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A B S T R A C T

Heat pumps play an essential role in decarbonizing the building sector, but their electricity consumption
can vary significantly across buildings. This variability is closely related to their cycling behavior (i.e., the
frequency of on–off transitions), which is also an indicator for improper sizing and non-optimal settings and
can affect a heat pump’s lifetime. Up to now it has been unclear which cycling behaviors are typical and
atypical for heat pump operation in the field and importantly, there is a lack of methods to identify heat
pumps that cycle atypically. Therefore, in this study we develop a method to monitor heat pumps with energy
measurements delivered by common smart electricity meters, which also cover heat pumps without network
connectivity. We show how smart meter data with 15-minute resolution can be used to extract key indicators
about heat pump cycling and outline how atypical behavior can be detected after controlling for outdoor
temperature. Our method is robust across different building characteristics and varying times of observation,
does not require contextual information, and can be implemented with existing smart meter data, making
it suitable for real-world applications. Analyzing 503 heat pumps in Swiss households over a period of 21
months, we further describe behavioral differences with respect to building and heat pump characteristics and
study the relationship between heat pumps’ cycling behavior, energy efficiency, and appropriate sizing. Our
results show that outliers in cycling behavior are more than twice as common for air-source heat pumps than
for ground-source heat pumps.
1. Introduction

Alongside increasing energy prices and ambitious targets to reduce
greenhouse gas emissions, considerable attention is being paid to the
energy needs of the building sector. The International Energy Agency
(IEA) states that almost half of buildings’ energy demand is used for
space and water heating. The associated CO2 emissions reached an all-
time high of 2.5 Gt in 2021 [1]. Consequently, a large-scale deployment
of clean and efficient heating technologies is needed to reach emission
targets. Electric HPs are a central pillar in this context because they
can reduce greenhouse gas emissions when replacing natural gas or
oil furnaces [2,3]. The amount of savings depends on the primary
energy for the electricity that is consumed by the HP [4]. Accordingly,
this favors countries with a high share of electricity generation from
renewables, nuclear power and/or hydropower. The authors of [5]
show that per TJ of heating energy, HPs in Belgium could save up
to 47 t of CO2, whereas in Switzerland it could even be up to 61 t.
Consequently, HPs have become a backbone of many policymakers’
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carbon mitigation plans. As a result, the global stock of HPs has
achieved an average annual growth rate of 10% over the past five years,
sometimes with the help of subsidies. More than 190 million HPs are
in operation worldwide [1], and the IEA estimates that 600 million HP
installations are required by 2030 to cover 20% of buildings’ heating
needs [6].

In theory, HPs are highly efficient devices. In practice however,
many HPs have a significantly higher electricity consumption and lower
efficiency than stated by their manufacturer [3,7–10]. Hence, there is a
large potential to optimize HPs in the field. The authors of [10] showed
that half of the 297 Swiss households studied achieved average savings
of 1,805 kWh (15.2%) per year after their HPs were optimized by an
energy consultant. The large gap in HP performance has multiple rea-
sons. First, the seasonal performance depends on weather and climate
conditions [11–13]. Second, non-optimal planning in the form of over-
or undersized HPs leads to inefficient operation [12,14,15]. Third, heat
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pumps can show faulty or unwanted behavior [16,17]. Lastly and most
commonly, HPs can operate without faults but suffer from misconfig-
urations. A study estimates that 40% of modern heating, ventilation
and air conditioning (HVAC) systems are misconfigured [18]. Such mis-
configurations include unsuitable heating curve settings, unfavorable
cut-off temperatures and wrong bivalent temperatures, which are all
closely linked to HP performance [19,20].

The consequences of inefficient HP operation are severe. As the
energy consumption of an HP accounts for 90% of its carbon diox-
ide equivalent emissions [21], the emissions savings associated with
HPs highly depend on their electricity consumption. In this context,
a study [21] finds a 4% decrease of life cycle climate performance
when the coefficient of performance of an HP is improved by 5%.
Moreover, HPs are typically associated with high upfront costs, so
operational costs play a critical role in making HPs financially attractive
compared to fossil-based heating solutions such as gas boilers [22].
High operational costs can create mistrust in the technology and can
slow down the endeavors to decarbonize the heating sector. Lastly,
the inefficiencies have implications for the grid. Already now, utilities
need solutions to respond to the increased electricity demand from
HPs [23,24]. A study which simulates an HP penetration of 100% in
Great Britain [25] found that this scenario could cause the national
annual electricity demand to rise to 189 TWh, which corresponds to an
increase of around 60%. Another UK-based study found that the peak
grid demand increases by 14% if 20% of households use HPs [26] - a
phenomenon that is amplified when many HPs operate outside of their
optimal working conditions.

As a result, many manufacturers develop digital solutions for re-
motely monitoring the systems of their own customer base. However,
these solutions still face several problems. First, existing products fo-
cus more on breakdown prevention and less on efficiency improve-
ments [27]. Second, there are no standards for cross-manufacturer data
exchange [28], nor is there a unified service, limiting the ability of
owners to monitor their HPs if their manufacturer does not offer a
service. Moreover, most of the currently installed HPs do not have a
network connection [29]. Consequently, these HPs are not covered by
digital service offerings even though they will remain in operation for
years or decades.

However, a parallel development in recent years can serve as an
important transitional technology. The deployment of smart electricity
meters (SMs) could form the basis for more widespread efficiency
services. A study reports that in 2019, 94.8 million SMs were installed
in the United States, and in 2016, China already counted more than
350 million devices [30]. Another recent report from 2022 also shows
significant progress in smart meter deployment in Europe [31]. Most
EU countries are expected to achieve a deployment rate of at least
80% by 2025. Ten countries have already achieved this and are in the
process of adopting second-generation devices. As a result, smart meter
data (SMD) is becoming increasingly available at the household level,
offering new opportunities for monitoring high-load devices in the grid,
such as HPs [27].

In this context, our work is a first step towards a unified service
for remotely monitoring HPs in residential buildings using SMD. We
focus on evaluating HP cycling behavior (i.e., the frequency of switch-
on and switch-off operations) as it affects performance and mean time
to failure, and is an indicator of improper sizing and non-optimal
settings [32–35]. Therefore, we analyze and describe the cycling of 503
HPs in the field in Switzerland over a 21-month period. To the best of
our knowledge, this is the first study to monitor HP operation on such
a large scale with SMD. To this end, our work particularly makes the
following contributions:

• We show that cycling behavior can be derived from common
smart meter data. We present an algorithm that extracts key
indicators from 15-minute resolution data available for the vast
2

majority of smart electricity meter installations.
• We show that operational characteristics related to cycling allow
for the detection of outliers with respect to energy consumption
and (in)appropriate sizing of HPs. This is advantageous because
it does not require contextual information.

• We identify thresholds for atypical cycling behavior of HPs and
describe behavioral differences with respect to building and HP
characteristics.

The results are valuable to HP manufacturers and energy con-
sultants, who can benefit from decision boundaries that allow them
to identify malfunctioning equipment. The work is also relevant for
companies developing remote services. The algorithms we propose can
serve as a basis for monitoring HPs, even if they are connected not
through the internet but through traditional SMs. This makes it possible
to include most HPs in modern service offerings, since a large propor-
tion of households is equipped with a SM. Finally, our work presents
a promising use-case for utilities, which can use SMD to monitor HP
activity and leverage their flexibility for demand response programs
or targeted energy efficiency campaigns. A more detailed description
of the benefits of our approach in terms of applicability to real-world
use-cases is given in Section 5.3.

