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Abstract. Mobile intention recognition is the problem of inferring a mo-
bile agent’s intentions from her spatio-temporal behavior. The intentions
an agent can have in a specific situation depend on the spatial context,
and on the spatially contextualized behavior history. We introduce two
spatially constrained grammars that allow for modeling of complex con-
straints between space and intentions, one based on Context-Free, one
based on Tree-Adjoining Grammars. We show which of these formalisms
is suited best for frequently occurring intentional patterns. We argue
that our grammars are cognitively comprehensible, while at the same
time helping to prune the search space for intention recognition.
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1 Introduction

The problem of inferring an agent’s intentions from her behavior is called in-
tention recognition problem. The closely related problem of plan recognition has
been discussed in AI literature since many years [1]. Approaches for plan recog-
nition differ in the way the domain and possible plans are represented. While
early work tended to be quite general, like Kautz’s event hierarchies [2], current
research is typically concerned with specialized use cases (e.g. [3]), and efficient
inference (e.g. [4]).

A class of intention recognition problems with specific need for efficient infer-
ence is mobile intention recognition. We observe a mobile user’s trajectory and
try to ‘guess’ what intentions she has in mind. These mobile problems are differ-
ent, not only because of the restricted computational and cognitive resources [5].
Mobile intention recognition problems also differ to ‘traditional’ use cases be-
cause mobile behavior happens in space. This has a number of implications. One
is that we have knowledge about the spatial context, about spatial objects, their
relations, and spatial constraints. A glance at current research on the inverse
problem, spatio-temporal planning, gives us an idea how these constraints can
look like: Seifert et al. discuss an interactive assistance system that supports in
spatio-temporal planning tasks [6]. In their example they describe the constraints
that need to be considered when planning a trip: the temporal order of activities,
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the time needed for traveling from A to B, and spatial constraints about what
actions can be performed at which location. Important about Seifert’s approach
is that the chosen hierarchical spatial structure offers a cognitively appealing
way of interaction between user and planning system, while at the same time
helping to prune the search space.

In this paper, we will see that complex constraints between intentions and
space not only give us a rich toolbox to formalize typical behavioral patterns
in mobile intention recognition, but can also speed up inference. We choose for-
mal grammars to represent intentions so that the intention recognition problem
becomes a parsing problem. Grammars are, in general, cognitively easy to under-
stand and make the connection between expressiveness and complexity explicit.
The main contribution of this paper is the combination of spatial constraints
with Tree Adjoining Grammars (TAG), a formalism from natural language pro-
cessing (NLP) that falls in complexity between context-free and context-sensitive
grammars (CFG, CSG). The idea to apply grammar formalisms from NLP to
plan/intention recognition is also followed by Geib and Steedman [7], and in own
previous work [8]. In difference to these approaches, our spatially constrained
grammars allow the formalization of complex, non-local constraints between in-
tentions and space (and not only between intentions).

The rest of this paper is structured as follows: in section 2 we explain which
steps are necessary to state a mobile intention recognition problem as a pars-
ing problem. In this context we review Spatially Grounded Intentional Systems
(SGIS) [9]. In section 3, we explain which important use cases cannot be han-
dled with SGIS, and proceed over Spatially Constrained Context-Free Grammars
(SCCFG) to Spatially Constrained Tree-Adjoining Grammars (SCTAG). Using
real motion track data from the location-based game CityPoker we discuss which
general spatio-temporal behavior patterns are handled best with which formal-
ism. The paper closes with a discussion of related work (section 4) and an outlook
on questions that remain open (section 5).

2 From Spatio-temporal Behavior to Intentions

2.1 Mobile Intention Recognition

The fact that mobile behavior happens in space and time has mainly two im-
plications: one is that we can take use of spatial information. We do not only
know the absolute coordinate of a user’s behavior, but also the spatial context.
With an according spatial model we can say that the behavior happened, for
instance, in a specific region, on a road, or close to a point of interest. We also
have information about the spatial relations between these objects [10], like in-
tersect, overlap, or north of. Depending on the specific use case, these spatial
objects also bear a certain semantics: ‘a restaurant is a place where I can have
the intention to eat something’. This is very similar to the basic intuition behind
activity-based spatial ontologies [11]. However, inferring the agent’s intention di-
rectly from her position is too simple in many situations: a mobile user passing
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Fig. 1. Segmented motion track with classified behavior sequence from a CityPoker
game. (The player enters from the right.)

by a restaurant does not necessarily have the intention to eat there. Schlieder
calls this spatio-temporal design problem room crossing problem [9].

