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Abstract   
Utility companies generally have an extensive customer base, yet their knowledge about individual 
households is small. This adversely affects both the development of innovative, household specific 
services and the utilities’ key performance indicators such as customer loyalty and profitability. With 
the goal to overcome this knowledge deficit, persuasive systems in the form of customer self-service 
applications and efficiency coaching portals are becoming the getaway of data exchange between 
utility and user. While improved customer interaction and the collection of customer data within re-
spective information systems is an important step towards a service-oriented company, the immediate 
value generated from the collected data is still limited, mostly due to the small fraction of customers 
actually using such systems. We show how to utilize the knowledge gained from the sparse number of 
active web users in order to provide low-cost and large-scale insights to potentially all residential 
utility customers. We do so using machine-learning-based Green IT artifacts that allow for improving 
decision-making, effectiveness of energy audits, and conservation campaigns, thus ultimately increas-
ing the customer value and adoption of related services. Moreover, we show that data from the publi-
cally available geographic information systems can considerably improve the decision quality.  
 
Keywords: Energy Data Analytics, Household Characteristics, Green Information Systems, Volun-
teered Geographic Information (VGI) 

 

1 Introduction  
In both the academic literature and the practitioner sphere, much attention is currently being paid to 
the value that organizations could create through the use of big data and business analytics 
(Constantiou and Kallinikos, 2015; Gillon et al., 2012; Mithas et al., 2013; Sharma et al., 2014). This 
especially holds for energy utilities for which a plethora of new efficiency regulations, new market 
models, and increasing customer expectations regarding a clean energy supply result in severe pres-
sure on their revenues (Gebauer et al., 2014). Consequently, utility companies regard an intensive 
customer engagement as an important means to protect their existing customer base, to tap new 
sources of growth, and to establish new business models.  
Despite their large and valuable customer base, the knowledge of utility companies about individual 
customers is small, especially when compared to the retail or online service sector. Data analytics and 
machine learning may help utilities to overcome this information deficit and to improve their key per-
formance indicators. In this context, energy efficiency campaigns and automated home audits are seen 
as a door opener that helps to collect initial customer insights. Recently, Loock et al. (2013) have 
shown that specific interventions are extremely valuable for energy consultancies, e.g., to identify 
households that show a mismatch between energy demand and household characteristics. Customer 
insights help to formulate suitable saving advice that reflect disposable income, appliance structure, 
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etc., and to design targeted motivational cues that engage customers into energy efficiency campaigns. 
The initial success of such systems led to ever-more persuasive systems, i.e., websites with the pur-
pose of motivating people to change their attitudes and behaviors (Fogg, 1998; Graml et al., 2011), 
while establishing a better customer interaction and collecting customer data. In the same vein, multi-
ple studies have shown that home energy audits can bring benefits to the households in terms of ener-
gy efficiency and monetary savings (Kastner and Stern, 2015; Palmer et al., 2012).  
Yet, for a variety of reasons and despite the early adoption of lead users, the great majority of utility 
customers do not to take advantage of these service offerings (Sodenkamp et al., 2015). Consequently, 
the existing portals alone may be successful in collecting in-depth data about a fraction of users but do 
not suffice to collect data about the large share of passive customers. 
In this work, we show how utility companies can use the existing data from the small number of active 
portals users to infer customer specific insights also about the users who do not subscribe to such 
online offerings. We build upon previous work (Sodenkamp et al., 2015) and provide new insights 
from a field study in cooperation with a university spinoff-company that develops and runs efficiency 
and customer insights software for about 30 European utility companies. In greater detail, we show 
how IT artifacts that utilize machine learning tools can help utility companies to transfer the customer 
knowledge gained from the limited number of portal users to their entire customer base. Energy con-
sumption data that is available for billing purposes underlies the classification. This leads to improve-
ment of the effectiveness and timeliness of energy consultancies, conservation campaigns, empowers 
decisions about personalization of products and services, and increases cost-efficiency of marketing 
initiatives at the large scale at low cost. 
Thus, the overall goal of our research is to investigate how machine learning artifacts can be used in 
combination with state-of-the-art customer engagement portals and publicly available volunteered 
geographic information (VGI) to infer customer specific information on the entire customer base of 
a utility.  
We aim to answer the following research questions: 
Research question 1 (RQ1): Is it possible to use machine learning to create an IT artifact able to find 
energy-efficiency related household characteristics from the yearly electricity consumption data?  
Research question 2 (RQ2): Can volunteered geographic information (VGI) improve the predictive 
power of the IT artifact for household classification? 
From the technical perspective, plenty of research about utility customer segmentation based on elec-
tricity consumption exists. Researchers apply clustering methods (such as Self-Organizing Maps or k-
means) to identify groups of similar consumption pattern (Figueiredo et al., 2005; Kwac et al., 2013; 
Räsänen et al., 2008; Sánchez et al., 2009; Verdu et al., 2006). The resulting clusters need then manual 
interpretation of an expert wherefore such methods cannot be applied in IT at scale.  
Research on non-intrusive load monitoring (Hart, 1992; Zeifman and Roth, 2011) showed, that the 
identification of specific appliances is possible using high-frequency meter readings (multiple meas-
urements per second). Due to the high data volume and privacy aspects (Quinn, 2009), such fine-
grained information is not appropriate for use in utility companies for practical purposes. 
Based on 15- or 30-minute smart meter and customer survey data, methods have been proposed to 
predict household characteristics such as age of house, number of appliances, family and social status, 
etc. (Beckel et al., 2013; Hopf et al., 2014; Sodenkamp et al., 2014; Beckel et al., 2014). These meth-
ods are promising, but due to the current status of European smart grid infrastructure (Einhellig et al., 
2014), the majority of households is still equipped with conventional electricity meters. Therefore, we 
transfer household classification methods and apply it to broadly available yearly electricity consump-
tion data. 
In a previous study, our team showed recently (Sodenkamp et al., 2014), that the prediction of custom-
er participation on an energy efficiency web portal is feasible based on annual electricity consumption 
and address information. In this work, we extend a similar prediction approach to infer three house-
hold characteristics (household type, living area and number of residents). 
Besides address information and electricity consumption data, we rely on publically available data 
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sources. The first reason for that is a growing availability of open public sector information (Arzberger 
et al., 2004; Janssen et al., 2012). The direct and indirect economic value of such data sources in the 
European Union is considered in the order of EUR 140 billion annually (Vickery, 2011). The second 
reason is, that currently a large amount of volunteered geographic information (VGI) data have been 
collected and published from by non-professional individuals (Goodchild, 2007; Sester et al., 2014). 
These individuals have varying expertise and contribute their work to a community. Therefore, the 
data is free of charge and very attractive for companies. Examples for VGI projects are world mapping 
projects (incl. OpenStreetMap, Wikimapia), social media (incl. Flickr, Twitter, Facebook, Youtube), 
environmental, ecological, disaster, crime and outdoor activity mapping, such as business directories.  
The rest of the paper is organized as follows: In section 2 we describe our research methodology in-
cluding our developed IT artifact with the core components. In section 3 we show how the supervised 
machine learning artifact can be operationalized to answer both research questions. Finally, in section 
4 we give a conclusion and name future research topics. 

