-integrable function h ≥ 0. Then ψdg = ψ(Pg − g) ≥ 0.

Proof. Without loss of generality let S = N. Define

ℓ
(n)
ij := P (Yn = j, Yn−1, . . . , Y1 6= i | Y0 = i) i, j ∈ N, n ≥ 1, (9)

ψj :=

∞
∑

n=1

ℓ
(n)
0j , j ∈ N. (10)

Then for the ℓ
(n)
ij , we have the recursion

ℓ
(1)
ij = pij , ℓ

(n)
ij =

∑

k 6=i

ℓ
(n−1)
ik pkj , n ≥ 2, (11)

which yields

ψj =

∞
∑

n=1

ℓ
(n)
0j = p0j +

∞
∑

n=2

∞
∑

k=1

ℓ
(n−1)
0k pkj = p0j +

∞
∑

k=1

∞
∑

n=1

ℓ
(n)
0k pkj (12)

= p0j +

∞
∑

k=1

ψkpkj =

∞
∑

k=0

ψkpkj , (13)

since ψ0 is the probability of eventually returning to state 0, and thus, due to recur-

rence, ψ0 = 1. Therefore, ψ is an invariant measure, and since any other invariant
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measure is obtained by multiplication with some positive scalar, it is sufficient to

consider only this particular invariant measure.

Remark: In the general case (no recurrence required), by (1, ψ1, ψ2, . . .) the mini-

mal subinvariant measure ψ with ψ0 = 1 is defined, see, e.g., [1, pp. 172–174] for more

details.

Now, for N ∈ N and j ∈ {0, . . . , N} define

ℓ
(n,N)
0j := P (Yn = j, Yn−1, . . . , Y1 ∈ {1, . . . , N} | Y0 = 0), (14)

ψ
(N)
j :=

∞
∑

n=1

ℓ
(n,N)
0j . (15)

With similar considerations as above, we have the recursion

ℓ
(1,N)
0j = p0j , ℓ

(n,N)
0j =

N
∑

k=1

ℓ
(n−1,N)
0k pkj , n ≥ 2, (16)

which yields

ψ
(N)
j =

∞
∑

n=1

ℓ
(n,N)
0j = p0j +

∞
∑

n=2

N
∑

k=1

ℓ
(n−1,N)
0k pkj = p0j +

N
∑

k=1

∞
∑

n=1

ℓ
(n,N)
0k pkj (17)

= p0j +
N
∑

k=1

ψ
(N)
k pkj . (18)

Defining ψ
(N)
j = 0 for j > N and ψ(N) =

(

ψ
(N)
j

)∞

j=0
, we can state that ψ

(N)
j increases

monotonically in N with limN→∞ ψ(N) = ψ (componentwise, weak convergence). Now,

we can consider ψ(N)(Pg−g) instead of ψ(Pg−g). Since ψ(N)
j = 0 for almost all j ∈ N,
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there is no problem when changing the order of summation. We can write

ψ(N)dg = ψ(N)(Pg − g) =
N
∑

i=0

ψ
(N)
i





∞
∑

j=0

pijg(j)− g(i)





= ψ
(N)
0





∞
∑

j=0

p0jg(j)− g(0)



+
N
∑

i=1

ψ
(N)
i





∞
∑

j=0

pijg(j)− g(i)





= ψ
(N)
0

∞
∑

j=0

p0jg(j)− ψ
(N)
0 g(0) +

N
∑

i=1

ψ
(N)
i

∞
∑

j=0

pijg(j)−
N
∑

i=1

ψ
(N)
i g(i)

= ψ
(N)
0

∞
∑

j=0

p0jg(j) +

N
∑

i=1

ψ
(N)
i

∞
∑

j=0

pijg(j)−
N
∑

i=0

ψ
(N)
i g(i)

= ψ
(N)
0

N
∑

j=0

p0jg(j) +

N
∑

i=1

ψ
(N)
i

N
∑

j=0

pijg(j)−
N
∑

i=0

ψ
(N)
i g(i) +

N
∑

i=0

ψ
(N)
i

∞
∑

j=N+1

pijg(j)

