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Abstract—In this paper we present the architecture of the
first mobile P2P streaming prototype for the operating system
Android. At first, we discuss the application of P2P streaming in
the scenario of mobile networking. Then, the system and software
architecture of our prototypical implementation is elaborated. In
addition, an initial field test to evaluate the feasibility of the
proposed approach is presented. Finally, we report our insights
arising from the practical experience with Android.

I. INTRODUCTION

Mobile video traffic is growing rapidly with yearly growth
rates of more than 90 % according to [2]. The rapid deploy-
ment of new multimedia services including video streaming
as well as many new video portals, like PPLive, PPStream
or SopCast, indicates the evolutionary path towards the next
generation of mobile networks. Hence, one important aspect
that needs to be investigated is given by the optimal dis-
semination of video data in the next generation of wireless
networks. One viable possibility to distribute the traffic load
more evenly in the network and thereby, provide lower costs
and higher scalability is given by the usage of peer-to-peer
(P2P) technology. However, current P2P applications are not
tailored for these new requirements; quite the opposite, P2P
streaming applications tend to use the network resources very
aggressively and at least P2P streaming applications have no
or little preference to exchange data among nearby peers [3].
This is not surprising, because current P2P video streaming
applications have been specifically developed for a “wired”
scenario, where users run the application at their PC, which
is connected via the customer premises network to the ISP.
However, with the advent of ubiquitous computing users
want to use their accustomed applications wherever they are.
Thereby, new requirements arise that need to be addressed by
P2P applications in order to provide a sufficient quality of
experience.

Let us first clarify the terminology of the P2P domain:
Users, so called peers, are connected with each other in overlay
networks to share resources, in this case, to disseminate video
data. The main difference to the client/server paradigm is given
by the fact that each peer can be at the same time client and
server. A common approach to disseminate video data via
P2P is to split up the data in smaller units, called chunks.
They are then distributed between the peers of a swarm. A
source node, in this domain called seed, provides the initial

upload of the data; subsequently, the downloaders distribute
the data further to other peers. To indicate the chunks a peer
currently holds, the peers exchange their buffer maps, also
called chunk maps. Mainly two different service types can
be distinguished within P2P streaming: A video on demand
(VoD) system provides users with VCR functionality, e.g.
stop, rewind or fast forward of the video. In contrast, by live
streaming the users have a more TV-like experience, where all
users view the same playback time within a certain range of
delay. Regarding the system architecture and, in particular,
the implementation of the data dissemination, the systems
can be coarsely divided into two main groups: Mesh-pull
systems build an unstructured overlay, hence "mesh", and each
peer requests, i.e. "pulls", the data from other peers. Tree-
push systems explicitly construct a dissemination overlay and
"push" the data along the constructed "trees".

P2P streaming applications have attracted a lot of atten-
tion in recent years. Numerous scientific studies investigated
their properties, large research projects have been founded
to develop prototypes (e.g. NapaWine[12] or PPNext[13]),
but more important, real systems have also been deployed
successfully. These P2P streaming applications are able to
serve simultaneously up to hundreds of thousands of users
nowadays. It is therefore just a matter of time when these
applications also pervade mobile networks. The goal of our
work is to investigate these necessary adaptations of P2P
techniques for the mobile, wireless dissemination of video
content. For this purpose, we have developed the prototypical
P2P streaming application RapidStream. In this paper we will
present its current architecture and report our insights of using
Android as a client platform for P2P applications.

II. RELATED WORK

Despite the fact that there is a large amount of scientific
studies investigating P2P video streaming, there is relatively
little work regarding the usage of P2P streaming applications
on mobile devices. The first studies introducing P2P video
streaming applications that are able to operate on mobile
devices are presented by Venot and Yan [14], who introduce
a JXTA based P2P video streamer. Yet, their implementation
was not able to stream the video content progressively if it
was operating on a mobile device, i.e. it could only display
the video file when it was completely downloaded. Also Zhang
et al. [15] presented a Symbian based P2P video streamer, butc©2012 IEEE. Personal use of this material is permitted. Permission from
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Figure 1. Mobile P2P Streaming Architecture