The remainder of this paper is structured as follows: First, we pro-
vide an overview of related work (Section 2). Afterwards, we introduce
our data set (Section 3.1), cluster households by their building and
HP characteristics (Section 3.2), and evaluate them in terms of energy
efficiency and appropriate sizing (Section 3.4). Next, we derive infor-
mation about each HP’s individual cycling behavior (Sections 3.6 and
3.7) before including the effect of outdoor temperature (Section 3.8).
This information is then used to detect HPs that cycle atypically (Sec-
tion 3.9). In Sections 4 and 5, we report and discuss corresponding
results considering different building and HP characteristics. Lastly,
Section 6 provides a summary and conclusion.

2. Related work

In the following, an overview of existing work on HP cycling and
HPs in the context of SMD is provided.

2.1. Heat pump cycling

The heat load of a building increases with decreasing outdoor
temperatures. In order to ensure heating comfort, the heating curve
defines increasing set-point temperatures as outdoor temperatures de-
crease [36]. Usually, the heating control monitors the return water
temperature to adjust it to the set-point temperature [33]. Therefore,
HPs show heating activity while the return temperature is lower than
the set-point temperature. This leads to regular switch-on and switch-
off events and thus, a cycling behavior. In the following, we refer to the
time between consecutive switch-on and switch-off events as a cycle.

Power consumption during standby and off phases is negligible [37].
Instead, a significant amount of energy is consumed during heating
cycles. Therefore, a few studies have investigated the relationship be-
tween heating cycles and energy consumption and found a strong corre-
lation between short cycles and energy losses [32–34]. The study [32]
puts these losses at 5%–30%, while [14] reports 12%. The reason for
the cycling losses is that during the start-up phase of HPs, the delivered
heating power is reduced until a steady state is reached [33]. This
time interval depends on the characteristics of an HP. For example,
in the study of [32], the HP reaches 90% of the steady-state value
after 3 min, which the authors consider relatively short. The same
study [32] concludes that a minimum time of 15 min between two
consecutive cycles should be ensured. The work of [38] comes to a
similar conclusion with a minimum run time of 20 min per cycle. Since
a recurring cause of short cycles is inefficient defrosting schedules [35],
short cycles occur more frequently in air source heat pumps (ASHPs)
than in ground source heat pumps (GSHPs) [34]. Moreover, frequent
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cycles reduce the lifetime of HPs [39]. However, it is not only start-
up losses that reduce performance; long run times [32], which often
relate to weather, do as well. As outdoor temperatures decrease, the
thermal output of an HP system also decreases, and consequently the
run time of the HP increases to compensate for this [34]. It can be
concluded that neither short nor long cycles are desirable and that
run time monitoring and optimization can improve the overall system
performance [40,41]. Further, an evaluation of cycling behavior must
take outdoor temperatures into account.

In addition to outdoor temperatures, other factors influence the
cycle length and number of cycles; for example, HP sizing, as described
in [42,43]. On the one hand, an undersized HP may run almost con-
tinuously, sometimes even alongside conventional water heaters, likely
offsetting or even reversing the energy savings associated with the
smaller HP size. On the other hand, oversized HPs tend to cycle on
and off frequently, resulting in shorter cycles and negatively affecting
performance. Another factor of influence is the type of HP installed in
terms of its modulation capacity [44]. In the work of [33], a 12% drop
in performance is observed when a fixed speed HP is used compared to
a variable speed HP. A fixed speed HP can only rotate the compressor
at a single speed and tends to have more and shorter cycles [29].
In contrast, a variable speed HP can modulate compressor speed to
regulate for heat demand, which typically results in higher total run
times but fewer on–off transients [29]. Finally, the installation of a
buffer tank can also increase the length of a single cycle and decrease
the number of cycles [34].

The studies presented give a good indication of the fundamental
importance of HP cycling for energy efficiency. However, they all
have in common that they analyze only a few individual HPs under
laboratory conditions or in test houses and up to now it has been
unclear how HPs operate in different homes. This is a fundamental
difference to our study because we analyze 503 HPs in the field to
investigate commonalities and differences in terms of cycling behavior.
Additionally, none of the existing studies explains which cycling behav-
iors are typical or atypical for HPs, whereas we identify HPs that cycle
atypically. Moreover, our work differs from previous studies in terms
of the type of data used. Existing work uses HP sensor data and known
contextual information because both are available for test houses or in
laboratory environments. However, for real-world applications, meth-
ods are needed that can deal with missing contextual information or
use publicly available data sources. Therefore, we derive context using
a national building register database and a geographic information
system. While this information is useful for evaluating energy efficiency
and appropriate sizing of an HP, our method to evaluate the HP
cycling behavior does not require this contextual information. Further,
instead of sensor data, we use smart meter data because it is commonly
available, can cover HPs that are not connected to the internet, and is
independent of the HP manufacturer, making it suitable for wide-spread
energy efficiency services. In this context, below, we briefly review
existing related work at the intersection of SMD and HPs.

2.2. Heat pumps and smart meter data

The presence of HP systems in residential buildings can be predicted
by combining SMD with weather data [45,46]. While [45] uses data
at 15-minute resolution and [46] at daily resolution, both have in
common that they extract features from time series to use as input
for classification algorithms. A similar approach is used in [29], where
variable and fixed speed heat pumps are distinguished using SMD. An
extension of HP detection with SMD is non-intrusive load monitoring,
also known as load disaggregation. In the context of heating, the goal
is to isolate heating-related patterns from the SMD when the heating
system is measured along with other appliances. Since this area is
reviewed in [47–49] in general and in [50] with a particular focus on
HVAC systems, we do not discuss it in detail here. However, we note
3

that only a few works disaggregate HP patterns from low resolution
energy data (e.g., 15 min as in our case). Most studies either use data
with higher frequencies and dimensions [51–55], or they focus on other
devices with rather constant power consumption such as electric resis-
tance heaters [56–58] or electric water heaters [59–61]. However, two
studies extract HP patterns from low-resolution SMD using clustering
algorithms [62,63]. The first work [62] uses SMD with a resolution of
5 minutes and clusters dominant on and off activities found by a peak
detection algorithm. This also means that the proposed solution cannot
cope with variable speed HPs, where power consumption modulates in
small steps proportional to compressor speed [29], and the study lacks
an evaluation using SMD with a more common resolution of 15 min.
The second work [63] uses hourly data, but does not aim to isolate and
obtain a complete HP pattern. Instead, an HP pattern is automatically
divided into flexible and non-flexible loads. What both studies have in
common is that they are ultimately used to estimate flexibility as part
of demand response programs. Other studies also look at HP scheduling
in this context [64–68]. For example, a study from the Netherlands
investigates the flexibility of HP schedules to reduce operating costs
by using dynamic tariffs [69] and another work uses SMD and Wi-Fi
data to detect occupancy and propose HVAC schedules in commercial
buildings [70].

In summary, previous work on HPs and SMD has focused on de-
tecting HP installations, isolating their patterns from comparably high
frequency measurements, or estimating flexibility for demand response
programs. There is a lack of work monitoring active HPs in operation
with SMD. However, more importantly there is no study to identify HPs
which operate energy inefficiently, are inappropriately sized, or cycle
atypically using SMD, which is addressed in this study.

3. Methods

In this section, the data set is described, the methods for evaluating
the HP cycling behavior are explained, and the baseline models serving
as ground truth with respect to HP energy efficiency and appropriate
sizing are derived.