= ψ
(N)
0

N
∑

j=0

p0jg(j) +

N
∑

j=0

g(j)

N
∑

i=1

ψ
(N)
i pij −

N
∑

i=0

ψ
(N)
i g(i) +

N
∑

i=0

ψ
(N)
i

∞
∑

j=N+1

pijg(j)

= ψ
(N)
0

N
∑

j=0

p0jg(j) +

N
∑

j=0

g(j)
(

ψ
(N)
j − p0j

)

−
N
∑

i=0

ψ
(N)
i g(i) +

N
∑

i=0

ψ
(N)
i

∞
∑

j=N+1

pijg(j)

=
(

ψ
(N)
0 − 1

)

N
∑

j=0

p0jg(j) +

N
∑

i=0

ψ
(N)
i

∞
∑

j=N+1

pijg(j)

≥
(

ψ
(N)
0 − 1

)

N
∑

j=0

p0jg(j).

Due to finiteness of dg(0) and recurrence, we have

lim
N→∞

N
∑

j=0

p0jg(j) = dg(0) + g(0) <∞ and lim
N→∞

ψ
(N)
0 = 1,

and thus, we obtain

lim sup
N→∞

ψ(N)dg ≥ lim
N→∞

(

ψ
(N)
0 − 1

)

N
∑

j=0

p0jg(j) = 0.
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Due to dg ≤ h, we have ψj(h(j)− dg(j)) ≥ 0 for all j ∈ N, and Fatou’s Lemma yields

ψ(h− dg) =
∞
∑

j=0

ψj(h(j)− dg(j))

=

∞
∑

j=0

lim
N→∞

ψ
(N)
j (h(j)− dg(j))

≤ lim inf
N→∞

∞
∑

j=0

ψ
(N)
j (h(j)− dg(j))

= lim inf
N→∞

∞
∑

j=0

ψ
(N)
j h(j)− lim sup

N→∞

∞
∑

j=0

ψ
(N)
j dg(j).

Since h is ψ-integrable, by monotone convergence, we obtain

lim
N→∞

∞
∑

j=0

ψ
(N)
j h(j) =

∞
∑

j=0

ψjh(j) = ψh,

and hence

0 ≤ ψ(h− dg) ≤ ψh− lim sup
N→∞

ψ(N)dg ≤ ψh.

From these inequalities, we obtain that h − dg, and thus, dg is ψ-integrable with

ψdg ≥ 0.

Now, we give an analogous theorem for continuous time Markov chains.

Theorem 4. Let (Xt)t≥0 be an irreducible recurrent continuous-time Markov chain

with generator matrix Q = (qij)i,j∈S , dg = Qg ≤ h for some ψ-integrable function h.

Then ψdg = ψQg ≥ 0 for any invariant measure ψ.

Proof. Consider again the embedded discrete-time jump chain (Yn)n∈N with tran-

sition probability matrix P ∗ = (p∗ij)i,j∈S given by (6), i.e. p∗ij = 1
qi
qij + δij , invariant

measure ψ∗ given by ψ∗
j = qjψj , drift d

∗
g where d∗g(i) =

dg(i)
qi

(cf. (8)), and upper drift

bound h∗ given by h∗(i) = h(i)
qi

. Obviously, we have ψ∗d∗g = ψdg, and since h∗ is

ψ∗-integrable, Theorem 3 yields ψ∗d∗g ≥ 0.

Before we apply these results to the task of truncating the state space, we make

some remarks concerning the drift bound h.

• Under the conditions of Theorem 1 or Theorem 2, respectively, we always have

dg(j) ≤ 0 for all j ∈ S \ C, and since C is finite, h = dg1C ≥ dg is trivially

ψ-integrable.



Bounded truncation error in infinite Markov chains 9

• A special case of our theorems appears in [12] where positive recurrence and

thus the summability of ψ is assumed, and the corresponding drift condition is

sup dg(j) < ∞. In this case h = C = sup dg(j) is of course ψ-integrable. For

a finite state space S we trivially could state ‘= 0’, and ‘≥ 0’ is guaranteed by

[12, Theorem 1 (ii)] in a quite general context, where the continuous-time case is

given as a special case by [12, Proposition 1].