This leads us to the second implication of spatio-temporality: the gap be-
tween sensor input (e.g. position data from a GPS device) and high-level in-
tentions (e.g. ‘find a restaurant’) is extremely large. It is not possible to design
an intelligent intention recognition algorithm that works directly on pairs of
(latitude/longitude). To bridge this gap, we use a multi-level architecture with
the level of behaviors as intermediate level between position and intention. We
process a stream of (lat/lon)-pairs as follows:

1. Preprocessing. The quality of the raw GPS data is improved. This includes
removing points with zero satellites, and those with an impossible speed.

2. Segmentation. The motion track is segmented at the border of regions, and
when the spatio-temporal properties (e.g. speed, direction) of the last n
points have changed significantly [12].

3. Feature Extraction. Each segment is analyzed and annotated with certain
features, like speed and curvature [13].

4. Classification. Using these features, each motion segment is classified to one
behavior. We can use any mapping function from feature vector to behaviors,
for instance realized as a decision tree.

As output we get a stream of behaviors. In the example from Fig. 1 we distin-
guish the following behaviors: riding (br), standing (b0), sauntering (bs), curving
(bc), and slow-curving (bcs). This track was recorded in the location-based game
CityPoker. In this game, two players are trying to find (physical) playing cards
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which are hidden in a city. The gaming area is structured by five rectangular
cache regions. In each cache region there are three potential cache coordinates
(one is drawn as a circle in Fig. 1). Cards are only hidden in one of the three
potential caches. Players can find out about the correct cache by answering a
multiple choice question. Once they have arrived at the cache, they perform
a detail search in the environment, under bushes, trees, or benches, until they
finally find the cards. They may then trade one card against one from their hand,
and continue in the game. For a complete description of the game, refer to [9].

The reason why this game is especially suited as exemplary use case is that
CityPoker is played by bike at high speed. The user’s cognitive resources are
bound by the traffic, and she does not have the possibility to interact with
the device (a J2ME enabled smartphone, localized by GPS) in a proper way.
Similar situations occur in other use cases, like car navigation or maintenance
work. Depending on the intention recognized we want to select an appropriate
information service automatically. For instance, if we recognize the intention
Find Way we will probably select a map service. It is up to the application
designer to decide whether to present the service with information push, or just
to ease the access to this service (‘hotbutton’). We will not discuss the step of
mapping intentions to information services any further in this paper.

2.2 Parsing Behavior Sequences

The stream of behaviors described above serves as input to a parsing algorithm.
Using behaviors as terminals and intentions as non-terminals, we can write rules of
a formal grammar that describe the intentions of an agent in our domain. Most plan
recognition approaches have followed a hierarchical structure of plans/intentions
(e.g. [14,15]). We should say something about the difference between plans and
intentions although an elaborate discussion of this issue is beyond the scope of this
paper. In line with common BDI agent literature, we see intentions as ‘states of
mind’ which are directed ‘towards some future state of affairs’ ([16, p.23]). We see
‘plans as recipes for achieving intentions.’ [16, p.28]. We can say that a rule in our
grammar describes a plan, while each non-terminal stands for one intention. Thus,
the aim of intention recognition is to find out (at least) the current intention.

In CityPoker, for instance, a player will certainly have the intention to Play. At
the beginning of each game, the members of a team discuss their strategy. Play-
ing in CityPoker means exchanging cards in several cache regions, so we model
a sequence of intentions as follows: GotoRegion HandleRegion, GotoRegion
HandleRegion, and so on. In the cache region players find themselves a com-
fortable place to stand, answer a multiple-choice question, and select one out
of three caches, depending on their answer. In the cache, they search a playing
card which is hidden in the environment (see the behavior sequence in Fig. 1).