3.1. The data set

The data set includes 503 single-family houses in Switzerland with
an observation period from January 2021 to September 2022 (21
months). Each household has an HP for heating purposes, but no
photovoltaic system.

Smart Meter Data: For each household, we use the measurements
f HP electricity consumption in kWh in 15-minute resolution. The HP
s measured separately from other appliances. Each SMD time series
iffers in terms of start and end dates and missing data. The average
ata availability per household over the entire period is 61%. Each HP
as an average of 395 days of data without outages.

Temperature Data: To enrich the SMD with data on average out-
oor temperature in daily resolution, we use the address of each
ousehold and query a paid weather service. It individually finds the
earest weather station and returns the temperature measurements
in ◦C) as integers without decimal places, e.g. 𝑡𝑎𝑣𝑔 = 5◦C.

Meta Data: For 342 households (i.e., 68%), the installed electric
ower of the HPs in kW is known through the utility company. Addi-
ionally, we use the address of each household to look up the building
ear and heated floor area from the Swiss building register [71]. A
tudy on behalf of the Swiss Federal Office of Energy [72] suggests
pplying a correction factor of 1.15 to the heated floor area and treating
loor areas outside the range of 70–400m2 as outliers. We follow this

advice and treat the outlier households as if the information was not
available. Accordingly, we do the same in terms of the building year
with buildings that were built before 1700. Additionally, for some
households, no entry is found in the building register, or the corre-
sponding fields are not filled. In total, this leads to the heated floor

area being available for 393 households (i.e., 78%) with a median of
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Table 1
Characteristics of the clusters of households, when applying K-Means clustering to each
of the meta data variables individually.

Category Cluster Count Minimum Mean Median Maximum

Building Size
(Floor Area in m2)

small 157 74.75 151.00 151.80 188.60
medium 167 189.75 226.79 224.25 267.95
big 69 269.10 309.35 305.90 391.00
unknown 110 – – – –

Building Age
(Building Year)

old 21 1732 1813 1820 1876
medium 60 1888 1947 1954 1974
new 308 1976 2002 2004 2016
unknown 114 – – – –

HP Size
(Electric Power in kW)

small 229 1.00 2.89 3.00 4.34
medium 95 4.40 5.83 5.50 9.00
big 18 9.70 12.67 12.00 18.00
unknown 161 – – – –

HP Type
air source 188 – – – –
ground source 125 – – – –
unknown 190 – – – –

207 m2. The building year is available for 389 households (i.e., 77%)
ith a median of 2002. Lastly, we again use each household’s address

o extract the existence of a drilling profile through a publicly available
eographic information system [73]. If an entry is found, we define a
P with a drilling profile as ground source and without as air source
eat pump. For 190 households (i.e., 38%), no entry is found. We mark
he corresponding HPs to be of unknown type. The other 313 (i.e., 62%)
re composed of 125 ground source (i.e., 40%), and 188 air source heat
umps (i.e., 60%).

.2. Categorizing households by characteristics

Next, we form groups of similar households to describe and compare
he behavior of their HPs in a later step. For this purpose, we use
he contextual information of each household as derived earlier: the
uilding year, the heated floor area, and the installed electric HP power
see the previous section on the meta data of our data set). If this
nformation is unknown for a household, we immediately assign the
ousehold to a cluster named unknown. For all other households, we

apply K-Means clustering in a one-dimensional manner to each variable
individually and set the cluster size to 3 (initialization of K-parameter).
The reasons are that the clusters become easily interpretable by their
cluster centers and that they can be combined in a flexible way. Hence,
a household is clustered multiple times but only once for each variable.
The clustered heated floor area refers to the size of the house (small,
medium, big, unknown). Similarly, the installed electric HP power
serves as metric for the size of HP installation (small, medium, big,
unknown), and the building year as metric for the building age (old,
medium, new, unknown). Additionally, since the HP type is categorical,
we interpret it as already being clustered (air source, ground source,
unknown). Table 1 shows the results of this process and provides
the final characteristics of each cluster in terms of cluster size, and
minimum, mean, median, and maximum of the observations within a
cluster.

3.3. Daily observations and heating applications

In what follows, the behavior of HPs is analyzed in daily obser-
vations for several reasons: First, by choosing a daily resolution for
the extraction of cycling metrics, they can be matched to the weather
variables that are available in daily resolution. Second, daily behavior
is easier to interpret; for example, behavior on a cold winter day can be
compared to behavior on a spring day with mild temperatures. Third,
smart meters in our setting report the measurements of an entire day
all at once. Hence, if data is missing, it is missing for an entire day and
there are no gaps in SMD within a day. Fourth, heating systems have
some inertia and do not respond immediately to changes in outdoor
temperature because insulation keeps heat in the building. Therefore,
interpreting the cycling response with a resolution of a few minutes or
4

hours is not useful without detailed information about the underlying
exergy models of individual buildings.

In addition, this work focuses on HPs in heating mode, but not on
cooling or hybrid applications. We limit our descriptions and analyses
to identify conspicuous HPs on days with average outdoor temperatures
of 0–12 ◦C. We choose the upper limit of 12 ◦C because according to
he Swiss standard, days with an average outdoor temperature below
his value are heating days [74]. Accordingly, we choose the limit of
◦C because below this value, an HP may not operate in monovalent
ode but may be supported by an electric auxiliary heater [19]. In

ddition, days with average temperatures below 0 ◦C are rare in central
urope, so incorrect conclusions may be drawn from distributions with
ew observations at cold temperatures.

.4. Evaluating energy efficiency and appropriate sizing of heat pumps

To evaluate the energy efficiency and the appropriate sizing of each
P, we use the corresponding distribution of daily energy consumption
nd contextual information on heated floor area and electrical power.

.4.1. Normalizing daily energy by degree day:
Typically, an HP’s energy consumption increases with decreasing

utdoor temperatures. This means that the distribution of daily energy
epends on temperature. To make the HPs comparable without weather
ffects, we use a common approach that normalizes the daily energy
ums by a simple division by degree day, as done for example in [75].
e use a base temperature 𝑡𝑏𝑎𝑠𝑒 of 20◦C, which is the Swiss norm

alue of an artificial indoor temperature setting [74]. Then we compute
he degree day (in ◦C) from the average outdoor temperature 𝑡𝑎𝑣𝑔 as
ollows:

egree day = |𝑡𝑎𝑣𝑔 − 𝑡𝑏𝑎𝑠𝑒| with 𝑡𝑏𝑎𝑠𝑒 = 20◦C (1)

.4.2. Calculating energy intensity as a measure of energy efficiency
A common approach to assess the energy efficiency of residential

uildings is to calculate energy intensity [75]. This approach assumes
hat a building’s energy consumption is proportional to its floor size.
herefore, for each HP, we divide the daily energy values, already nor-
alized by degree day (Eq. (1)), by the heated floor area. The median is

hen calculated from the resulting distribution. For better readability,
e refer to this single value in the following only as energy intensity

in kWh∕m2∕◦C). It can be viewed as a measure of energy efficiency
hat makes the HPs comparable in energy consumption regardless of
uilding size and temperature. An HP with high energy intensity can
e considered less efficient than an HP with low energy intensity.