the study did solely evaluate the energy consumption of the
proposed system on the mobile devices. Furthermore, Diaz et
al. [6] conducted a measurement study on a Symbian based
P2P video streaming application over cellular networks. All
of these first presented P2P video streaming prototypes for
mobile devices suffered from the limited resource capacities
of mobile devices given at that time (2007). Only recently by
the appearance of much more powerful mobile devices this
approach has become feasible in practice. In 2010, Peltotalo
et al. [11] presented a fully working RTSP based P2P video
streaming application for Nokia smart phones. Other work that
investigates certain aspects of this approach consists of Noh et
al. [10], who proposed a transcoding scheme to enable video
streaming to mobile peers. Cycon et al. [5] introduced a H.264
video encoder that operates in real-time on mobile phones for
P2P video conferencing. Finally, Leung and Chan [9] proposed
a protocol for the P2P dissemination of multimedia content to
mobile devices.

III. RAPIDSTREAM - P2P STREAMING ON MOBILE
DEVICES

The migration of P2P video streaming applications to a
mobile environment requires certain adoptions, since mo-
bile devices are battery powered and have in general less
computing power compared to standard PCs. In addition,
P2P applications running in a mobile environment encounter
different network dynamics compared to a “wired” scenario.
Although next generation mobile networks, like LTE, strive to
provide broadband-like downstream capacity, hand-overs and
the fluctuating link quality negatively affect the transmission
performance of P2P applications [7]. Moreover, the protocols
of such P2P applications even increase the rate of control
messages due to connection disruptions, and thereby, produce
more signaling overhead. Apart from these network induced
conditions, there are also new requirements caused by the used
hardware platforms. As already mentioned, mobile devices

Figure 2. UML Packet Diagram of the Framework

provide less computing resources, i.e. primarily less memory
and CPU speed. For instance, on current Android versions
the heap space of a Java application is limited per default
to a maximum of 32 MB. Only with root access on the
device we could increase the heap space to the “hard wired”
maximum of 48 MB. As a consequence, this implies that
the video buffer must be kept quite small and that it is
crucial to hold not too many open connections in parallel.
In addition, to enable the P2P video data dissemination on
Android, the protocol of the P2P application should be as
lean as possible, to avoid too much signaling traffic and in
general, to keep the communication overhead at a minimum.
Therefore, an important development objective of mobile P2P
video streaming applications must be the sustainable usage
of the network resources, i.e. to be as energy and resource
efficient as possible.

As a platform for our prototype we have chosen Android,
which is a partly open source, Linux based OS mainly tailored
for mobile devices. User programs written for Android are
executed in the Dalvik Virtual Machine (DVM), which is based
upon the Java Virtual Machine (JVM). We found that there
is generally a good fit between both, but in some cases the
Android’s Java implementation provides only stubs and no
implementations for some classes of the Java API.

A. System Architecture

For the prototypical implementation we have chosen to
build a mesh-pull based live streaming network. Regarding the
system design we went for a hybrid P2P overlay maintenance
design, i.e. the system is not fully decentralized, since there is
a dedicated, centralized infrastructure to retain control of the
P2P network and to relieve the load of the peers. The central
infrastructure consists of a tracker server, a video server and a
rendezvous server. In the simplest case, only a single instance
of each component exists in the system. Of course, to increase
the reliability and the performance of the system, one could



always use more, redundant instances of each component.
The video server needs to register his content at the tracker
server to be able to stream video content. In the proposed
system, each video results in an own dissemination swarm,
i.e. only the peers watching the same video exchange video
data. In future extensions more advanced techniques could
also be considered to increase the dissemination performance.
The process of joining of a swarm, i.e. watching and re-
distributing a chosen video, can be described as follows: Upon
registration at the tracker server, each peer receives a unique
identifier (PeerID). In addition, the tracker server returns a list
of the currently broad-casted channels in combination with the
connection information of the video servers. If the peer has
chosen a video channel, it informs the tracker server of joining
the particular swarm. The tracker server supplies the peer with
an initial peer list in the bootstrap process. The implementation
of the tracker protocol follows closely the standard proposal
given in the PPSP Tracker Protocol [4] and it is probably
one of the first working implementations. With the help of
the rendezvous server, the peer is able to communicate with
other peers, even if they or itself are behind a NAT. Right
now, only UDP hole punching is implemented, as it yields
the highest success rate. However, in future releases we will
include TCP hole punching as well to increase the chance
of a successful NAT traversal. Upon successful connection
setup, the peers exchange their buffer maps and they request
missing chunks from each other. The exchange of the buffer
maps and the chunk transfer are conducted iteratively as
long as the peer is watching the video. Due to the structure
of the proposed system, every communication relationship
needs a particular type of connection. Figure 1 sketches the
system architecture of RapidStream and illustrates the usage
of the transport protocols for the different scenarios. For the
communication with or between the servers, HTTP is a well
suited protocol (as described in [4]), as it is the protocol that
is the more likely to work in any case. The communication
with the rendezvous server is performed by TCP. The video
data dissemination requires a more efficient transport protocol,
thus, the connectionless UDP is used. However, to ensure
the successful transmission of signaling and control messages
between the peers, the framework can use TCP respectively
RUDP [1] for this kind of communication too. To ease the
performance analysis and the gathering of measurement data,
we have also included a statistics server, which receives
periodically measurement data from all network participants.
Since this server is not a vital part of the P2P network, it is
not depicted in the system architecture (cf. Figure 1).