3. Truncation of the state space

Now we exploit the theorems of the previous section in order to determine finite

subsets of the state space such that the truncation error is bounded as stipulated by

(3). The drift conditions provided by the aforementioned criterion by Tweedie [21,

Theorem 2.3] for regularity and positive recurrence have been exploited in [9] in order

to obtain bounds of the form
∑

i∈C πi ≥ 1 − ǫ when approximating the stationary

distributions of infinite ergodic continuous-time level dependent quasi-birth-and-death

(LDQBD) processes. We will use a similar approach for deriving the desired bounds

(3) for recurrent continuous-time and discrete-time Markov chains on countable state

spaces. The main idea is to choose γ > 0 and g such that the finite set C is appropriate

for truncation. This procedure is based on the following result:

Theorem 5. Let f, g, γ, C meet the conditions of Theorem 1 or Theorem 2, respec-

tively. Furthermore, let

f(j) > 0 for all j ∈ C0 := {i ∈ S : dg(i) > 0}, (19)

and let f(j1) > 0 for some j1 ∈ C0 := S \ C0. Then we have

∑

j 6∈C
ψjf(j)

∑

j∈S
ψjf(j)

≤ c

c+ γ
, (20)

where

c = max
j∈C0

dg(j)

f(j)
> 0. (21)

Proof. First note that C0 := {j ∈ S : dg(j) > 0} has finitely many elements due

to condition (C1). Furthermore, this condition guarantees that dg(j1) < 0, yielding

ψj1dg(j1) < 0 since the invariant measure ψ has no zero-entry. As pointed out above,
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by Theorem 3 and Theorem 4, under the conditions of Theorem 1 or Theorem 2

respectively, we have ψdg ≥ 0, and therefore, there is some j0 ∈ C0 with dg(j0) > 0,

that is C0 6= ∅. Assumption (19) guarantees that c > 0 is well-defined by (21).

Now we scale g and thus dg by 1
c+γ

> 0, that is

g∗(j) :=
g(j)

c+ γ
, dg∗(j) =

dg(j)

c+ γ
. (22)

This yields dg∗(j) ≤ cf(j)
c+γ

for j ∈ C and dg∗(j) ≤ −γf(j)
c+γ

for j /∈ C, or, written in

concise form,

dg∗(j) ≤
(

c

c+ γ
− 1C(j)

)

f(j). (23)

Summation of ψjdg∗(j) yields

0 ≤ ψdg∗ =
∑

j∈S
ψjdg∗(j) ≤ c

c+ γ

∑

j∈S
ψjf(j)−

∑

j 6∈C
ψjf(j), (24)

Due to the assumptions, ψf 6= 0, which immediately implies (20) and completes the

proof.

Remark: If f(j) > 0 for infinitely many j ∈ S, due to finiteness of C, there will

always be some j1 ∈ C with f(j1) > 0. If f(j) > 0 holds only for finitely many j ∈ S,
the truncation of the state space is quite easy, we can simply choose the finite set

C = {j : f(j) > 0}. However, Theorem 5 and its proof can be extended to this case

via the obvious inequality

0 =
∑

j 6∈C
ψjf(j) ≤

c

c+ γ

∑

j∈S
ψjf(j),

where we define c = 0 for C0 = ∅ (which is possible in this situation).