.4.3. Calculating utilization as a measure of appropriate sizing
To assess whether an HP is appropriately sized, we calculate its daily

tilization 𝑢𝑑𝑎𝑦 (in %) using the daily energy 𝐸𝑑𝑎𝑦 (in kWh) and the
nstalled electrical heat pump power 𝑃𝐻𝑃 (in kW) as follows:

𝑑𝑎𝑦 =
𝐸𝑑𝑎𝑦

𝑃𝐻𝑃 ∗ 24ℎ
∗ 100% (2)

Again, we divide the daily utilization values by degree day values
(Eq. (1)) to eliminate the effects of outdoor temperature and then
calculate the median daily utilization of each HP from the corre-
sponding distribution. In what follows, we refer to this value only as
utilization (in %∕◦C) and consider it a measure of appropriate sizing
that is independent of weather and HP size. An HP with very low
utilization can be considered rather oversized, while an HP with very

high utilization can be considered rather undersized.
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Fig. 1. Example of the different steps of extracting cycles from smart meter data.
For better understanding, in the first graph the energy measurements (in kWh) are
converted into power (in kW) by multiplying them by four.

3.5. The role of contextual information

The evaluation of energy efficiency and appropriate sizing of HPs is
possible with SMD and contextual information. However, usually such
required information (e.g., about the heated floor area and electrical
power of each HP) is not known or difficult to obtain [76]. In this
study, the address of each household is used to extract these parameters
from the Swiss building register. Nevertheless, even in this advanta-
geous scenario, the heated floor area is unknown for about 22% of
households, and the electrical power for about 32% of HPs. An even
more common scenario is that due to privacy constraints, the address is
either unknown or cannot be used, making the use of national building
register databases impossible [77]. Also, most countries do not offer a
well-maintained building database like Switzerland. Therefore, we de-
velop a solution to assess whether an HP requires special monitoring or
exhibits conspicuous behavior by relying solely on SMD at common 15-
minute resolution and temperature data at daily resolution measured by
a local weather station nearby. Not only the SMD but also the weather
data is usually available to utilities because the city or region from
which the SMD originates is known. The cycling behavior of an HP is a
meaningful indicator of whether it is energy efficient and appropriately
sized (see Section 2.1). Therefore, in the following, we develop a
novel method to extract HP cycles from SMD, derive key indicators
to describe the cycling behavior, and consequentially identify HPs that
cycle atypically. In this way, our method is independent of additional
contextual information and therefore suitable for large-scale real-world
applications.

3.6. Extracting heat pump cycles

In the following, we explain how we extract heating cycles of
the individual HPs from SMD. For better readability, we only briefly
describe each step in this section and provide detailed descriptions
of the algorithms in the appendix (Appendix A.1). Fig. 1 serves as
supporting graphic, which provides an example of the different steps.

Step 1 – Estimating Baseload: Even in standby mode, an HP has an
5

energy consumption that is slightly above zero [29]. The control unit
Table 2
Description of the metrics that serve as key indicators for daily cycling behavior.

Metric Description Unit

Operating Hours Sum of cycle durations.
Describes total hours of cycling
activity per day.

h

Cycles Sum of on-transients.
Describes total number of cycles per
day.

#

Cycles/Operating Hours Sum of on-transients divided by sum
of cycle durations.
Describes number of switch-on
operations per hour of cycling.

#/h

Average Cycle Length Average of cycle durations.
Describes average length of a single
cycle. Equal to the inverse of
cycles/operating hours.

h

causes a baseload, which we estimate individually for each HP from the
distribution of SMD measurements. (Algorithm in Appendix A.1.1).

Step 2 – Deriving Activity States: We assume that any energy
consumption above the estimated baseload is due to the HP perform-
ing a cycle. Therefore, we compare the energy consumption at each
timestamp to this threshold to derive binary activity states (on-state:
HP performs a cycle; off-state: HP is in standby or off). (Algorithm in
Appendix A.1.2).

Step 3 – Determining On- and Off-Transients: Next, we determine
he changes in activity states to find the time points associated with
n on-transient and an off-transient of each cycle. It is possible that
t certain times the energy consumption exceeds the threshold, but
he previous and subsequent measurements do not. In this case, we
ark the corresponding timestamp as both an on-transient and an off-

ransient and assume that it is caused by a cycle shorter than the
5-minute measurement interval. (Algorithm in Appendix A.1.3).

Step 4 – Calculating Durations of Individual Cycles: From the
activity states and transients, we calculate the duration of each cycle in
hours. An HP can turn on or off at any time within the 15-minute mea-
surement interval. Therefore, the measured energy of the switch-on and
switch-off operations is usually lower than during the cycles [29]. We
assume a constant electricity uptake between an on-transient and the
subsequent measurement, or an off-transient and the previous measure-
ment. Therefore, by accounting for the difference between the observed
energy measurements, we can calculate the exact times within a 15-
measurement interval that the HP turns on or off. While this assumption
holds for fixed-speed HPs, it may be incorrect for variable-speed HPs
because they can modulate compressor speed from one measurement
to the next. However, we argue that the estimates using our method
better reflect the actual cycle durations, since otherwise each on- and
off-transient would be counted as a full 15 min, resulting in large
overestimates. For better readability, we report all cycle durations in
hours rounded to two decimals. (Algorithm in Appendix A.1.4).

3.7. Calculating daily cycling metrics

From the procedure described in the previous section, for each HP, a
list is obtained, indicating the start and end time and duration of each
cycle. Now, we convert this information into aggregated metrics that
describe individual days and serve as key indicators for cycling behav-
ior (recall that in Section 3.3, it is explained why a daily resolution
is used). The metrics calculated per day are operating hours, number
of cycles, ratio of number of cycles to operating hours, and average
cycle length. Table 2 provides a description of these metrics, and the
algorithm in Appendix A.2 of the appendix formalizes the calculation.
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Fig. 2. Example of daily operating hours observed for a single HP. The graph shows the
bservations grouped by the average daily outdoor temperature to obtain distributions,
heir medians, and a linear regression on the medians. The latter is limited to the
emperature range of 0–12 ◦C (see explanations in Section 3.3).

3.8. Deriving temperature curves

For days with the same average outdoor temperatures, a single HP
shows similar but slightly varying cycling behavior. Therefore, the daily
cycling metrics can be interpreted as distributions that depend on the
average outdoor temperature. Below it is explained how to handle this,
while Fig. 2 serves as a supporting graph.

First, for each HP and metric, we group the daily observations by
mean daily outdoor temperature to derive the distributions. We then
reduce the dimensionality and the effects of outliers by calculating the
median of each distribution. In this way, one value per temperature
and per metric is obtained. When grouping the medians by each metric
and then sorting them in descending order by outdoor temperature, we
obtain what we refer to as a temperature curve. Note that the analyses of
this paper focus on 0–12 ◦C temperature range (as previously explained
in Section 3.3), where an almost linear behavior can be observed (see
descriptions in Section 5.2). Therefore, for each metric, we compute
a linear regression on the medians between 0–12 ◦C. In this way,
the cycling behavior of HPs becomes comparable through the slopes
and intercepts of the linear approximations and independent of the
observation period.