A context-free production system for CityPoker is listed in Fig. 21. Gram-
mar rules like these are modular and intuitively understandable, also for non-
computer scientists. Formal properties of grammars are well-known, and parsing
1 Rules with a right-hand side of the form (symbol1|...|symboln)+ are a simplified

notation for ‘an arbitrary sequence of symbol1, ..., symboln, but at least one of them’.
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algorithms exist. The choice of the formalism depends on the requirements of
the use case. We briefly recall that with a CFG, we can express patterns of the
form anbn. As argued in [9], most intention recognition use cases need at least
this expressiveness. A typical example is leaving the same number of regions as
entered before (enternleaven). Note that parsing a stream of behaviors must be
done incrementally, i.e. with an incomplete behavior sequence. We can find the
currently active intention in the parse tree by choosing the non-terminal which
is direct parent of the current behavior.

2.3 Reducing Parsing Ambiguities by Adding Spatial Knowledge

When parsing formal grammars we easily find ourselves in a situation where the
same input sequence may have two or more possible parse trees, i.e. more than
one possible interpretation. This is especially true when parsing an incomplete
behavior sequence incrementally. One way to deal with ambiguity are probabilis-
tic grammars [17] where we have to determine a probability for each rule in the
grammar. A spatial way of ambiguity reduction is proposed by Schlieder in [9]:
SGIS are context-free production systems, like that in Fig. 2, with the extension
that each rule is annotated with a number of regions in which it is applicable. We
call this the spatial grounding of rules. For instance, a HandleCache intention is
grounded in all regions of type cache. We modify all rules accordingly. An SGIS
rule for the original rule (12) would look like follows:

HandleCache → SearchCards DiscussStrategy

[grounding : cache1,1, ..., cache5,3]

This reduces the number of possible rules applicable at each position in the
behavior sequence, thus avoiding many ambiguities. Figure 3 shows two possible
interpretations for the behavior sequence from Fig. 1: without spatial knowledge
we could not decide which of the two interpretations is correct. For parsing in
SGIS we replace the pure behavior stream (beh1, beh2, beh3, ...) by a stream of
behavior/region pairs: ((beh1, reg1), (beh2, reg2), (beh3, reg3), ...). Each behavior
is annotated with the region in which it occurs. Also the non-terminals in the
parse tree are annotated with a region (Intention, region), with the meaning that
all child-intentions or child-behaviors of this intention must occur in that region.
SGIS are a short form of writing rules of the following form (where Symbol can
be an intention or a behavior):

(Intention, regx) → (Symbol1, regx) ... (Symboln, regx)

That means, we cannot write rules for arbitrary combinations of regions. In addi-
tion, we require that another rule can only be inserted at an intention Symboli if
the region of the other rule is (transitive) child in the partonomy, i.e. in the above
rule we can only insert productions with a region regy part of regx (which in-
cludes the same region: regy.equals(regx)). SGIS have been designed for partono-
mially structured space. The nesting of rules follows closely the nesting of regions
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Production Rules for CityPoker

Play → DiscussStrategy Continue (1)
DiscussStrategy → b0 (2)

Continue → ε | GotoRegion HandleRegion Continue (3)
GotoRegion → (br|b0|bc)

+ (4)
HandleRegion → SelectCache GotoCache HandleCache (5)

SelectCache → FindParkingPos AnswerQuiz (6)
FindParkingPos → (br|bc|bcs)

+ (7)
AnswerQuiz → b0 (8)
GotoCache → (SearchWayToC |NavigateTowardsC)+ (9)

SearchWayToC → (b0|bcs|bs)
+ (10)

NavigateTowardsC → (br|bc)
+ (11)

HandleCache → SearchCards DiscussStrategy (12)
SearchCards → (CrossCache|DetailSearch)+ (13)
CrossCache → (br)

+ (14)
DetailSearch → (b0|bcs|bs|bc)

+ (15)

Fig. 2. Context-free production rules for intention recognition in CityPoker
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Fig. 3. Parsing ambiguity if we had no spatial knowledge (see track from Fig. 1).
Through spatial disambiguation in SGIS we can decide that the bottom parse tree is
correct.
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and sub-regions in the spatial model. The CityPoker partonomy is structured as
follows: the game area contains five rectangular cache regions, each of which in
turn contains three caches.

