

I 🧡
Lustre

FRP + Lustre = Fruste
Koen Claessen

little memory
battery

powered

bluetooth/
wifi

timing
sensitive

applications

MEMOCODE
2022

imperative
language Sparse

Synchronous
Model

“Scoria”

Scoria
summer :: Ref Int32 -> Ref Int32 -> SSM ()
summer diff sum =
 while true $ do
 wait diff
 sum <~ deref sum + deref diff

ticker :: Int32 -> Ref Int32 -> SSM ()
ticker n x = routine $ do
 after (s 1) x n
 wait x
 ticker (n+1) x

Sparse Synchronous Model

program is in rest
by default

program reacts to
external triggers

time does not
pass while

executing code

program can
schedule events

in the future

important to limit work
during “reaction”

50

(Robert Krook)

set alarm from
where you were

supposed to
wake up

keep track of
logical clock

Why not Scoria?

● Imperative
○ I like declarative languages
○ Declarative = less likely to make certain mistakes (?)

● Process model
○ process dynamically allocated
○ communication between processes is limited (and unintuitive)
○ run out of time?

● Memory
○ memory dynamically allocated
○ run out of memory?

What would a
declarative

counterpart to
Scoria look like?

Inspiration

Lustre

FRP

bounded
memory bounded

time

declarative

never at
rest no timing

scheduling

declarative expressive

notion of
Event

no bounded
memory notion of

Timeway too
expressive

model
checking

Lustre

type Signal a ~ [a] {- infinite -}

(+) :: Signal Int -> Signal Int -> Signal Int
n :: Signal Int
pre :: Signal a -> Signal a
(⟶) :: Signal a -> Signal a -> Signal a

summer :: Signal Int -> Signal Int
summer diff = sum
 where
 sum = diff + (0 ⟶ pre sum)

constantly
ticking clock

pre s = _|_ : s

(x:_) ⟶ (_:s) = x:s

never at
rest

no timing
scheduling

ICFP
1997

Functional Reactive Programming (Fran-style)

type Time ~ Nat
type B a ~ Time -> a -- Monad (Reader)
type E a ~ (Time,a) -- Monad (Writer)

switch :: B a -> E (B a) -> B a
(+=>) :: E a -> (Time -> a -> b) -> E b
when :: (a->Bool) -> B a -> B (E a)

change :: Eq a => B a -> B (E a)
change b = do x <- b; when (/=x) b

summer :: Int -> (Time -> E Int) -> Time -> B Int
summer n diff t =
 pure n `switch` (diff t +=> \t’ k -> summer (n+k) diff t’)

Time is
explicitB = “behavior” E = “event”

no bounded
memory / time

ICFP
2015

Functional Reactive Programming (FRPNow)

type Time ~ Nat
type B a ~ Time -> a
type E a ~ (Time,a)

switch :: B a -> E (B a) -> B a

summer :: Int -> (Time -> E Int) -> Time -> B Int
summer n diff t =
 pure n `switch` (diff +=> \t’ k -> summer (n+k) diff t’)
summer :: Int -> B (E Int) -> B (B Int)
summer n diff =

harder to
write this

Functional Reactive Programming (Fran-style)

type Animation = B Image

text :: String -> B Image
over :: B Image -> B Image -> B Image
move :: B (Int,Int) -> B Image -> B Image
mouseXY :: B (Int,Int)

later :: B Time -> B a -> B a foldr1 over $
 zipWith later [0,1..]
 [move mouseXY (text w)
 | w <- words “Time flows like a river”]

Implementing FRP

type E a = ..some kind of blocking mechanism / callback..

type B a = (a, E (B a))

Small insights

● Lustre has bounded memory because of pre
○ no recursion with accumulating parameters

● Let Lustres clock tick only when something happens? - NO
○ Haski

ICFP
2020

Haski

type Temp = Float
data Status = Home | Away
data WindowOp = Open | Close | Skip

halexa :: Signal Temp -> Signal Status -> Signal WindowOp

called when
any input
changes

Haski

halexa :: Signal Temp -> LSignal Status -> LSignal WindowOp

security
labels

keeping track if
halexa does

something “bad”

Small insights

● Lustre has bounded memory because of pre
○ no recursion with accumulating parameters

● Let Lustres clock tick only when something happens? - NO
○ Haski
○ Non-modular behavior!

all parts of a
system can

observe when
something
happensHow to schedule

timing events?

