

8 4

[Lustre

FRP + Lustre = Fruste

Koen Claessen

battery
powered

bluetooth/
wifi

sensitive
applications

MEMOCODE
2022

Creating a Language for Writing Real-Time
Applications for the Internet of Things

Robert Krook*, John Hui', Bo Joel Svensson*, Stephen A. Edwards’, and Koen Claessen*
*Chalmers University of Technology, Gothenburg, Sweden
‘Columbla University, New York, USA
mbin_e iacls @chalmers.se, sedwards @cs.columbia.edu, and koen @chalmers.se

imperative
o] lANQUAge

C code that

?v:tc};?e:'zl?ysproﬁle the timing behaviour and identify bottlenecks S y n C h ro n O u S

that can improve performance. The language and compiler arg

implemented as an Embedded Domain-Specific Language (EDSL

on top of Haskell. M Od e I
Index Terms—Real-time, 10T, Compilers, Embedded Domain

Specific Languages

I. INTRODUCTION 5 entry :: (?ble :: BLE, ?0ut@ :: Ref GPIO) => SSM ()

. . . . entry = routine $ do
Devices for the Internet of Things (IoT) typically contain Hperiod <~ VaF CCINEZiE (a8es 1)

hardware for sensors, actuators, and wireless communication, 8 fork [sigGen hperiod, remoteControl hperiod]
and often need to run on batteries whose life expectancy

Scoria

summer :: Ref Int32 -> Ref Int32 -> SSM ()
summer diff sum =
while true $ do
wait diff
sum <~ deref sum + deref diff

ticker :: Int32 -> Ref Int32 -> SSM ()
ticker n x = routine $ do

after (s 1) xn

wait x

ticker (n+1) x

Sparse Synchronous Model

program is in rest program reacts to

Iy AA~F "
&Oﬂam o Work?ult external triggers

during “reaction” |
(

~J
time does not program can

pass while schedule events
executing code in the future

<zephyr.h>
<drivers/gpio.h>

sLeeP TIME MS |

GPIO DT SPEC GET(DT ALIAS(led0®), gpios);

ret gpio pin configure dt ed, GPIO OUTPUT ACTIVE);

ret

(Robert Krook)

CHI
Vpp=2.68Y Mean=168V
Prd=50.16ms Freq=19.94Hz

@ = 19.5694Hz

Freq=19.94Hz Vmax=3.00V

M Pos:0.00 us CH1 /1.64Y

The alarm is
actually set
here

0 hp hp + A

P e [

The alarm is
actually set
here

The alarm goes
off here

hp + A

The alarm is
actually set
here

A

The alarm goes
off here

keep track of
logical clock

hp

The alarm is
actually set
here

set alarm from
where you were

supposed to
wake up

[Vpp=2.68V Mean=156Y . : : : : : : :
L Prd=50.00ms: ++ Freq=20.00Hz: « « + «oc 0Tt b

What would a
declarative
counterpart to

Scoria look like?

Why not Scoria?

e Imperative
o | like declarative languages
o Declarative = less likely to make certain mistake
e Process model
o process dynamically allocated
o communication between processes is limited (and unintuitive)
o run out of time?
e Memory
o memory dynamically allocated
o run out of memory?

Inspiration
bounded
memory Lbognded J
time

[declarative]

expressive]

declarative]

Lustre
model notion of
A checking Event
never at —
rest nz t'(;nllfﬁg [no bounded P
scheduling memo
Y Time]

way too
expressive

4[constantly never at no t|m|ng
Lustre ticking clock rest schedullng

type Signala ~ [a] {- infinite -}

(+) .. Signal Int -> Signal Int -> Signal Int
.- Signal Int
pre .. Signal a -> Signal a
_/\Y) : Signal a -> Signal a -> Signal a
ape= | -e WA summer :: Signal Int -> Signal Int
L (x:)= (_:8) = XS summer diff = sum
where

sum = diff + (0 — pre sum)