With ǫ = c
c+γ

, Theorem 5 yields the desired bound for our procedure of determining

a finite set C meeting (3). When a Lyapunov function g is given, c is determined by

the corresponding drift function dg and thus we can only vary γ. For guaranteeing

c
c+γ

= ǫ we choose γ = c
ǫ
− c. Since ǫ < 1 and c > 0 we have γ > 0. If for this choice of

γ the set C = {j ∈ S : dg(j) > −γf(j)} is finite, we have an appropriate truncation of

the state space. Otherwise we have to find a new Lyapunov function. A simple scaling

does not help in this case since by definition of γ and c, C is invariant with respect to

scaling of g.
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Table 1: State transitions of the gene expression example

From State To State Rate

(x1, x2) (x1 + 1, x2) λ

(x1, x2) (x1, x2 + 1) µx1

(x1, x2) (x1 − 1, x2) δ1x1

(x1, x2) (x1, x2 − 1) δ2x2

The results just derived provide the basis for a method of finding an appropriate set

C0 for truncating the sum ψf as follows:

1. Choose a Lyapunov function g

2. Compute the drift dg.

3. Determine

C0 = {i ∈ S : dg(i) > 0}, (25)

c = max
j∈C0

dg(j)

f(j)
, (26)

γ =
c

ǫ
− c, (27)

C = {j ∈ S : dg(j) > −γf(j)}. (28)

4. If C is finite, (3) holds. Otherwise choose a new Lyapunov function and restart

with 2.

4. Examples

Now, we demonstrate our state space truncation approach by two illustrative exam-

ples, where we restrict ourselves to continuous-time Markov chains, as the truncation

procedure works similarly in the discrete-time case.

Example 1. We start with an example of a two-dimensional continuous-time Markov

chain (Xt) =
(

X
(1)
t , X

(2)
t

)

with state space S = N × N and transitions according to

Table 1 with parameters λ, µ, δ1, δ2 > 0, which describes a stochastic gene expression

model [20] and has been also considered in [9]. As a concrete numerical case we choose
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λ = 60, µ = δ2 = 0.01 and δ1 = 0.2. In [9], the authors looked for a set C fulfilling
∑

(x1,x2)∈C
π(x1,x2)

∑

(x1,x2)∈S
π(x1,x2)

≥ 1− ǫ, (29)

where π is the stationary distribution. The method used in [9] is the above method

with f(x1, x2) = 1, the Lyapunov function g was defined by

g(x1, x2) = (x1 − 300)2 + (x2 − 300)2, (30)

yielding the drift function

dg(x1, x2) = −0.4x21 − 0.02x22 + 0.02x1x2 + 234.21x1 + 6.01x2 − 35940. (31)

Obviously, this drift function is negative up to finitely many values (x1, x2), the

maximum according to (26) is c = 126, and for ǫ = 0.05, by (27), we have to choose

γ = 2394. Thus, from (28) we obtain

C = {(x1, x2) : dg(x1, x2) ≥ −2394} (32)

as a finite subset of the state space that meets the desired truncation error bound.

It is clear that our truncation procedure does not require a specific transition

structure or a specific numbering of the states. In many applications, however, the

above characterization of C might be relatively unpractical, in particular when a specific

numbering of the states is given and the generator matrix of the Markov chain must

be truncated to render numerical computations possible. Think for example of infinite

LDQBD processes, where the states are ordered according to the chosen level definition

and the block structured generator matrix is truncated at certain blocks corresponding

to high (or low) level numbers such as, e.g., in [3, 4, 5, 7, 9, 15]. Then it is often more

convenient to consider an appropriate finite superset of C rather than to work directly

with C. For instance, simple algebra yields

C ⊂ {(x1, x2) : 221 ≤ max{x1, x2} ≤ 657} (33)

C ⊂ {(x1, x2) : 250 ≤ x1 + x2 ≤ 975}, (34)

where the first superset can be found in [9] too. It contains 384123 states, the second

one contains 445401 states.
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The Lyapunov function defined above is still appropriate when considering the sta-

tionary moments of the first or the second component respectively, that is, we consider

Eπ[f
(1)] and Eπ[f

(2)] with f (1)(x1, x2) = x1 and f (2)(x1, x2) = x2, respectively. It is

easy to see that

C1 = {(x1, x2) : dg(x1, x2) ≥ −γx1} and C2 = {(x1, x2) : dg(x1, x2) ≥ −γx2} (35)

are finite for arbitrary γ > 0. By simple algebra, we obtain dg(x1, 0) < 0 and

dg(0, x2) < 0 for any x1, x2 ∈ N, yielding that C0 = {(x1, x2) : dg(x1, x2) > 0}
does not contain any point (x1, x2) with f (j)(x1, x2) = 0 for j = 1 or j = 2. Thus,

there is no problem when defining the value c according to (26), for f (1) we have

c = 0.42 and for ǫ = 0.05, by (27), we obtain γ = 7.98. For simplicity and means of

comparison, we give supersets for C1 similar to those given above, we have

C1 ⊂ {(x1, x2) : 231 ≤ max{x1, x2} ≤ 665}, (36)