(maybe Lustre
clocks are a solution)

Fruste

type Flow a ~ Time -> a -- Functor,Applicative
type Stream a ~ [(Time,a)] -- Functor

zip :: Flow a -> Flow b -> Flow (a,b)
n :: Flow Int
(~~>) :: a -> Stream a -> Flow a

pre :: Stream a -> Stream a
sample :: Stream a -> Flow b -> Stream (a,b)
merge :: (a->a->a) -> Stream a -> Stream a -> Stream a

summer :: Stream Int -> Stream Int
summer diff = sum
 where
 sum = diff !+ (0 ~~> pre sum)

(!+) :: Stream Int -> Flow Int -> Stream Int
s !+ a = fmap (uncurry (+)) (sample s a)

(><) :: Stream a -> Stream a -> Stream a
s1 >< s2 = merge (\a b ->a) s1 s2

at :: Flow a -> Stream b -> Stream a
a `at` s = fmap snd (sample s a)

How to
implement

How to
schedule

timing events

generate C
code at rest

only run
relevant code
when trigger

happens

wakes up
at trigger

Implementing Fruste

type Stream a = ..some kind of blocking mechanism / callback..

type Flow a = (a, Stream a) -- created by ~~>

HARD
(But the

right path)

(keep core
calculus as small

as possible)

Implementing Fruste (easy)

type Flow a = Signal a

type Stream a = (Signal Bool, Signal a)

only has to make
sense when

trigger is True

reuse Lustre
compiler runs the whole

program every
time something

happens

Fruste implementation

pre :: Stream a -> Stream a
pre (act, s) = (started' /\ act, s')
 where
 started' = false --> Lustre.pre (act \/ started')
 s' = Lustre.pre (ifThenElse act s s')

(~~>) :: Val a => a -> Stream a -> Flow a
x ~~> (act, s) = y
 where
 y = ifThenElse act s (val x --> Lustre.pre y)

How to
implement

How to
schedule

timing events

add small
extension
to Lustre

use it to
implement Fruste
timing combinator

Fruste timing

later :: Flow Int -> Stream a -> Stream a

later1 :: Flow Int -> Stream a -> Stream a

needs
unbounded
memory :-(

only schedules 1
event, ignores
everything else

Fruste implementation

timer :: Signal Bool -> Signal Int -> Signal Bool

Lustre extension

later1 :: Flow Int -> Stream a -> Stream a
later1 t (set,inp) = (get,mem)
 where
 get = timer set t
 ready = get \/ (true --> Lustre.pre (nt set /\ ready))
 mem = Lustre.pre (ifThenElse (set /\ ready) inp mem)

Fruste examples

ticker :: Flow Int -> Stream ()
ticker t = s
 where
 s = start >< later1 t s

counter :: Stream () -> Stream () -> Stream Int
counter down up = summer diff
 where
 diff = ((-1) `at` down)
 >+< (1 `at` up)
 >+< (2 `at` ticking 1000)

(>+<) :: Stream Int -> Stream Int -> Stream Int
s1 >+< s2 = merge (+) s1 s2

DEMO

Nordic Semiconductor NRF52840-DK

256Kb
Cortex M4 64MHz
BLE

● Development board for IoT-like
systems

● Has bluetooth
● Low power
● Fruste runs on Zephyr

Micro:bit

● Fruste runs on Micro:bit
● Has a 5x5 display
● Has bluetooth
● Low power
● Programming in scratch-like environment

○ or Python
○ or JavaScript
○ (or C)

16Kb
Cortex M0
BLE

data System
 = System
 { buttonA :: Stream ()
 , buttonB :: Stream ()
 , bltReceive :: Stream Msg
 , random :: Flow Int
 …
 }

bltSend works by
combining all streams

from all parts of the
program

arbiter :: System -> (Stream Msg, Stream ())
arbiter sys = (bltSend, victory)
 where
 bltSend = random sys `at` (start >< retry)
 sent = 0 ~~> bltSend

 recv = bltReceive sys
 victory = holds (recv !< sent)
 retry = holds (recv !== sent)

arbiter :: System -> (Stream Msg, Stream ())
arbiter sys = (bltSend, victory)
 where
 bltSend = random sys `at` (start >< later1 3 retry)
 sent = 0 ~~> bltSend

 recv = bltReceive sys
 victory = holds (recv !< sent)
 retry = holds (recv !== sent)

arbiter :: System -> (Stream Msg, Stream ())
arbiter sys = (bltSend, victory)
 where
 bltSend = random sys `at` (start >< later1 3 retry)
 sent = 0 ~~> bltSend

 recv = bltSend ==> bltReceive sys
 victory = holds (recv !< sent)
 retry = holds (recv !== sent)

(==>) :: Stream a -> Stream b -> Stream b

only keeps b’s
right after a’s

pingPong :: System -> (Stream Msg, Flow Display)
pingPong sys = (bltSend, display)
 where
 (bltSend1, beginMe) = arbiter sys
 (display, endMe) = gameLogic mbit (beginMe >< endYou)
 (bltSend2, endYou) = waitLogic endMe

 bltSend = bltSend1 >#< bltSend2

merge with
uniqueness assertion

“when”

when :: (a->Bool) -> Flow a -> Stream a

Create something
reactive from

something
non-reactive

OK if all inputs to
the system are

reactive

time :: Flow Time

temp :: Flow Temp
when (>30) temp

Implementing Flow/Stream

● Only want to execute relevant code in every step
● IDEA 1:

○ Partial evaluation
○ Use same strategy as Lustre clocks
○ (Hard, because Flows always compute, even if their results

are not used)
● IDEA 2:

○ Use the “HARD” implementation of Flow/Stream

help!

Future / Ongoing work

● Haski-style security labels
● More serious model checking

○ Predicate abstraction very nice fit with timers
○ “Octogons”
○ Properties

■ Timing is appropriate
■ No double use of shared resources
■ …