3.9. Detecting conspicuous heat pumps

We hypothesize that atypical cycling is a good indicator of whether
an HP requires special monitoring or system optimization. Therefore,
we determine which systems cycle typically and which cycle atypically
by examining each metric individually and interpreting the slopes and
intercepts of the linear regressions as bivariate distributions which
span two-dimensional feature spaces. This allows us to apply an outlier
detection method and interpret a system within the normal range as
typical and an outlier system as atypical. We determine outliers in an
unsupervised manner using the local outlier factor (LOF) [78]. LOF
considers the local density of each sample and compares it to the local
density of its nearest neighbors. Then, it computes a score for how iso-
lated the object is in the local neighborhood and identifies samples with
much lower density as outliers. We use the implementation in [79],
which relies on the k-nearest neighbor algorithm and the Minkowski
distance to calculate the local density. We also use the default setting
of [79] that considers 20 neighboring data points and algorithmically
determines the number of outliers. However, note that the parameters
can be set to classify a predefined percentage of data points as outliers,
making the approach suitable for household selection in campaigns.
The fact that an outlier score is returned for each data point also makes
it possible to sort the HPs according to how typical or atypical they
behave with respect to a single metric.

We apply LOF individually to each cycling behavior metric and
classify an HP as conspicuous if it is determined to be an outlier by
any of the cycling metrics. This is a rather sensitive approach that
does not allow HPs to deviate in any parameter. To be less sensitive, a
6

minimum number of parameters could be introduced that an HP must
Table 3
Statistics describing the distributions of 𝑅2 values of the linear regressions on the
temperature curves as derived in Section 3.8 and used in Section 3.9. The statistics are
reported separately for each cycling metric across the distributions of the 243 HPs under
evaluation. They therefore indicate how well a metric can be linearly approximated in
the 0–12 ◦C temperature range.

Metric Median 𝑅2 Mean 𝑅2 Standard deviation of 𝑅2

Operating Hours 0.96 0.88 0.19
Cycles 0.73 0.62 0.31
Cycles/Operating Hours 0.82 0.71 0.28
Average Cycle Length 0.80 0.70 0.28

violate to be considered atypical. In any case, for each HP it can be
listed which metrics cause it to be considered conspicuous. In addition,
for each metric, we calculate the means and standard deviations of
the slopes and intercepts of the identified inlier points. Based on the
position of an outlier point relative to the ranges of mean ± standard
deviation, additional clues can be provided as to what makes the system
an outlier. Hence, it can be inferred whether the slope, the intercept,
or both are atypical (too high or too low, or rather okay).

Fig. 3 shows an example of the method when applied to the ratio
of cycles to operating hours. Each point in the figure refers to a
single HP. In the first plot, the radius of a circle represents the outlier
value, i.e., the larger the circle, the more isolated the point. The color
encodes whether an HP has been determined to be an outlier and thus
conspicuous. The second graph shows only the identified outliers and
indicates whether the slope or intercept is too high compared to the
inlier points (indicated by the corresponding range of mean ± standard
deviation). The third graph shows a two-dimensional kernel density
estimate of outlier and inlier points for further insight.

4. Results

In the following, the methods proposed in the previous section are
applied to the data set presented in Section 3.1. We compare the results
of our outlier detection based on cycling behavior (Section 3.9) with
the ground truth obtained from the baseline models (Section 3.4) that
evaluate energy efficiency and appropriate sizing of HPs. Because the
baseline models require contextual information on heated floor area
and electrical power, the assessments in this chapter are based on a
subset of 243 HPs for which both parameters are available. For all of
these HPs, observations are available for at least 6 different average
daily outdoor temperatures of the 13 possible values in the 0–12 ◦C
temperature range.

4.1. Evaluating linear fit of temperature curves

To detect HPs that cycle atypically, we use the slopes and intercepts
of the linear regressions on temperature curves (see Section 3.8).
Therefore, we first assess the fit of these regressions by examining
their residuals-versus-fitted plots and calculating the 𝑅2 value of each
regression. The descriptive statistics of the resulting 𝑅2 distributions for
each metric are reported in Table 3. All medians of the 𝑅2 distributions
range from 0.73 to 0.96, which we interpret as an indication that
all cycling metrics can be well approximated linearly in the 0–12 ◦C
temperature range. The best approximation is obtained for the hours
of operation and the worst for the number of cycles.

4.2. Identified conspicuous heat pumps

The algorithm automatically finds a total of 41 conspicuous HPs,
which corresponds to 16.9% of the 243 HPs evaluated. Note that
the algorithm allows a system to be classified as an outlier with
respect to several key indicators simultaneously. In 12 of the 41 cases
(i.e., 29.3%), an outlier system is classified as such by more than
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Fig. 3. Example of determining HPs that cycle atypically by applying outlier detection to the ratio of cycles to hours of operation. We apply this procedure to each cycling metric
individually and classify an HP as conspicuous if it is an outlier by any metric.
Table 4
The 41 conspicuous HPs by clusters. The percentages represent how many systems of
each population have been identified to cycle atypically.

Category Cluster Population size Outliers count Outliers percentage (%)

Building Size
small 104 19 18.3
medium 101 17 16.8
big 38 5 13.2

Building Age

old 14 2 14.3
medium 37 10 27.0
new 163 24 14.7
unknown 29 5 17.2

HP Size
small 165 25 15.2
medium 67 14 20.1
big 11 2 18.2

HP Type
air source 98 23 24.0
ground source 65 6 9.2
unknown 80 12 15.0

one key indicator. For average cycle length, 26 outliers are identified,
followed by the ratio of number of cycles to operating hours (17 out-
liers), hours of operation (9 outliers), and number of cycles (5 outliers).
Table 4 lists the clusters to which the identified systems belong. To
account for the different cluster sizes, not only the absolute numbers are
reported but also the percentage of conspicuous HPs in each population.
It can be noticed that the proportion of identified outliers that are
ASHPs is more than twice the proportion of GSHPs (24.0% vs. 9.2%).
In addition, the proportion of identified systems installed in middle-
aged buildings is significantly higher than in buildings of other ages
(medium: 27.0%; new: 14.7%; old: 14.3%).

In Fig. 4, examples of the original SMD of noticeable outlier and
inlier HPs by operating hours and number of cycles are shown. The
figure shows heat maps, with rows representing time of day and
columns representing dates. This improves the ability to observe cycling
patterns over time. The visualizations show that our algorithms are able
to distinguish HPs with short cycles and very frequent on–offs from HPs
with longer and healthier cycles.

4.3. Evaluating performance

Our method identifies atypical HPs by analyzing cycling behavior
without requiring contextual information. To evaluate performance, we
compare our results to baseline models that assess energy efficiency
and appropriate sizing of HPs but require contextual information (Sec-
tion 3.4). To this end, we treat the problem as a binary classification
with binary labels indicating whether an HP is salient (label: 1; minor-
ity class) or not (label: 0; majority class). Consequently, we label the 41
HPs that are conspicuous for cycling behavior as salient and the other
202 HPs as not salient. At this point, note that the LOF-based outlier
detection (as introduced in Section 3.9) can automatically select HPs
with high or low activity as long as they behave atypically. Therefore,
for ground truth, we treat the best and worst 10% of HPs in terms of
utilization and energy intensity as atypical to ensure a fair comparison
with the baseline models. Fig. 5 shows the resulting confusion matrices
7

Table 5
Performance scores of outlier detection by cycling behavior when compared to baseline
models evaluating energy efficiency and appropriate sizing but requiring contextual
information.

Baseline model Accuracy Precision Recall F1-Score ROC AUC Cohen’s Kappa

Energy Intensity 0.80 0.51 0.42 0.46 0.66 0.40
Utilization 0.81 0.54 0.44 0.48 0.67 0.37

with absolute and relative scores. Table 5 shows the corresponding
performance scores typically used for classification tasks. In addition,
the table includes the Cohen’s Kappa statistic, which is a measure of
agreement between two annotators, rather than comparing a classifier’s
predictions to the ground truth values.