B. Software Architecture

We have developed a general P2P streaming framework,
which is based upon a modular software architecture. The
framework is purely Java based and can be executed on every
Java-capable device. Figure 2 depicts the UML package dia-
gram of the framework. The hierarchical structure illustrates
the dependency between the packages. Every package can
be easily replaced as long as its dependency is considered.

Figure 3. Architecture of RapidStream’s Android P2P VideoStreamer

This modular design enables the combination of existing
components, it allows for instance the bundling of the tracker
server, the video server and the rendezvous server into one
executable program. The central Framework-API provides the
most common data objects, which are shared between all the
modules and which are used for the inter-module communi-
cation. After the completion of the framework, the next step
included porting the peer module to Android. The architecture
of the Android P2P streaming application is illustrated in Fig-
ure 3. Porting the application was relatively straightforward;
the main difference is that there is no Swing on Android.
Therefore, a few GUI classes, in the Android terminology
called activities, had to be added to the presentation layer of
the P2P videostreamer: The Connection Screen is used to enter
the contact information of the different servers, the Video List
activity displays the obtained list of available videos and upon
reception of enough video data, the Video Player shows the
particular video. The brain of the application is the Controller,
which manages in coordination with the Streaming Compo-
nent all the connections through the incoming and outgoing
communication modules. The Streaming Component is also
responsible for the internal video buffer and for advancing the
time line of the chunk buffer.

C. Interaction Pattern of a Peer

Figure 4 depicts an UML sequence diagram that illustrates
the initial operations of a peer without explicit error han-
dling considerations. At first, the device running RapidStream
connects to the tracker server receiving its PeerID. With the
PeerID and its connection information it registers itself at the
rendezvous server and requests the list of video servers from
the tracker server. Then, the peer may contact a particular



video server and request the list of videos/channels. The
connection establishment might be enabled by the rendezvous
server, if the video server is behind a NAT. Upon choosing
a particular video or channel, the video server provides the
necessary meta data of the video. This procedure is further
explained in Section III-D. Subsequently, the peer requests
the buffer map of the video server and sets its initial buffer
map accordingly. In addition, the peer informs the tracker
server of joining the dissemination swarm of the video and
requests a bootstrap list of other peers participating in the
same swarm. The following interactions may be conducted
iteratively as long as the peer is a member of the video
swarm: The peer contacts the video server to update its peer
list, then, it choses a particular chunk to request and a peer
and subsequently, tries to establish a connection to the chosen
peer. Again, the connection establishment might be enabled
by the rendezvous server. After a successful connection, the
peer is requesting the buffer map of the second peer and a
particular chunk, if the contacted peer possesses a missing
chunk. When the peer has successfully downloaded the first
chunk, it may itself serve chunk requests of other peers too.
One can observe that we have “outsourced“ as much of the
overlay maintenance functionality as possible to the dedicated
network infrastructure. RapidStream even avoids the standard
keep-alive message exchanges between the peers to keep the
signaling overhead small. The scarce resources of the mobile
devices are mainly used for the dissemination of video data.
From the perspective of requiring a lean and sustainable P2P
streaming protocol, large chunk sizes are also necessary to
yield a small overhead rate. Otherwise, if the chunks are too
small, there is a lot of signaling overhead due to the continu-
ous connection establishments and the necessary negotiations
among the peers. However, if the chunk size is chosen too
large, the receiver will have to wait longer for the reception
of a chunk leading to an increased play back delay. In the
presented version of RapidStream we have opted for chunk
sizes of up to 2 MB to reduce signaling traffic and the energy
consumption by limiting the transmission phases of the air
interface (compare with the stepwise increase of the received
traffic in 7). As each peer receives data from a multitude of
peers, the optimal number of concurrent data transmissions
is an important parameter to reduce the resource usage too.
Currently, each peer downloads from at most 5 peers in
parallel. All of these parameters were chosen according to
our experimental investigations, but for the best possible video
experience they need to be validated analytically. However, we
leave this open for future work.