SGIS deliberately restrict us in what we can express: we cannot write rules for
arbitrary pairs of behavior and region. This makes sense from a spatial point of
view (the agent cannot ‘beam’ herself), as well as from a cognitive point of view:
as in Seifert et al. [6], the knowledge engineer is working with a representational
formalism that resembles a structure of space prefered by many individuals: a
hierarchical one [18].

3 Spatially Constrained Grammars

3.1 Spatially Constrained Context-Free Grammars

SGIS is a formalism with which we can model a variety of spatio-temporal inten-
tion recognition problems. With the spatial grounding of rules we can formalize
spatial constraints of type part of . Constraints about the temporal order of in-
tentions are formalized implicitly through the order of right-hand symbols in the
production rules.

However, the restrictions of SGIS hinder us from expressing frequently occur-
ing use cases. Consider the motion track in Fig. 1: the agent enters the cache,
shows some searching behavior, and then temporarily leaves the circular cache
to the south. Knowing the whole motion track we can decide that this is better
described as an accidental leaving, i.e. no intention change, than as a Change-
Plan intention2. For an incremental algorithm, it is not clear at the moment of
leaving whether the agent will return. It is also not necessary that the intermedi-
ate behavior is located in the parent cache region of the cache. Finally, entering
just any cache is not sufficient for accidental leaving, but we require that cache
to be the same as left before. We would need the following rule

(HandleCache, cache1,1) →(SearchCards, cache1,1),
(accidental leaving behavior, [unconstrained]),
(SearchCards, cache1,1)

We cannot formulate this in SGIS, but still it makes no sense to write rules for
pairs of (intention, region). We have already argued against this maximum of
complexity in section 2.3. At this point, we can add another argument: we would
have to write a plethora of similar rules for each cache in our game. What we
would need to formalize the accidental leaving pattern elegantly is the following:

HandleCache → SearchCards Confused SearchCards

identical

2 A player in CityPoker who has given a wrong answer to the quiz will be searching
at the wrong cache and probably give up after some time. He will then head for one
of the other caches. The ChangeP lan intention was omitted in Fig. 2 for reasons of
clarity.
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We can easily find other examples of the pattern ‘a certain behavior/intention
occurs in a region which has a spatial relation r to another region where the
agent has done something else before’. For instance, we can find use cases where
it makes sense to detect a ReturnToX intention if the agent has forgotten the
way back to some place. We could define this as ‘the agent shows a searching
behavior in a region which touches a region she has been to before’:

ClothesShopping → ExamineClothes HaveABreak ReturnToShop

touches

The definition of a new spatial context-free grammar that handles these ex-
amples is quite straightforward.

Definition 1. A Spatially Constrained Context-Free Grammar is defined as
SCCFG = (CFG, R, SR, GC, NLC), where

– CFG is a context-free grammar (I, B, P, S), defined over intentions I, and
behaviors B, with production rules P and start symbol S (the top-level inten-
tion).

– R is a set of regions
– SR is a set of spatial relations, where each relation r ⊆ R × R
– GC ⊆ P × R is a set of grounding constraints (as in SGIS [9])
– NLC is a set of spatial non-local constraints. Each constraint has a type

from the spatial relations SR and is defined for two right-hand symbols of
one production rule from P.