According to [80], the Cohen’s Kappas of 0.40 for energy intensity
and cycling behavior and 0.37 for utilization and cycling behavior
indicate a fair agreement in both cases. In a machine learning setting,
the high accuracy values of the model (0.80 and 0.81) combined with
the rather low F1-scores (0.46 and 0.48) could be interpreted as an
insufficient fit to an unbalanced data set. However, in this case, a
more complex investigation and interpretation is required. The model
does not necessarily fail to find conspicuous HPs that require special
monitoring. Instead, it focuses on a different aspect of optimization. By
identifying HPs that are conspicuous in cycling, it finds a proportion of
HPs that are atypical in energy intensity or utilization, but some HPs
can also cycle atypically without being inefficient in terms of energy
use or inappropriately sized. In this case, cycling behavior could still
have an impact on the lifetime of the entire device or its components,
and improvements in operation could still be possible. Therefore, we
consider special monitoring of HPs that are conspicuous by their cycling
behavior to be appropriate in any case.

5. Discussion

In the following sections, additional descriptive analyses are pro-
vided as well as insights into factors that influence cycling. Further,
limitations and future work are listed. Unlike the evaluation in the
previous chapter, in this chapter all analyses are conducted for all 503
HPs rather than for just a subset of HPs.

5.1. Analyzing correlations

To investigate how the cycling metrics relate to each other, to
temperature, to utilization, and to energy intensity, we calculate the
correlations of the daily measures across all households. Fig. 6 shows
the resulting correlation matrix.

We find that all measures of cycling are correlated with outdoor
temperature, most strongly with hours of operation with a negative
correlation of −0.60, followed by number of cycles (−0.43). In contrast,
utilization and energy intensity show little correlation with tempera-

ture. This confirms that the normalization by degree day introduced
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Fig. 4. Examples of HPs that the algorithm determines as typical or atypical with respect to operating hours and cycles. The visualizations show original smart meter data in
15-min resolution but transformed to power in kW (multiplication by four) and heat maps are used to display the cycling patterns over time.
Fig. 5. Confusion matrices with absolute and relative scores. The matrices compare
the conspicuous HPs identified by our method with the best and worst 10% of HPs in
terms of utilization and energy intensity as given by the baseline models.

in Section 3.4 has the desired effect of removing weather dependency.
However, utilization and energy intensity are strongly correlated, with
a factor of 0.78. In contrast, the metrics for cycling behavior are
relatively independent of utilization and energy intensity, as reflected
in the low correlation factors. It could be that a combination of these
metrics (as used in the outlier detection of our approach) has a stronger
relationship with the energy intensity and utilization. However, this
may not be well reflected here but supports the interpretation of
the performance values reported in Section 4.3, where it has been
concluded that HPs can also cycle atypically without a direct link to
energy efficiency and sizing. Finally, operating hours and number of
cycles are positively correlated (0.25) and so are average cycle length
and operating hours (0.60).

5.2. Analyzing temperature curves

In Section 3.2, clusters of HPs are formed. Here, we use these to de-
scribe cycling behavior that is typical for each cluster. Since the features
are static and categorical, correlations with daily cycling metrics cannot
be computed as done previously. Therefore, we derive the temperature
curves (see Section 3.8), but with different observations. Instead of
calculating the medians for each HP separately, we calculate them
again using all observations of the HPs that are part of the same cluster.
This way, the plots in Fig. 7 are obtained, where each point reflects a
8

Fig. 6. Correlations of cycling metrics, energy intensity, utilization, and outdoor
temperature at daily resolution for all HPs.

median value and where error bars are reported at the 95% interval.
In what follows, we explain our observations of typical cycling in all
populations using this visualization. We restrict the descriptions to the
temperature range of 0–12 ◦C (see Section 3.3). Note that also daily
energy intensity and utilization from the baseline models (Section 3.4)
are included, but without normalization by degree day, as this would
eliminate the temperature effect, which is of interest at this point.

5.2.1. Typical heat pump cycling
From Fig. 7, it can be seen that most of the measured variables

behave almost linearly in the 0–12 ◦C temperature range. Only the
number of cycles shows saturation effects, as the behavior is linear be-
tween 5–12 ◦C and almost constant between 0–5 ◦C. This also explains
why in Table 3, which evaluates the fit of the linear regressions, the
number of cycles has the smallest 𝑅2 values. The hours of operation
increase with decreasing outdoor temperatures (about 4–7 h at 12 ◦C to
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Fig. 7. Visualization of HP cycling behavior, energy intensity and utilization of all 503 HPs over mean daily outdoor temperatures by different building and HP characteristics.
The points represent the medians of all observations across each population, while the error bars are at 95% intervals. To not remove the temperature effect in the graph, the
daily utilization and energy intensity values are not normalized by degree day as otherwise done in Section 3.4.
13–17 h at 0 ◦C). The number of cycles also increases, but to a lesser ex-
tent (from about 5 cycles at 12 ◦C to about 12 cycles at 0 ◦C). Also, the
average cycle length increases with decreasing outdoor temperatures,
while the ratio of cycles to operating hours behaves antiproportionally
and decreases. As a rule of thumb, it can be deduced that for days with
an average outdoor temperature of 12 ◦C, the typical ratio of cycles to
operating hours of an HP is about 1.7 to 2.0 and decreases linearly until
it is 0.8 to 1.2 at an average temperature of 0 ◦C. Finally, the utilization
also increases linearly with decreasing outdoor temperatures, starting
at about 20% at 12 ◦C. A similar behavior can be observed for energy
intensity.

5.2.2. Influence of characteristics on cycling
Although in Fig. 7 the HPs behave very similarly across all popu-

lations, we describe below some notable differences we find between
clusters.

Building Age: For almost all metrics, HPs behave similarly in
buildings of different ages. However, since HPs are a technology mainly
suited for well-insulated buildings, the clusters are quite unevenly
populated with 309 new and 21 old buildings (see Table 1). We observe
that energy intensity (i.e., total daily energy per heated floor area)
behaves as we would expect it. In general, newer buildings are better
9

insulated, resulting in lower energy consumption. In this context, newer
buildings have up to half the energy intensity than older buildings. The
fact that this factor is not more extreme is most likely due to the fact
that a building must have a certain level of insulation for an HP to
even be considered as a heating technology. We therefore assume that
a comparison of the cycling behavior of different HPs is possible quite
independently of the building age.

Building Size: In terms of building size, the diagram shows that
HPs in smaller buildings tend to have more cycles with fewer hours of
operation at the expense of higher energy intensity. One possible reason
for this behavior could be that smaller buildings tend to have oversized
HPs, which typically have more but shorter cycles, as described in Sec-
tion 2.1. This hypothesis cannot be proven by looking at the utilization,
which shows almost no difference between buildings of different sizes.
Another reason could be that larger buildings may use other additional
energy sources for heating or domestic hot water production. However,
also this hypothesis cannot be proven with our data set.

Heat Pump Type: Fig. 7 shows that ASHPs have more operat-
ing hours, fewer cycles, and a slightly longer average cycle length
than GSHPs. It is known that ASHPs are less energy efficient than
GSHPs [43]. Therefore, we conclude that ASHPs must operate more
to compensate for the lower heat dissipation. However, we might have
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expected more cycles, since defrosting is required. Instead, the number
of cycles of GSHPs below 5 ◦C even exceeds that observed for ASHPs.

evertheless, the known overall energy efficiency is reflected in the
nergy intensity curves. The curve of GSHPs is below the curve of
SHPs.