D. Pitfalls on Android

Android provides a multimedia framework that includes
codecs for the most common audio and video formats. We
use the MediaPlayer of this API for the play back of the
received video data in order to avoid writing our own video
player. As one might expect from such a smartphone platform,
like Android, the Java implementation of the MediaPlayer
should be the same on all the particular devices. However,

Figure 4. UML Sequence Diagram of the P2P streaming player

since the MediaPlayer is relying on native implementations of
the video codecs, i.e. C/C++ code provided by the particular
device manufacturer, we encountered a different behavior of
the MediaPlayer instances with regard to different smartphone
manufacturers. In order to get the certification "Android com-
patible" for a particular device, it must be tested by Google’s
Android Compatibility Program. Only in this case, it may
participate in the Android ecosystem, e.g. have access to the
Android market. Despite this certification process by Google,
we encountered serious problems with Samsung devices. The
state diagram of Android’s MediaPlayer has been specified
by Google (compare [8]). Yet, for reasons that have to be
clarified, the method call of prepare() may lead in some cases
directly to the state Playback Completed on Samsung devices.
According to the state diagram in [8] this transition should
not be possible, respectively, it is not allowed. To circumvent
this error, our current implementation loops over the prepare()



Table I
HARDWARE BASE IN THE TEST RUN

ID Vendor Model

1 Samsung Galaxy Gio (1)
2 Samsung Galaxy S (1)
3 Samsung Galaxy Gio (2)
4 Samsung Galaxy S (2)
5 Samsung Galaxy Ace
6 HTC Desire
7 Sony Ericsson MT15i
8 LG Optimus 2X
9 Samsung Galaxy Tab

method until the state Prepare is finally entered. We did not
encounter this nuisance on devices of any other manufacturer.
To be completely independent of such limitations, we would
need to provide our own implementation of a media player
with the related codecs. As such a task was not the focus of our
work, we will await for a porting of other media players, like
the VLC player, to the Android platform in future versions.

Android (up to version 3) supports the two container for-
mats 3GPP and MPEG-4 (Part 12) for video codecs. The
provided MediaPlayer is even capable to support streaming
with RTP/RTSP. Therefore, the general suitability for live
streaming in the P2P context is, in principle, given. Such an
approach would need an implementation of a RTSP server
on every terminal device. This RTSP server would be used
to “feed” the MediaPlayer with the reassembled video data.
However, we could not find a publicly available Java based
implementation of the RTP/RTSP stack. Therefore, we decided
not to implement the needed RTSP functionality, as this was
not the focus of our work either. Yet, we decided to use the
MediaPlayer after all, as one can rely on the fact that this
player is available by default on every Android compatible
device. To make the MediaPlayer capable of progressive
streaming, the video server needs to manipulate the container
format. Most encoders write the meta data of the MPEG-4
container, called moov atom, at the end of the video file and
therefore, downloading the entire file is required in order for
the MediaPlayer to be able to read the meta data of the video
and start the play back. When the moov atom is relocated to
the front of the file and its offsets are adjusted accordingly,
the MediaPlayer is able to start playing the video, even if the
whole file is not yet available. For this reason, the video server
extracts the moov atom and provides it together with other
meta information (the top-level ftyp atom) to the peers. Upon
joining a particular swarm, the peer downloads at first the
video meta data from the video server and creates a temporary
file to buffer the video data as it is downloaded from the peers.
The initial temporary file is empty apart from the meta data
at the beginning. But it will be continuously filled with the
received chunks, which have to be stored at the right position
of the file. If a certain threshold of received video data is
reached, the video play back starts.