We introduce the grounding constraints to make SCCFG a real extension of
SGIS. However, we will not always need them, as in the CityPoker example.
The reason is that CityPoker-regions are typed according to their level in the
partonomy (cache part of cache region part of gameboard). With a SCCFG we
can rewrite the rules from Fig. 2 without spatial grounding in a specific region,
but with part of and identical relations, for instance for rules (5) and (12):

HandleRegion → SelectCache GotoCache HandleCache

identical part of

HandleCache → SearchCards DiscussStrategy

identical

SCCFG obviously have a higher expressiveness than SGIS. We can express more
spatial relations than part of, and create a nesting of relations by applying the
production rules. In difference to SGIS, the nesting of constraints is not neces-
sarily accompanied by an according nesting of regions in the partonomy. The
example above for rule (5) shows that we could also infer new relations from
those we know (HandleCache must be partof SelectCache).

In principle, we could define an SCCFG for a non-partonomial spatial struc-
ture although this might make the model cognitively more demanding.
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Fig. 4. Substitution (left) and adjoining (right) on a TAG (taken from [20, Fig. 2.2])

3.2 Cross-Dependencies: A Parallel to NLP

Quite frequently, players in CityPoker do not change a playing card although
they have found it. They memorize the types of cards they have found and their
exact position, and continue in the game. For a number of reasons it might
make sense to change in another cache region first. Sometimes they return to
that cache region at some time later in the game to change a card (without the
effort of answering the quiz, cache search, and so on). An intelligent assistance
system should recognize the intention RevisitRegion and offer an appropriate
information service. The crossed return to region pattern we would like to model
in this use case looks as follows:

HandleRegion HandleRegion RevisitRegion HandleRegion RevisitRegion

identical identical

What we need for this is a possibility to create cross-dependencies. A constrained
context-free grammar, like SCCFG, can have cross-dependencies, but only static
ones which are defined directly in the rules. No new cross-dependencies can evolve
during parsing by the operations offered for CFGs. Modeling all possibilities for
cross-dependencies statically in the rules is infeasible, even for CityPoker. Note
that more than two constraints might be crossing, and not all HandleRegion
intentions are followed by an according RevisitRegion.

As explained in [7] and [8], similar cross-dependencies occur in NLP. In some
natural languages, cross-dependencies are possible between grammatical con-
structs. If a certain tense, case, or other grammatical form is chosen for the
front non- or pre-terminal, we have to choose an according construct for the
back non- or pre-terminal. To handle such cross-dependencies, the NLP com-
munity has developed formalisms with an extended domain of locality: ‘By a
domain of locality we mean the elementary structures of a formalism over which
dependencies such as agreement, subcategorization, filler-gap, etc. can be spec-
ified.’ ([19, p.5]). In the following, we introduce one of these formalisms, and
convert it to a spatially constrained one.

3.3 Tree-Adjoining Grammars

Mildly Context-Sensitive Grammars (MCSG) are a class of formal grammars with
common properties [21]. Their expressiveness falls between CFGs and CSGs, and
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they support certain kinds of dependencies, including crossed and nested depen-
denciess. They are polynomially parsable and thus especially attractive for mobile
intention recognition.

Tree-Adjoining Grammars (TAG), first introduced in [22], are a MCSG with
an especially comprehensible way of modeling dependencies. The fundamental
difference to CFGs is that TAGs operate on trees, and not on strings. A good
introduction to TAG is given by Joshi and Schabes in [20]. They define TAG as
follows.

Definition 2. A Tree-Adjoining Grammar is defined as TAG = (NT, Σ, IT,
AT, S), where

– NT are non-terminals
– Σ are terminals.
– IT is a finite set of initial trees. In an initial tree, interior nodes are labeled

by non-terminals. The nodes on the frontier (leaf nodes) are labeled by either
terminals, or non-terminals. A frontier node labeled with a non-terminal
must be marked for substitution. We mark substitution nodes with a ↓.

– AT is a finite set of auxiliary trees. In an auxiliary tree, interior nodes are
also labeled by non-terminals. Exactly one node at the frontier is the foot
node, marked with an asterisk ∗. The foot node must have the same label as
the root node. All other frontier nodes are either terminals or substitution
nodes, as in the initial trees.

– S is a distinguished non-terminal (starting symbol).