2 Energy data analytics methodology 
Our research is designed using the design science approach (Hevner et al., 2004) with the principles 
underlined by Peffers et al. (2007). Our focus lies thereby on building a supervised machine learning 
IT artifact where we develop a novel artifact in order to solve an existing organizational problem. 
Our IT artifact is schematically illustrated in Figure 1. As an input, we consider household annual 
electricity consumption data and the address (both available to utilities for billing purpose). As an 
output, additional customer information in the form of household characteristics is obtained (house-
hold type, living area, etc.). This information is known for a part of the customers who use the en-
gagement portal and represents a ground truth underlying our supervised machine learning model. The 
data is normalized, prepared and enriched with VGI data in a feature extraction component. 

 
Figure 1: Household class prediction methodology 

2.1 Data and variables 
For the algorithm training and evaluation, we rely on a customer dataset from a Swiss utility company 
provided by our praxis partner BEN Energy AG in an anonymized way. The complete dataset (we 
name it A) encompasses 10’482 customers. For each customer, the household address (street, postal 
code and city) and the annual electricity consumption from the years 2009 – 2012 (four cumulated 
values) are available. The subsample 𝐵 ⊂ 𝐴 ( 𝐵 	= 	3’986) consists of customers who use a customer 
engagement portal and completed an online-survey about household characteristics there. The relevant 
variables of B for our research are listed in Table 1. We assume that the sample B is representative of 
the whole set of customers A. We find evidence for this assumption in the fact that the electricity con-
sumption of A and B follow the same distribution (Kolmogorov-Smirnov test statistic with  
𝐷 = 0.0284 and 𝑝 ≤ 0.0001).  