Android is a standardized platform for mobile devices,
therefore, one might anticipate that this fact makes the life
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Figure 5. Download Throughput (Test Run)

of a developer much simpler. Quite to the contrary, due to the
broad, heterogeneous hardware base of Android compatible
devices, we found that the developer needs to test his appli-
cation on as many different devices as possible to ensure its
functionality.

IV. MEASUREMENT RESULTS OF AN INITIAL FIELD TEST

Since we are especially interested in the performance that
can be achieved in practice, we have evaluated the performance
of RapidStream in the following experiment. To judge the
general feasibility of the proposed system, we have conducted
a small scale test run. Due to the fact that we have only a
very limited number of Android devices, we recruited nine
persons, who posses Android smartphones, to participate in
the test run1. The resulting hardware base is depicted in Table
I. Unfortunately, most of the participating devices were from
Samsung. This fact is responsible for the relatively long start-
up delays depicted in Figure 6 (a). The start-up delay is the
time between the initial request of the video data and the
time the video playback starts. As already mentioned, our
implementation had to loop over the prepare() method until the
state Prepared was finally reached on Samsung devices. This
circumstance had a negative effect on the start-up delays. Yet,
half of the peers could start watching the video in less than 20
seconds. On the HTC Desire smartphone we even measured
start-up delays of less than 10 seconds, which is a really
promising result. To start our experiment, the participants
had to download and install RapidStream from a web server.
Subsequently, they could enter the P2P network and join
the test swarm. One initial video server provided the open
content film "Big Buck Bunny"2. This video was encoded
by H.264, a resolution of 320x180 pixels and 24 frames per
second. The movie length is 9.56 min and it has a total
data volume of 61.7 MB. Thus, to watch the video without
disruptions, a device needs at least a download throughput of

1A short video of the test run is provided at:
http://www.ktr.uni-bamberg.de/project/rapidstream.html

2http://www.bigbuckbunny.org/
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105.94 KByte/s respectively 847,5 KBit/s. Figure 5 depicts
the achieved download throughput in the test run. It can be
observed that nearly all the devices are capable to reach the
necessary throughput rate. The different starting points of the
particular graphs result from different swarm joining times,
since some participants needed more time to download and
install RapidStream on their device. To provide a more realistic
scenario, we have setup some additional PCs running the peer
application too. Figure 6 (b) illustrates the distribution of
the peer neighborhood of the mobile devices. A normal peer
represents a peer application running on a desktop machine.
Since the PCs were started before the mobile devices did join
the P2P network, they were able to serve successfully most
of the chunk requests of the mobile peers. Figure 7 illustrates
more measurement results taken on the Samsung Galaxy Tab.
Figure 7 (a) displays the drainage of the battery during the test
run. If one extrapolates the battery usage, one can see that the
battery of this device is able to provide roughly 4 hours of
video display with RapidStream. Figure 7 (b) illustrates the
received download traffic and the playback rate of the video
for the first 10 minutes of the test. As already mentioned, the
stepwise increase of the cumulated down-link traffic is due
to the large chunk sizes and the hereby induced on-off traffic
pattern that aims to reduce the energy consumption of the air
interface as much as possible.

V. CONCLUSION

To the best of our knowledge, this work presents the
first academical P2P application operating on Android. In
summary, we have introduced the general architecture of
RapidStream, a proof-of-concept implementation of a P2P
video streaming application for Android compatible devices.
Furthermore, the paper presents a preliminary field test to
evaluate the general feasibility of the proposed approach.
Our first insights regarding the feasibility of P2P streaming
in the domain of mobile devices and the results of our
experiments are promising. Despite the fact that our test run
was performed on a rather small scale, we were able to identify
that Android devices are in principle capable to support the
necessary streaming rates. In addition, we could identify the
main challenges that need to be addressed in future work.
The most important challenge for mobile P2P is given by
the reduction of the energy consumption on battery powered
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Figure 7. Test Run Results (continued)

devices. Thus, the goal is to be as energy efficient as possible.
Further requirements that need to be addressed in future work
consist of the optimal peer selection and the efficient data
transmission in cellular networks. We will address the shown
pitfalls and investigate more sophisticated data dissemination
patterns specifically focused on mobile networks in future
versions of RapidStream.
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