The two operations defined on TAGs are substitution and adjoining (see Fig. 4).
Adjoining is sometimes also called adjunction. Both operations work directly on
trees. Substitution is quite straightforward: we can place any initial tree (or any
tree that has been derived from an initial tree) headed with a symbol X into
a substitution node labeled with X↓. It is the adjoining operation that makes
TAGs unique: we can adjoin an auxiliary tree labeled with X into an interior
node of another tree with the same label. This operation works as follows: (1) we
remove the part of the tree which is headed by the interior node, (2) replace it
by the auxiliary tree, and (3) attach the partial tree which was removed in step 1
at the foot node. The language defined by a TAG is a set of trees. By traversing
a tree we can certainly also interpret it as a String, just like traversing a parse
tree of a CFG. If, just for a moment, we try to interpret the two operations as
operations on Strings, we see that substitution just replaces a non-terminal by
a number of symbols. This is exactly as applying a production rule in a CFG.
Adjoining manipulates a String in a more intricate way: a part of the old String
(the terminals of the grey tree in Fig. 4) becomes surrounded by new Strings to
the left and to the right (by the left and right handside of the X∗ in the auxiliary
trees).

Joshi and Schabes later add to their definition of TAG the following Adjoining
Constraints : Selective Adjunction, Null Adjunction, and Obligatory Adjunction.
Every non-terminal in any tree may be constrained by one of these. Selective
Adjunction restrains the auxiliary tree that may be adjoined at that node to a
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(α) Play

DiscussStrategy↓ Continue

εidentical

(β) Continue

GotoRegion↓HandleRegion↓ Continue∗

part of

(γ) Continue

GotoRegion↓ HandleRegion↓ Continue

Continue∗ RevisitR↓part of

identical

Fig. 5. Initial tree (α) and auxiliary trees (β and γ) in a SCTAG for CityPoker

set of auxiliary trees. Obligatory Adjunction does the same, but at the same time
forces us to do adjoin at that node. Null Adjunction disallows any adjunction
at that node. These local constraints are important to write sensible grammars,
but will not be further discussed here due to our focus on non-local constraints.

A discussion of the formal properties of TAGs, the differences to other gram-
mars, a corresponding automaton, as well as parsing algorithms can be found in
a number of publications, e.g. [20,23,24]. For our use case it should be clear that
(1) we can easily rewrite any CFG as TAG, (2) TAGs are more expressive than
CFGs, and (3) writing a TAG is not necessarily more complicated than writing
a CFG. Instead of writing a number of production rules, we just write a number
of trees.

3.4 Spatially Constrained Tree-Adjoining Grammars

Definition 3. A Spatially Constrained Tree-Adjoining Grammar is defined as
SCTAG = (TAG, R, SR, GC, NLC), where

– TAG = (I, B, IT, AT, S), defined over intentions I, and behaviors B.
– R is a set of regions
– SR is a set of spatial relations, where each relation r ⊆ R × R
– GC ⊆ (IT ∪ AT ) × R is a set of grounding constraints
– NLC is a set of spatial non-local constraints. Each constraint has a type from

the spatial relations SR and is defined for two nodes in one tree from IT∪AT.

This definition applies the idea of spatial constraints to TAGs. The non-local
constraints are now defined between nodes in initial/auxiliary trees. The idea of
specifying non-local dependencies in TAG is not new. In earlier work on TAGs,
Joshi describes this concept as ‘TAGs with links’ [23, Section 6.2].

During the operations of substitution and adjoining the non-local constraints
remain in the tree, and become stretched if necessary. Adjoining may also lead to
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(γ adj α) Play

DiscussStrategy↓ Continue

GotoRegion HandleRegion Continue

Continue

ε

RevisitRegion↓

identical

(γ adj (γ adj α))

Play

DiscussStrategy↓ Continue

GotoRegion↓HandleRegion↓ Continue

GotoRegion↓HandleRegion↓ Continue

Continue

Continue

ε

RevisitRegion↓
RevisitRegion↓

identical

identical

Fig. 6. Adjoining in an SCTAG can lead to cross-dependencies of constraints. Non-
crossing spatial constraints are omitted for reasons of clarity.

cross-dependencies like needed for modeling the crossed return to region pattern.
Figure 5 lists part of a SCTAG that handles the re-visisting of cache regions in
CityPoker. Non-local spatial constraints are displayed as dotted lines. A complete
grammar for this use case would convert all context-free rules from Fig. 2 to trees
and add them to the grammar. This step is trivial. Figure 6 demonstrates how
cross-dependencies evolve through two adjoining operations.