Hopf et al.  / Energy data analytics for improved service quality 

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 4 
 
 

Variable Type Description 
ID categorical Unique customer identifier 
PLZ categorical Billing address, postal code 
City categorical Billing address, city 
Street categorical Billing address, street and street number 
Cons_2009, Cons_2010, 
Cons_2011, Cons_2012 

numerical Electricity consumption in one year (min: 0, median: 4483, max: 
25’680) 

Days_2009, Days_2010 
Days_2011, Days_2012 

numerical Number of days in which the electricity consumption was creat-
ed (min: 0, median, 356, max: 366) 

HouseholdType categorical Type of the household (alternatives: apartment, house) 
LivingAreaM2 numerical Living area in m2 (min: 10, median: 125, max: 5’443) 
NumResidents numerical Number of persons living in the household (min: 1, median: 2, 

max: 10) 
Table 1: Variables in the customer dataset 

2.2 Definition of properties (dependent variables) 
Household properties are derived from the survey data. In this work, we consider three properties that 
are defined as follows: 
pHouseholdType - The variable household type was raised with the categories ‘apartment’ and 
‘house’. We use these classes directly in our IT artifact.  
pLivingArea - The variable living area takes integer values in the range of 10 to 5’443. Therefore, any 
definition of this property is ambiguous. We defined the class borders at 95 m2 and 145 m2 based on 
the following motivation: First, the class borders are empirically defined and based on quantiles.  The 
33% quantile is 100m2, the 66% quantile is 150m2, and the 99% quantile is 400m2. Since we assume 
that people estimate their living area in a survey to the next upper bound, we define the categories 5m2 
below this round number. Second, we find further evidence in our class definition in European statis-
tics (Statistical Office of the European Communities, 2014, p. 54): the average dwelling size in the 
EU-28 countries is 95.9 m2, in Switzerland it is according to the statistics 117.1 m2.  
pNumResidents - The number of residents in a household takes fewer values than the living area, but 
the variable has nevertheless a range of 1 to 10 household and the class borders can be defined ambig-
uously. We tested a set of definitions in the classification: a) 1 / 2 / >2, b) 1 / 2 / 3-5 / >5, c) 1 / 2 / 3 / 4 
/ >4, d) 1 / >1. Our results show that the definition (b) has the best trade-off between gained infor-
mation, number of classes and classification performance. Therefore, we include only this definition in 
this paper. 

2.3 Definition of features (independent variables) 
The definition of features is a crucial step during the development of a machine learning model and 
the quality of features is a key success factors for the classification performance. In the considered 
classification problem, we use two sources for the feature definition: 1) consumption data and 2) VGI. 
Both are described in detail below. 

2.3.1 Electricity consumption features 

We use features that represent the electricity consumption of one household, its development over 
time and the consumption compared to the neighborhood of the household. Thereby, we rely on elec-
tricity consumption features that showed a high importance (Sodenkamp et al., 2015).  

1. The annual consumption normalized by the consumption days: 
Mean daily consumption = Total annual consumption / Number of consumption days 
We apply the log transformation to achieve a symmetric distribution of the variable. Since the 
consumption of different years correlates highly (correlation coefficient ρ ≥ 0.87), we use the 
mean value of all years instead of including features for every year. 

2. The consumption trend as the relative change between the consumption of different years is 
used, obtained with a linear regression model of the four years of consumption. 
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3. We use neighborhood comparison as a feature. To obtain this, we calculate the mean loga-
rithm consumption and standard deviation in the postal code region and calculate the Z-score 
of the household’s consumption deviation from it’s neighborhood. 

2.3.2 Features from volunteered geographic information (VGI) systems  

Using the address information of one household, the IT artifacts retrieves geographic information from 
two popular VGI projects: OpenStreetMap and GeoNames.org.  
GeoNames.org is a large collection of geographic places. The database contains currently over 10 
million geographical names and their locations worldwide. We use the data source to obtain the dis-
tances to nearby city centers with a population of 1’000, 5’000 and 15’000. 
OpenStreetMap.org (OSM) is the largest map maintained by volunteers (Ballatore et al., 2013). OSM 
contains vector-based geographical information that consists of points and lines between points, anno-
tated with semantic information.  
The calculation of features is schematically illustrated in Figure 2. In total, we implemented 66 geo-
graphic features from the available data in the VGI projects. We adopted spatial landscape metrics 
from geographic information science (Baskent and Jordan, 1995; Gustafson, 1998) to define the fea-
tures. 