Heat Pump Size: Larger HPs have more cycles with a shorter
verage cycle length compared to smaller HPs. As explained earlier
n the context of building size, larger HPs may be slightly oversized,
esulting in more and shorter cycles. Therefore, the striking difference
n utilization is as expected. Small heat pumps are up to four times
ore utilized than large ones, especially at cold temperatures.

.3. Contributions and benefits of our approach

The methods presented here are focused on practical applications
o monitor real-world HPs in operation. We have demonstrated how
ommon smart meter data in 15-min resolution can be used to derive
ey indicators about HP cycling and how HPs that cycle atypically
an be identified. Additionally, we have shown that HPs which are
onspicuous in terms of cycling behavior are often also outliers with
espect to energy efficiency and appropriate sizing. However, while
valuating a heat pump’s energy efficiency and sizing requires con-
extual information, its cycling behavior can serve as indicator when
he context is unknown. This makes our approach suitable for many
pplications in practice. Further, we designed our methods in such a
ay that they are robust to common difficulties in practice as listed
elow.

1. Data Availability: The approach takes advantage of the large
amounts of smart meter data that become available through
advanced metering infrastructure for residential buildings of all
types. In particular, it also covers HPs without network connec-
tivity. Our method is designed to be able to deal with missing
data and different observation periods of different households.
It only requires measurements of a few cold days.

2. Comprehensive View: By identifying heat pumps that are out-
liers in terms of energy efficiency, appropriate sizing, and cy-
cling behavior, and comparing them against each other in these
categories, the approach incorporates a comprehensive perspec-
tive on HP optimization.

3. Contextual Information: To properly evaluate performance and
sizing of HPs, contextual information on the heated floor area
and electrical power is required. Usually, this relevant additional
information is unavailable. In this case, we show that the cycling
behavior of an HP alone can serve as a stand-alone indicator
to identify and prioritize critical systems. Therefore, it is also
suitable for situations where the context is not known, e.g., due
to privacy constraints.

4. Interpretability: The information derived from SMD (e.g., cy-
cles per day) is easy to understand and can provide accurate
feedback on HP behavior.

5. Benchmarking: Our method makes it easy to sort, compare
and benchmark HPs by the metrics of interest. This makes it a
versatile approach suitable for any type of campaign.

6. Expandability: The algorithm can be easily adapted by intro-
ducing additional key indicators of interest and treating them in
the same way as the metrics already introduced. Furthermore, it
can be easily adapted to handle other types of data, e.g., sensor
data or different resolutions.

.4. Limitations

This study is a first step towards investigating real heat pump
ycling on a large scale. However, below we list some limitations. First,
he analyses only cover single-family homes in Switzerland that are not
quipped with a photovoltaic system, and the results could be different
10
n other geographic regions or for other types of buildings. Second, this
tudy focuses on HPs used for heating and does not further examine
hether the HPs under investigation are used in hybrid applications,

.e., also for cooling. Third, it is not distinguished whether or not
n HP is responsible for the production of domestic hot water, since
his information is unavailable. Finally, the 15-minute resolution limits
he scope of what can be observed. For example, two cycles that are
horter than 15 min but run consecutively would be observed as a
ingle cycle. However, given these limitations, this study shows that
MD is a powerful source of data for monitoring HPs, especially given
ts already high and increasing availability. It may be impossible to
btain detailed information on cycling, and there may be errors in
ndividual cycles, but since these problems are shared by the entire
opulation, the overall trends of individual households can still be
bserved. These can provide valuable feedback to HP owners, utilities,
nd other stakeholders.

.5. Future work

The results of this work are based on SMD, which measures HPs
eparately from other devices. Therefore, the methods presented can
e extended to aggregate measurements, which requires an additional
tep of disaggregating the HP load from the total load. On the other
and, future work on non-intrusive load monitoring focusing on HP
pplications may also incorporate the typical HP behavior that has been
dentified in this study as prior information. Additionally, it remains an
pen task to investigate the impact of daily temperature range on HP
ycling. We use only the average outdoor temperature of a day, but
o not consider the difference between the maximum and minimum
emperature of a day. However, the most important remaining part of
he work to be addressed by the research community is to investigate
he reasons for differences in cycling behavior. There is a lack of work
xplaining under which conditions short and long cycling occurs and
ow it can be optimized. Here, we see a limitation in the use of
MD, but believe that sensor data with higher resolution and more
arameters can help. Additionally, more contextual information about
he underlying buildings and system components is needed.

. Conclusion

In this study, we aim to contribute to a longer lifetime and higher
nergy efficiency of heat pumps (HPs) in residential buildings. To this
nd, we use smart meter data (SMD) with a resolution of 15 min to
onitor 503 HPs installed in Swiss single-family homes over a period

f 21 months. We show how heating cycles can be extracted from the
orresponding time series of energy measurements. Then, we use the
dentified cycles to calculate the following daily key indicators for each
P: operating hours, number of cycles, ratio of cycles to operating
ours, and average cycle length. When grouping the daily indicators
f each HP by average daily outdoor temperatures and calculating the
edian for each temperature, it can be found that the behavior is nearly

inear in the temperature range of 0–12 ◦C. Therefore, we calculate a
inear regression for each HP and indicator. Using the derived slopes
nd intercepts as inputs to an outlier detection algorithm, the algorithm
dentifies conspicuous HPs that behave atypically and differently than
he overall population. In addition to this approach, which does not
equire contextual information, we also evaluate the energy efficiency
nd appropriate size of each HP. However, this requires additional
nformation on heated floor area and electrical power, which is typi-
ally unavailable and here, is only available for 243 of the 503 HPs
i.e., 48%). To evaluate the approach, we apply it to this subset and
ompare the HPs that cycle atypically to the best and worst 10% of
he HPs in terms of energy intensity and utilization. The resulting
ohen’s Kappas of 0.40 and 0.37, a common measure to assess inter-
ater reliability, indicate a fair agreement between cycling, energy
ntensity, and utilization [80]. Therefore, the approach to assess cycling
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is also suitable for identifying conspicuous HPs in situations where
the context is unknown, e.g., due to privacy constraints or missing
data. In addition to identifying conspicuous HPs, extensive descriptive
analyses of typical cycling across all 503 HPs are provided considering
building age, building size, HP type, and HP size. While this work is the
first to monitor real-world HP cycling with SMD on a large scale, our
analyses are limited to the geographic conditions and heating scenarios
of Switzerland. Future work could focus on using HP sensor data with
higher resolution and with more parameters to verify the results and
investigate the reasons for differences in cycling behavior.
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Appendix A

A.1. Algorithms for extracting heat pump cycles

In this section, detailed descriptions of the algorithms to derive
the HP cycles from SMD measurements are provided. We start with a
formal definition of SMD and afterwards explain each step in a separate
subsection. The algorithms are applied independently to all households
in the data set and the HP of each household is measured separately
from all other appliances. All formulas in the following are from the
authors of this paper.