Conal Elliott
Microsoft Research
Graphics Group
conal@microsoft.com

Abstract

Fran (Functional Reactive Animation) is a collection of data
types and functions for composing richly interactive, multi-
media animations. The key ideas in Fran are its notions of
behaviors and events. Behaviors are time-varying, reactive
values, while events are sets of arbitrarily complex condi-
tions, carrying possibly rich information. Most traditional
values can be treated as behaviors, and when images are
thus treated, they become animations. Although these no-
tions are captured as data types rather than a programming
language, we provide them with a denotational semantics,
including a proper treatment of real time, to guide reason-
ing and implementation. A method to effectively and ef-
ficiently perform event detection using interval analysis is

IRT T RERA o NI S, T TN A | DA, R T Gy, Y . ST S S

Functional Reactive Animation

Paul Hudak

Yale University

Dept. of Computer Science

paul .hudak@yale.edu

e capturing and handling sequences of motion input events,
even though motion input is conceptually continuous;

e time slicing to update each time-varying animation pa-
rameter, even though these parameters conceptually
vary in parallel; and

By allowing programmers to express the “what” of an
interactive animation, one can hope to then automate the
“how” of its presentation. With this point of view, it should
not be surprising that a set of richly expressive recursive
data types, combined with a declarative programming lan-
guage, serves comfortably for modeling animations, in con-
trast with the common practice of using imperative lan-
guages to program in the conventional hybrid modeling/-
presentation stvle. Moreover, we have found that non-strict

_ . | E="“event’ Time is
EB\—/behaVIor L\/ Jamming (Fran-style){ explicit]
\
type Time ~ Nat no boundgd
typeBa ~ Time->a -- Monad (Reader) memory / time
typeEa ~ (Time,a) ~Nchange :: Eqa=>Ba->B (Ea)
change b = do x <- b; when (/=x) b

switch :Ba->E(Ba)->Ba
(+=>) “Ea->(Time->a->b)->ED
when ::(a->Bool)->Ba->B (E a)

summer :: Int -> (Time -> E Int) -> Time -> B Int
summer n diff t =
pure n “switch™ (diff t +=> \t’ k -> summer (n+k) diff t')

Practical Principled FRP
Forget the Past, Change the Future, FRPNow!

Atze van der Ploeg

Koen Claessen

Chalmers University of Technology, Sweden

Abstract

We present a new interface for practical Functional Reactive Pro-
gramming (FRP) that (1) is close in spirit to the original FRP ideas,
(2) does not have the original space-leak problems, without using
arrows or advanced types, and (3) provides a simple and expressive
way for performing I/0 actions from FRP code. We also provide a
denotational semantics for this new interface, and a technique (using
Kripke logical relations) for reasoning about which FRP functions
may “forget their past”, i.e. which functions do not have an inher-
ent space-leak. Finally, we show how we have implemented this
interface as a Haskell library called FRPNow.

Categories and Subject Descriptors D.3.2 [Applicative (func-
tional) languages]

Keywords Functional Reactive Proeramming, Space-leak, Purely

{atze,koen}@chalmers.se

without compromising the original spirit behind FRP, and present an
implementation of this interface in Haskell. Our contribution is thus
a principled and practical way of programming reactive systems
with FRP, without callbacks, nondeterminism or mutable state.

Let us delve a bit deeper into the two problems mentioned earlier.

Space Leaks The first problem, the space leak problem, can be
analyzed as follows. A program in FRP can lead to space leaks in
three ways:

1. The program using the FRP library can have a space leak.
2. The implementation of the FRP library can have a space leak.

3. The interface of the FRP library, i.e. the set of functions offered
by the library, can be inherently leaky.

Fach of the<e implies the nrevious: if we have an interface which

Functional Reactive Programming (FRPNow)

type Time ~ Nat
typeBa ~ Time->a
typeEa ~ (Time,a)

switch :Ba->E(Ba)->Ba

summer :: Int -> (Time -> E Int) -> Time -> B Int

summer :: Int-> B (E Int) -> B (B Int)
summer n diff = r N

harder to
\L write this J

Functional Reactive Programming (Fran-s

type Animation = B Image

text .. String -> B Image
over .. B Image -> B Image -> B Image
move .. B (Int,Int) -> B Image -> B Image

mouseXY :: B (Int,Int)

later :: B Time -> B a -> B g |foldr1 over $
zipWith later [0,1..]