 
Figure 2: Overview to the feature calculation process, information sources and feature sets 

All geographic features can be subsumed under four categories: 
1) Topologic features: describing the structure of and relations between one household and spa-

tial neighbors (e.g. lon./lat., frequency objects in the surroundings, distance to city center) 
2) Landmarks and points of interests: Meaning of an object within the spatial context it appears 

(frequency, distance, and other measures to sights, public institutions, shops, cafes, etc.)  
3) Features about buildings (e.g. mean/variance of the surface area, the distance to buildings, 

and the type of buildings in the surrounding) 
4) Features about land use (land use type embracing the household, area distribution in different 

land use types, etc.) 

2.3.3 Correlation based feature selection  

Since the number of features (3 consumption features and 66 geographic features) would hamper the 
classification performance due to the course of dimensionality (Guyon et al., 2003), we applied corre-
lation-based feature selection (Hall, 1999) with the implementation of Romanski and Kotthoff (2014) 
before the classifier training.  
In our evaluation, the logarithmized mean daily consumption and the the lat./lon. coordinates of the 
household have been mostly selected by the CFS method for all properties. Beside these features, the 
area of the next building was selected for pHouseholdType and pNumResidents. The number of public 
institutions and the existence of public transportation showed a high importance for pLivingArea and 
pNumResidents.     
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2.4 Classification algorithms 

We tested four classifier for their suitability in our classification problem and implemented our IT 
artifact in the statistical programming environment GNU-R. The algorithms are explained shortly: 

k Nearest Neighbors (kNN) infers the class by considering those k training instances with the lowest 
Euclidean distance to the example that is to be classified. We use normalize all variable inputs to a 
codomain of [0;1], because the kNN classifier is sensitive to the ranges of the input variables (Han et 
al., 2012). We rely on the implementation of Wing et al. (2015) and tested various values for k and 
found out that k=15 work best for our classification problem. 

Support Vector Machine (SVM) was proposed by Vapnik and Vapnik (1998). The algorithm searches 
for a hyper plane in the vector space that separates all training examples with a maximal margin. In the 
case of not separable training data, a kernel-function is used that transforms the training vector into a 
higher dimension. We tested four different kernels, varied the parameters of SVM in 317 configura-
tions, and found that the radial basis kernel having a coefficient of 50 and a cost of misclassification 
parameter of 50 leads to the best results with the SVM-implementation of (Meyer et al., 2014). 

Random Forest (RF) – This algorithm generates multiple low correlated decision trees that are learned 
and evaluated with ensemble methods (Breiman, 2001). In our artifact, we use the implementation of 
(Hothorn et al., 2006; Strobl et al., 2008).  

Naïve Bayes (NB) – Bayesian classifier predict the class membership based on a probability that a 
given data point belongs to the class. The probabilities needed for this prediction are calculated by 
means of the Bayes’ theorem. In our analysis we use the implementation of (Meyer et al., 2014). 

We choose kNN and SVM because of good performance in previous works (Beckel et al., 2014; 
Sodenkamp et al., 2014). Since both algorithms are unsuitable to handle categorical features (e.g. 
building type, land-use type), we additionally considered RF and NB. 

3 Demonstration and evaluation of the methodology with real-
world data 

In this section we operationalize our IT artifact to address both research questions. To quantify its 
performance, we count the number of correct and misclassified examples in comparing the predicted 
household classes with ground truth data (as described in Section 2.1). To obtain a robust calculation 
of the performance measures, we use 5-fold cross-validation (Stone, 1974) and calculate two perfor-
mance measures: Precision and Accuracy. However, a number of 10 folds is considered as ideal for 
general classification problems (Kohavi, 1995; Kuzey et al., 2014), but in our case we choose 5-fold 
cross-validation, because of the class distribution of the household properties (we took into account for 
at least 20 examples to belong to each class for evaluating the performance). 
Precision (Pr) is a measure for one single class and quantifies the amount of correct classified exam-
ples (true positives) among the positively predicted examples (true positive and false positive):  

Pr = true pos. / (true pos. + false pos.)  
The codomain of precision is [0;1], where 0 indicates that no household was correctly predicted, and 1 
means that all positive predicted households belong truly to the predicted class. 
Accuracy (Ac) is a measure for one household property that quantifies the correct classified examples 
(true positives and true negatives) among all examples: 