3.5 Parsing Spatially Constrained Grammars

For parsing a spatially constrained grammar, we modify existing parsing al-
gorithms. CFGs are typically handled with chart-based parsers, like the well-
known Earley algorithm [25]. An algorithm for parsing TAGs, based on the
Cocke-Younger-Kasami algorithm, was proposed in [24], with a polynomial worst
and average case complexity. Unfortunately, this complexity is O(n6) and thus
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quite high. Joshi presents a TAG parser that adopts the idea of Earley and
improves the average case complexity [20].

We build the parsers for SCCFG and SCTAG on these Earley-like parsers.
Earley parsers work on a chart in which the elementary constructs of the gram-
mar are kept, production rules for CFGs, trees for TAGs. A dot in each of these
chart entries marks the position up to which this construct has been recognized.
In Joshi’s parser the ‘Earley dot’ traverses trees and not Strings. Earley parsers
work in three steps: scan, predict, and complete. Predict checks for possible
derivations and adds them to a chart. Scan reads the next symbol from the
stream and matches it with the chart entries. Complete passes the recognition
of rules up the tree until finally we have recognized the starting symbol. The
TAG parser has a fourth operation, called ‘adjoin’, to handle this additional
operation.

Our point is that adding spatial constraints to such a parser will not make it
slower but faster. The reason is that spatial constraints give us more predictive
information. ‘Any algorithm should have enough information to know which
tokens are to be expected after a given left context’ [20, p.36]. Knowing the
spatial context of left-hand terminals we can throw away those hypotheses that
are not consistent with the spatial constraints. We add this step after each scan
operation.

4 Related Work

We started this paper by saying that approaches for intention recognition dif-
fer in the way the domain and possible intentions are represented. A number
of formalisms has been proposed for modeling the mental state of an agent,
ranging from finite state machines [26] to complex cognitive modeling architec-
tures, like the ACT-R architecture [27]. With our formal grammars, which are
between these two extremes, we try to keep the balance between expressiveness
and computational complexity.

Using formal grammars to describe structural regularities is common, not
only in NLP, but also in areas like computer vision [28], and action recognition
[29]. Pynadath’s state dependent grammars constrain the applicability of a rule
dependent on a general state variable [17]. The generality of this state variable
leads to an explosion in symbol space if trying to apply a parsing algorithm,
so that an inference mechanism is chosen which translates the grammar into a
Dynamic Bayes Network (DBN).

Choosing a grammatical approach means using grammars not only for syntax
description, but implicitly assigning a certain semantics (in terms of intentions
and plans). Linguistics is also concerned with semantics, both, on the sentence
level, and on the level of discourse. Webber et al. [30], as one example for the
literature on discourse semantics, argue that multiple, possibly overlapping, se-
mantic relations are common in discourse semantics. By using (lexicalized) TAG
they describe these relations without the need for building multiple trees.
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Dependencies supported Typical spatial intention
pattern

Example

SGIS Nested: Yes
(only part-of relation)
Cross: No

Sub-intentions are located
in the same or in
sub-regions of their parent
intention. R1R2R3R4R2R1

part-of

SCCFG Nested: Yes
Cross: No
(unless statically defined
in productions)

Accidental leaving
pattern.

R1R2R3R1R4R5R1R2

part-of

touches

SCTAG Nested: Yes
Cross: Yes

Crossed return to region
pattern.