C1 ⊂ {(x1, x2) : 261 ≤ x1 + x2 ≤ 993}, (37)

where the first superset contains 390195 states and the second one contains 460324

states.

Similarly, for f (2), we have c ≈ 0.4272 and γ ≈ 8.1176 (for ǫ = 0.05), yielding

C2 ⊂ {(x1, x2) : 230 ≤ max{x1, x2} ≤ 920}, (38)

C2 ⊂ {(x1, x2) : 377 ≤ x1 + x2 ≤ 1246}, (39)

where the first superset contains 795341 states and the second one contains 706875

states.

Example 2. We continue with a simple but extremely instructive example that demon-

strates the applicability of the state space truncation procedure to non-ergodic recur-

rent Markov chains and shows some peculiarities with regard to the specific choice of

a Lyapunov function.

Consider a birth-death-process (Xt)t≥0 with birth rate λ and death rate λ, that is
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a Markov chain with state space N and the generator matrix

Q =

















−λ λ

λ −2λ λ

λ −2λ λ

. . .
. . .

. . .

















.

Obviously, ψ = (1, 1, . . .) is an invariant measure. Consider the computation of

H = lim
t→∞

t
∫

0

1

(Xs + 1)2
ds

t
∫

0

1

2Xs
ds

=
ψf (1)

ψf (2)
, f (1)(j) =

1

(j + 1)2
, f (2)(j) =

1

2j
. (40)

We want to use our method for finding finite sets C1 and C2 such that

(1− ǫ1)H ≤ H∗ ≤ 1

1− ǫ2
H, (41)

where

H∗ =

∑

j∈C1

ψjf
(1)(j)

∑

j∈C2

ψjf (2)(j)
(42)

is the approximation obtained by finite summation. Obviously,

∑

j∈Ci

ψjf
(i)(j)

∞
∑

j=0

ψjf (i)(j)
≥ 1− ǫi, i = 1, 2, (43)

is sufficient. We start with considering f (1)(j) = 1
(j+1)2 , j ∈ N,. Since f (1)(j) > 0

for all j ∈ N there are no problems when defining c = maxj∈C0

dg(j)
f(j) according to

(26), independent of the Lyapunov function g. When directly using Theorem 2, an

appropriate choice for g is

g(j) =

j+1
∑

k=1

1

k
, j ∈ N. (44)

Then we have

dg(0) =
λ

2
, dg(j) = − λ

(j + 1)(j + 2)
, j = 1, 2, . . . . (45)

For sufficiently large j ∈ N there exists γ > 0 such that dg(j) ≤ −γf(j). Therefore, by
Theorem 2, ψf (1) < ∞. Now, we choose γ and C according to (27) and (28). Hence,
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γ = c
ǫ1

− c, where c = dg(0) =
λ
2 , implying

C1 =

{

j ∈ S : − λ

(j + 1)(j + 2)
> −

(

λ

2ǫ1
− λ

2

)

1

(j + 1)2

}

. (46)

It is straightforward to see that C1 is a finite set if and only if ǫ1 > 1
3 , which for

reasonable ǫ1 is of course not true. Therefore, we have to find a new Lyapunov function.