[move mouseXY (text w)
| w <- words “Time flows like a river”]

Implementing FRP
type E a = ..some kind of blocking mechanism / callback..

typeBa=(a, E(Ba))

Small insights

e Lustre has bounded memory because of pre
o no recursion with accumulating parameters

e Let Lustres clock tick only when something happens? - NO
o Haski

Nachiappan Valliappan
Chalmers University of Technology
Gothenburg, Sweden
nacval@chalmers.se

Alejandro Russo
Chalmers University of Technology
Gothenburg, Sweden
russo@chalmers.se

Abstract

IoT applications are often developed in programming lan-
guages with low-level abstractions, where a seemingly in-
nocent mistake might lead to severe security vulnerabilities.
Current IoT development tools make it hard to identify these
vulnerabilities as they do not provide end-to-end guaran-
tees about how data flows within and between appliances.
In this work we present Haski, an embedded domain spe-
cific language (eDSL) in Haskell for secure programming of
IoT devices. Haski enables developers to write Haskell pro-
grams that generate C code without falling into many of C’s
pitfalls. Haski is designed after the synchronous program-

D P T s L S DA [ol Ly [PO et ol o P

Towards Secure IoT Programming in Haskell

Robert Krook
Chalmers University of Technology
Gothenburg, Sweden
krookr@chalmers.se

Koen Claessen
Chalmers University of Technology
Gothenburg, Sweden
koen@chalmers.se

ACM Reference Format:

Nachiappan Valliappan, Robert Krook, Alejandro Russo, and Koen
Claessen. 2020. Towards Secure IoT Programming in Haskell. In
Proceedings of the 13th ACM SIGPLAN International Haskell Sympo-
sium (Haskell "20), August 27, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3406088.3409027

1 Introduction

The Internet of Things (IoT) conceives a future where “things”
(embedded electronics) can be interconnected. While a com-
pelling vision, recent events have demonstrated the high
vulnerability of IoT (e.g., [Bertino and Islam 2017; Fernandes

Haski

type Temp = Float called when
data Status = Home | Away any input
data WindowOp = Open | Close | Skip changes

halexa :: Signal Temp -> Signal Status -> Signal WindowOp

Haski

4)
keeping track if
security halexa does
labels something “bad”

—~\

halexa :: Signal Temp -> L‘Signal Status -> LSignaI\‘WindowOp

Small insights -

e Lustre has bounded memory because of pre
o no recursion with accumulating parameters
e Let Lustres clock tick only when something happens? - NO

o Haski all parts ofa)
o Non-modular behavior! system can
observe when

something
happens)

How to schedule
timing events?

summer :: Stream Int -> Stream Int
Fruste summer diff = sum
where
type Flow a ~ Time -> a sum = diff 1+ (0 ~~> pre sum)

\ 1 — aadko o

type Streama ~ [(Time,

ZIp .. Flow a -> Flc

(!+) :: Stream Int -> Flow Int -> Stream Int
s I+ a = fmap (uncurry (+)) (sample s a)

- Flow Int

(~~>) .. a-> Stream {

(><) :: Stream a -> Stream a -> Stream a
s1><s2 =merge (\ab ->a) s1s2

pre :: Stream a -> |
sample . Streama->|

merge .. (a->a->a) ->

at .. Flow a -> Stream b -> Stream a
a at' s =fmap snd (sample s a)

generate C
code L,

How to
Implement

at rest

o

wakes up
at trigger

only run
relevant code
when trigger

happens

J

Implementing Fruste
type Stream a = ..some kind of blocking mechanism / callback..

type Flow a = (a, Stream a) -- created by ~~>

(But the
right path) _

(keep core
calculus as small
as possible)