R1R2R3R1R4R1R2R1R5

part-of

touches

Fig. 7. A hierarchy of spatial grammars for mobile intention recognition

Approaches based on probabilistic networks, like DBNs, have widely been
applied in plan recognition research. Starting from Charniak and Goldman’s
Plan Recognition Bayesian Networks [31], to hierarchical Markov Models as used
by Liao et al. in the BELIEVER system [32]. The semantics of ‘goal’ in the latter
publication is ‘target location’ without a complex intention model. Bui proposes
the Abstract Hidden Markov Memory Model for plan recognition in an intelligent
office environment [33]. Geo-referenced DBN are proposed in [34] to fuse sensory
data and cope with the problem of inaccurate data.

Intention recognition approaches also differ in the way space is represented:
the simplest model consists of a number of points of interest with circular or
polygonal areas around them [35,26]. Others add a street network to these loca-
tions [32], use spatial tessellation [36], or formalize space with Spatial Conceptual
Maps [37].

The quality of our intention recognition relies on a good preprocessing. Con-
verting a motion track into a qualitative representation has been done by a
number of researchers, for instance [38]. The authors also compare a number
of approaches to generalization. For the classification of segments in Fig. 1 we
used a simple decision tree. The set of behavior types we are interested in was
chosen manually. An automatic detection of motion patterns is the concern of
the spatio-temporal data mining community, see e.g. [39].

One concern of computational and formal linguistics is to find approaches
that closely resemble the human conceptualization of language. Steedman, for
instance, argues that planned action and natural language are related systems
that share the same operations: functional composition and type-raising [40].
Combinatory Categorial Grammar (CCG) is a mildly context-sensitive formal-
ism that supports these operators. Using a ’spatialized’ version of CCG for mobile
intention recognition could be worthwhile. We chose TAG in this paper because
we belief that TAG are cognitively more appealing for knowledge engineers not
familiar with NLP concepts.
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5 Conclusion and Outlook

We have presented a hierarchy of formal grammars for mobile intention recogni-
tion: SGIS, SCCFG, and SCTAG. With increasing expressiveness we can handle
a larger number of spatio-temporal patterns which frequently occur in scenar-
ios of mobile intention recognition, like in CityPoker. Our grammars allow the
knowledge engineer to specify complex intention/space relations by using intu-
itive spatial relations, instead of writing arbitrarily complex rules for input of
behavior/region tuples. Figure 7 gives an overview on the three formalisms.

We only sketched the principle of parsing. Currently, we are specifying the pars-
ing algorithm for SCTAG formally.As a next step we will evaluate the algorithmon
the restricted computational resources of a mobile device. In this paper we treated
all spatial relations as arbitrary relations, and only mentioned that we could use
them for inference. This is also one issue of our future work. Adding temporal con-
straints could be worthwhile, like ‘the duration between these two intentions may
not be longer than a certain Δt’. Another issues that remains open is recognizing
that the agent spontaneously changes her intention [15].
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38. Musto, A., Stein, K., Eisenkolb, A., Röfer, T., Brauer, W., Schill, K.: From motion
observation to qualitative motion representation. In: Habel, C., Brauer, W., Freksa,
C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, pp. 115–
126. Springer, Heidelberg (2000)

39. Laube, P., van Krefeld, M., Imfeld, S.: Finding remo - detecting relative motion
patterns in geospatial lifelines. In: Developments in Spatial Data Handling, Pro-
ceedings of the 11th International Symposium on Spatial Data Handling, pp. 201–
215 (2004)

40. Steedman, M.: Plans, affordances, and combinatory grammar. Linguistics and Phi-
losophy 25(5-6), 725–753 (2002)

ftp://ftp.cc.gatech.edu/pub/gvu/tr/2004/04-29.pdf

	Spatially Constrained Grammars for Mobile Intention Recognition
	Introduction
	From Spatio-temporal Behavior to Intentions
	Mobile Intention Recognition
	Parsing Behavior Sequences
	Reducing Parsing Ambiguities by Adding Spatial Knowledge

	Spatially Constrained Grammars
	Spatially Constrained Context-Free Grammars
	Cross-Dependencies: A Parallel to NLP
	Tree-Adjoining Grammars
	Spatially Constrained Tree-Adjoining Grammars
	Parsing Spatially Constrained Grammars

	Related Work
	Conclusion and Outlook
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