Choose

g(j) =

j+1
∑

k=1

1√
k
, j ∈ N. (47)

Then we have c = dg(0) =
λ√
2
and

dg(j) = − λ
√

(j + 1)(j + 2)
(√
j + 1 +

√
j + 2

) , j = 1, 2, . . . . (48)

Since dg(j) ≈ λ

2j
3

2

for large j,

C1 =

{

j : − λ
√

(j + 1)(j + 2)
(√
j + 1 +

√
j + 2

) > −
(

λ

2ǫ1
− λ

2

)

1

(j + 1)2

}

(49)

is finite for any ǫ1 > 0. For ǫ1 = 0.05 we obtain C1 = {0, 1, . . . , 361}.
Now, consider f (2)(j) = 1

2j , j ∈ N. Our first Lyapunov function g, defined by

g(j) =

j+1
∑

k=1

1

k
, j ∈ N, (50)

is appropriate for ψf (2) <∞ by Theorem 2, too. In this case, this Lyapunov function

can be used for defining C2 since

C2 =

{

j ∈ S : − λ

(j + 1)(j + 2)
> −

(

λ

2ǫ2
− λ

2

)

1

2j

}

(51)

is finite for all ǫ2 > 0. For ǫ2 = 0.05 we obtain C2 = {0, . . . , 10}.
Note that since for this example we know the exact invariant measure ψ = (1, 1, 1, . . .)

and ψf (1) = π2

6 , we can easily determine the ‘best choice’ for C1, namely C1 =

{0, 1, . . . , 11}. Similarly, from ψf (2) = 2 we know that C2 = {0, . . . , 4} would be

the best choice.

Hence, the example demonstrates that there are Lyapunov functions that meet the

conditions of Theorem 2 but are not suitable for our state space truncation procedure.

Additionally, we see that the truncations we obtain are quite conservative. This implies
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that the truncation errors are actually much smaller than requested. This can be

interpreted as an advantage, but we also have to consider that usually we have to solve

for ψ and/or ψf numerically, implying that conservative truncations imply higher

effort. Of course, tight bounds are desirable.

5. Conclusion

With regard to long run averages of additive functionals in infinite recurrent Markov

chains, we have exploited Foster-Lyapunov-type drift conditions in order to obtain

finite subsets of the infinite state space such that at most a prescribed (small) portion

of the long run average lies outside this finite set. This can be taken as a state

space truncation method with bounded truncation error, which is extremely useful

for, e.g., numerically computing long run averages, where a state space truncation

is inevitable. The approach is independent of specific ways of computing long run

averages. In either case, it provides a bound on the approximation error due to the

state space truncation. Error bounds for long run averages rather than for probabilities

are particularly valuable when we have a method available that computes long run

averages without explicitly relying on the stationary distribution (if it exists) or an

invariant measure. In particular, the state space truncation method solves the open

issue that the memory-efficient matrix-analytic method presented in [5] for computing

stationary expectations in LDQBD processes without at first explicitly computing the

stationary distribution was lacking an accuracy measure. Now, in conjunction with

the state space truncation method of the present paper, [5] constitutes a powerful

matrix-analytic method for numerically approximating long run averages of additive

functionals in infinite recurrent LDQBD processes, where an approximation error

bound can be specified a priori. This enormously advances the state of the art in

matrix-analytic computations and their applicability to, e.g., performance analysis of

complex networks with infinite multi-dimensional state spaces. Moreover, as the state

space truncation method is not restricted to Markov chains with a specific transition

structure, it provides many new options for the analysis of a large class of stochastic

models.

A couple of further research issues arise. We have considered nonnegative functions
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f , which makes sense, since for applying generalized ergodic theorems we have to

guarantee the finiteness of ψ|f |. In many applications, nonnegative functions are indeed

sufficient to model the problem at hand. Nevertheless, further research on generaliza-

tions to arbitrary functions f is desirable and currently ongoing. For the tightness

of the approximation error bounds, the chosen Lyapunov function is a crucial factor.

Not all Lyapunov functions that guarantee the finiteness of the long run average under

consideration are suitable for our state space truncation method, some lead to infinite

subsets. Furthermore, even if suitable, different Lyapunov functions yield different

finite subsets corresponding to different tightness of the respective bounds. Hence, the

systematic derivation of Lyapunov functions that are good in the sense of yielding as

tight bounds as possible deserves further attention. For instance, restricted function

classes might be considered as candidate Lyapunov functions and their properties with

regard to the state space truncation method are to be studied.
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