The SMD is represented by a time series 𝐸 that is a sequence of
non-negative energy consumption values 𝑒𝑡 in kWh. The sequence is
ordered by the index 𝑡, which represents the timestep with a step size
of 0.25 h (i.e., 15 min). Hence, with 𝑇 observations, we can write:

≥0
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𝐸 = {𝑒𝑡 ∈ R ∣ 0 ≤ 𝑡 ≤ 𝑇 − 1} (3)
A.1.1. Step 1: Estimating baseload
Even during periods of non-heating, HPs typically show slightly

non-zero energy consumption in the SMD. The reason is that the
control unit remains active and thus, creates a small baseload [29]. We
interpret this baseload as an energy threshold beyond which the HP
is considered to perform a cycle. As the HPs differ among households,
we derive the baseload 𝑏 for each household individually. We use a
distribution-based approach that was found empirically:

1. Round all values 𝑒𝑡 to two decimals.
2. Calculate the maximum 𝑒max from the set of values {𝑒𝑡} that

occur more than once.
3. Calculate the threshold as follows:

𝑏 =

⎧

⎪

⎨

⎪

⎩

0.10 if 𝑒max > 1.0
0.06 if 𝑒max < 0.6
0.10 × 𝑒max otherwise

(4)

A.1.2. Step 2: Deriving activity states
From the original time series 𝐸, we create a binarized version 𝐴.

While the timesteps 𝑡 remain identical, the values are now binary to
indicate activity states. Hence, it can be written as:

𝐴 = {𝑎𝑡 ∈ {0, 1} ∣ 0 ≤ 𝑡 ≤ 𝑇 − 1} (5)

To derive 𝑎𝑡, we compare the SMD values 𝑒𝑡 against the baseload
estimation 𝑏:

𝑎𝑡 =

{

1 if 𝑒𝑡 > 𝑏
0 otherwise

(6)

If 𝑎𝑡 is equal to zero, the HP is off or in standby. If 𝑎𝑡 is equal to
one, it indicates that the HP in an on-state and performs a cycle.

A.1.3. Step 3: Determining on- and off-transients
Next, we use 𝐴 to derive the timesteps at which the HP switches on

and off (i.e., changes of state). We refer to these as on- and off-transients
of each cycle and proceed as follows:

1. For each 𝑎𝑡 that does not represent the first and last value of the
time series ( 1 ≤ 𝑡 ≤ 𝑇 − 2), we calculate the difference to the
previous binary state:

𝛥𝑎𝑡 = 𝑎𝑡 − 𝑎𝑡−1 (7)

2. The set of indices referring to on-transients is then defined as
follows:

𝑆on = {0} ∪ {𝑡 ∣ 𝛥𝑎𝑡 = 1} (8)

Note that this way, we always assume the start of the time series
to represent an on-transient.

3. Correspondingly, we assume that the end of the time series is a
switch-off activity and calculate the off-transients as follows:

𝑆off = {𝑡 ∣ 𝛥𝑎𝑡+1 = −1} ∪ {𝑇 − 1} (9)

At this point, it is important to note that by using 𝛥𝑎𝑡 for the on-
transients and 𝛥𝑎𝑡+1 for the off-transients, a timestep 𝑡 can occur in both
sets 𝑆on and 𝑆off. Hence, 𝑡 can represent a switch-on and switch-off
activity at the same time, which occurs when a heating cycle is shorter
than the measurement interval of 15 min. Further, treating 𝑡 = 0 as
an on-transient and 𝑡 = 𝑇 − 1 as an off-transient ensures that an on-
transient is always followed by an off-transient. Hence, both sets 𝑆on

and 𝑆off contain the same number of elements.
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A.1.4. Step 4: Calculating durations of individual cycles
In the following, we treat 𝑆on and 𝑆off as ordered sets with ascend-

ing values, where each element receives an index 𝑖 according to its
position. Hence, with 𝐼 = |𝑆on| = |𝑆off| elements in each set, we can
rewrite:

𝑆on = {𝑡on
𝑖 ∣ 0 ≤ 𝑖 < 𝐼} (10)

𝑆off = {𝑡off
𝑖 ∣ 0 ≤ 𝑖 < 𝐼} (11)

Now, we can interpret 𝑖 as index referring to a single cycle and 𝐼 as
he total number of observed cycles. We define a single cycle to have a
witch-on timestep 𝑡on

𝑖 , switch-off timestep 𝑡off
𝑖 and a cycle duration in

ours 𝑑𝑖. Assuming that a cycle covers all 𝑡 within the interval [𝑡on
𝑖 , 𝑡off

𝑖 ],
e can write the set of cycles 𝑆cycle as follows:

cycle = {⟨𝑡on
𝑖 , 𝑡off

𝑖 , 𝑑𝑖⟩ ∣ 0 ≤ 𝑖 < 𝐼 ∧ 𝑡on
𝑖 ∈ 𝑆on ∧ 𝑡off

𝑖 ∈ 𝑆off} (12)

The easiest way to define 𝑑𝑖 would be to count each 𝑡 within the
nterval [𝑡on

𝑖 , 𝑡off
𝑖 ] as full 15 min, formalized as:

𝑖 = (𝑡off
𝑖 − 𝑡on

𝑖 + 1) × 0.25 (13)

However, as explained in Section 3.6, this would lead to overes-
timates because an HP can switch on or off at any time within a
15-minute interval. Therefore, we assume a constant electricity up-
take between an on-transient and the subsequent measurement, or
an off-transient and the previous measurement to calculate the exact
durations at 𝑡on

𝑖 and 𝑡off
𝑖 . We count all other measurements of a cycle

𝑡on
𝑖 < 𝑡 < 𝑡off

𝑖 as full 15 min. Hence, instead of using Eq. (13), we define
𝑑𝑖 to be ‘‘more exact" as:

𝑑𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.125 if 𝑡on
𝑖 == 𝑡off

𝑖
𝑑on
𝑖 + 𝑑off

𝑖 if 𝑡off
𝑖 == 𝑡on

𝑖 + 1

𝑑on
𝑖 + 𝑑off

𝑖 +
∑𝑡off

𝑖 −1
𝑡on
𝑖 +1 0.25 otherwise

(14)

In this context, we define 𝑑on
𝑖 and 𝑑off

𝑖 as follows:

𝑑𝑜𝑛𝑖 = min

(

𝑒𝑡on
𝑖

𝑒𝑡on
𝑖 +1

× 0.25, 0.25

)

(15)

𝑑𝑜𝑓𝑓𝑖 = min

( 𝑒𝑡off
𝑖

𝑒𝑡off
𝑖 −1

× 0.25, 0.25

)

(16)

Note that the definitions above handle some special cases where
alculating exact durations is difficult:

• If 𝑡on
𝑖 equals 𝑡off

𝑖 , a cycle is shorter than 15 min and the exact
duration cannot be determined. Then, we count the cycle duration
as half a 15 min interval, i.e. 0.125 h.

• If an on-transient is immediately followed by an off-transient,
the cycle duration is between 15 and 30 min and cannot be
well estimated. However, we treat this case as any other cycle
with longer durations by considering the proportions of the two
consecutive energy measurements.

• If the energy of the on-transient is higher than the energy of the
consecutive measurement, or the energy of the off-transient is
higher and the energy of the previous measurement, we cannot
determine the exact duration of a switch-on or switch-off activity.
In this case, we count it as full 15 min.

.2. Calculating daily metrics as key indicators

In Section 3.7, we explain that we calculate daily metrics to match
hem with average outdoor temperatures. To this end, we apply step
–4 of the previous procedure to each day of SMD individually, such
12
that we gain a set of cycles 𝑆cycle per day. Then, we can calculate the
daily metrics as follows:

Operating Hours =
∑

𝑑𝑖
Cycles = |𝑆cycle|

ycles/Operating Hours =
|𝑆cycle|
∑

𝑑𝑖

Average Cycle Length =
∑

𝑑𝑖
|𝑆cycle|

(17)
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