Ac = true pos. + true neg. / (true pos. + true neg. + false pos. false neg.) 
We compare the classification accuracy with the size of the biggest class as a proxy for randomly 
guessing the right class. Both performance measures are commonly used in classifier evaluation (Han 
et al., 2012; Sokolova and Lapalme, 2009). 
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RQ 1: Is it possible to use machine learning to create an IT artifact able to find 
energy-efficiency related household characteristics from the yearly electricity 
consumption data? 
To answer this question, we look at the classification accuracy for all properties as depicted in Figure 
3. The precision results for all classes are included in Figure 4. Both plots show the average classifica-
tion accuracy and precision calculated with the cross-validation for each classifier (4 different sym-
bols) and with three different feature sets: consumption features (red / leftmost symbols) consumption 
and VGI features (green / symbols in the middle), and only VGI features (blue / rightmost symbols).  

 

Figure 3: Average classification accuracy with consumption and geographic features, compared with 
the class size as minimal benchmark for the classification performance 

 
Figure 4: Classification precision for each class with consumption and geographic features, com-

pared with the class size as minimal benchmark for the classification performance 

The classification results show that supervised machine learning based on electricity consumption data 
and the household address (consumption features) can predict household classes with an accuracy 
between 49.4% and 68.7%. This is, averaged over all properties and classifier 28.7%, higher than a 
random guessing of the biggest class. On single-class level we can see a significant improvement in 
precision, too: the average improvement of the classification with consumption features is 80%. The 
largest achievement of classification is thereby the recognition capability of small classes (small 
dwellings with lower than 95m2 floor area and single households). 
Our first research question can therefore be answered positively: Information on customers that 
are active on an energy-efficiency web portal can be used to enrich customer data of non-portal users. 
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RQ 2: Can VGI improve the predictive power of the IT artifact for household 
classification? 
To answer this question, we compare the classification results not only with the class sizes, but also 
with the classification results of our classification with solely consumption features.  
For property living area we see an improvement of 12.55% due to the addition of VGI features with 
the RF classifier (from Pr 43.47% to Pr 48.92% in class ‘95m2 – 145m2’). Especially households with a 
size > 95m2 can be recognized with higher performance by using geographic features and RF / SVM 
classifier. The largest improvements in classification with VGI data can be found in property house-
hold type (‘apartment’ by 7.63% and ‘house’ by 17.68% with the RF classifier). There is no actual 
improvement of VGI data for the recognition of the number of residents, because the geographic fea-
tures have not been selected by the CFS method for this classification settings. 
It is particularly interesting that small dwellings and the household type can be recognized without any 
electricity consumption on a high level (decrease in accuracy 6.8% compared to the classification with 
geographic and consumption data, see blue rightmost symbols in Figure 4). Compared to the relative 
class size, the property household type can be recognized 42% better than a random guessing (Ac 
72.35% compared with 50.87% size of the biggest class). This opens the possibility to use the house-
hold classification methodology not only for electric utilities, but also to all companies that deal with 
large end-use customer data. 
We can answer our second research question positively: VGI data can improve the classification of 
household characteristics. We could achieve a mean improvement of 7.0% for pLivingArea and of 
12.7% for pHouseholdType resulting from the use of VGI data. 

4 Summary and outlook 
In this paper, we have shown the potential of data analytics to becoming a valuable and scalable deci-
sion support mechanism for energy utility companies. In particular, we have demonstrated how ma-
chine learning artifacts can be used in combination with state-of-the-art customer engagement portals 
and publicly available data sources to infer household specific information on the entire customer base 
of a utility. As a result, even a limited number of data points per household (yearly electricity con-
sumption) is sufficient to extract properties of the residencies that are crucial for targeted efficiency 
campaigns and personalized customer communication. In a nutshell, the developed artifact enables 
utility companies to gain insights about millions of individual customers within short time and at scale. 
Furthermore, publically available data (e.g., from volunteered geographic information (VGI) systems) 
can significantly improve the recognition quality.  
Our future work will be dedicated to further investigate the results of the best classification algorithms 
with respect to interesting patterns between single VGI features. Besides that, we are going to include 
further open data sources (e.g., public statistics, cadastral data, satellite pictures) in our artifact and 
apply further feature selection methods to improve classification results. Furthermore, we will expand 
the number of potentially valuable household characteristics and test applicability of different analyti-
cal methods. We also plan to estimate the robustness of the presented methodology using other da-
tasets (customers from other geographical regions). Finally, field studies on the enabled interventions 
toward selected household classes and their economic and ecological effects will be provided to com-
plete the validation. 
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