Implementing Fruste (easy)
reuse Lustre

type Flowa = Signal a compiler runs the whole
program every
type Stream a = (Signal Bool, Signal a) time something

happens

J

only has to make
sense when
trigger is True

Fruste implementation

(~~>) :: Val a => a -> Stream a -> Flow a
X ~~> (act,s) =y
where
y = ifThenElse act s (val x --> Lustre.pre y)

pre ;. Stream a -> Stream a
pre (act, s) = (started' /\ act, s')
where
started' = false --> Lustre.pre (act \/ started')
s' = Lustre.pre (ifThenElse act s s')

add small
extension
to Lustre

use it to
implement Fruste
timing combinator

Fruste timing

~

later :: Flow Int -> Stream a -> Stream a needs
unbounded

memory :-(

later1 :: Flow Int -> Stream a -> Stream a

only schedules 1
event, ignores
L everything else y

Fruste implementation Lustre extension]

timer :: Signal Bool -> Signal Int -> Signal Bool

later1 :: Flow Int -> Stream a -> Stream a

later1 t (set,inp) = (get,mem)

where
get =timersett
ready = get\/ (true --> Lustre.pre (nt set /\ ready))
mem = Lustre.pre (ifThenElse (set /A ready) inp mem)

Fruste examples

(>+<) :: Stream Int -> Stream Int -> Stream Int
s1 >+<s2 =merge (+) s1 s2

ticker :: Flow Int -> Stream ()

tickert=s
where

s =start ><later1ts

DEMO

counter :: Stream () -> Stream () -> Stream Int
counter down up = summer diff
where
diff = ((-1) "at” down)
>+< (1 ‘at up)
>+< (2 “at ticking 1000)

Nordic Semiconductor NRF52840-DK

e Development board for loT-like
systems

e Has bluetooth

e Low power

e Fruste runs on Zephyr Cortex M4 64MHz
BLE

Micro:bit

e Fruste runs on Micro:bit
e Has a 5x5 display
e Has bluetooth 16Kb
e Low power Cortex MO
e Programming in scratch-like environment BLE
o or Python

o or JavaScript
o (or C)

i3

(]

data System
= System
{ buttonA :: Stream ()
, buttonB :: Stream ()

, bltReceive :: Stream Msg

.random :: Flow Int

A\

|

bltSend works by
combining all streams
from all parts of the
program

~

J

d |] > [l A =W R_A 7> 1

arbiter :: System -> (Stream Msg, Stream ())
arbiter sys = (bltSend, victory)
where
bltSend = random sys "at (start >< later1 3 retry)
sent =0 ~~> bltSend

Y)

recv = bltSend ==> bltReceive sys
victory = holds (recv I< sent)

/ right after a’s

retry = holds (recv !== sent) (e]

(==>) .. Stream a -> Stream b -> Stream b

pingPong :: System -> (Stream Msg, Flow Display)
pingPong sys = (bltSend, display)

where
(bltSend1, beginMe) = arbiter sys
(display, endMe) = gamelLogic mbit (beginMe >< endYou)

(bltSend2, endYou) = waitLogic endMe

bltSend = bltSend1 >#< bltSend?2
™~

\

merge with
uniqueness assertion

a Create something R

“‘when” reactive from
something

7}0n-reactive y

when :: (a->Bool) -> Flow a -> Stream a

-
OK if all inputs to time :: Flow Time]

the system are ‘when (>30) temp
reactive

temp :: Flow Temp

Implementing Flow/Stream help!

e Only want to execute relevant code in every step
e IDEA1T:
o Partial evaluation
o Use same strategy as Lustre clocks
o (Hard, because Flows always compute, even if their results
are not used)
o |DEA2:
o Use the “"HARD” implementation of Flow/Stream

Future / Ongoing work

e Haski-style security labels
e More serious model checking
o Predicate abstraction very nice fit with timers
o “Octogons”
o Properties
m [iming is appropriate
m No double use of shared resources
N

