
Towards a Refinement Type System for
Hybrid Synchronous Program Verification
Jiawei Chen, José Luiz Vargas de Mendonça, Bereket Shimels Ayele,

Bereket Ngussie Bekele, Shayan Jalili, Pranjal Sharma, Nicholas Wolhfeil,

Yicheng Zhang and Jean-Baptiste Jeannin

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Context

• OCaml-based robotics platform with
verification and real-time execution

• Preliminary work published at 2022
FTSCS workshop

• Full paper at ICFP 2024

• Available, Reusable artifact

2 Image: icfp2024.sigplan.org

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Background

• Cyber-Physical Systems (CPS): Software that
interacts with the physical environment

• Stringent safety requirements

• CPS Verification: Implementation?

• CPS Implementation: Verification?

• CPS designers shouldn’t need to choose
between verification and implementation

• Language with both?

3

Verifiable Executable

outflow

inflow
high limit

low limit

controller
tank level

sensor

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Synchronous Programming
[Caspi et al., POPL ’87; Bourke et al., HSCC ’13; Colaço et al., TASE ’17]

4

• Proven track record in industry

• Lustre, SCADE, Esterel, Signal, etc.

• Data as streams (over time), programs as

stream manipulations

• Our work is based on Zélus

• Hybrid program modeling and simulation

• Streams built using unit delay and recursion

• Eventually: hybrid systems verification

s1 s2 s3 s4 s5 …s

t1 t2 t3 t4 t5 …t

s fby t s1
t1 t2 t3 t4 …

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Refinement Types
[Freeman and Pfenning, PLDI ’91; Rondon et al., PLDI ’08; Vazou et al., ICFP ’14; Jhala and Vazou, FTPL ’21]

• Inspired by Liquid Haskell

• Decidable SMT-based type checking and

subtyping

• Type refinements on streams = temporal

properties

• Support a subset of LTL

• Interested in safety properties

5

let x:{v:float| v >= 0.} = 3.14

Refinement Predicate

Base Type

Term Variable

Towards a Refinement Type System for Hybrid Synchronous Program Verification

We formalize refinement types

for a synchronous language,

prove type safety, and implement

verified programs on physical robots.

6

Towards a Refinement Type System for Hybrid Synchronous Program Verification

• Method for Automated Refinement-Type

Verification of Lustre

• Separate compilation paths for simulation and

execution

• Verify a discrete-time subset of Zélus

• Our contributions:

• Formal refinement type system and semantics

• Type checker inside Zélus (+ artifact)

• Demonstration of real-time execution

MARVeLus

7

Robot

Runtime

Type Checking

+ SMT
Counter-
example

Specifications Code

Zélus Compiler

Simulation

models

Towards a Refinement Type System for Hybrid Synchronous Program Verification

A Simple Example

8

x

x + 1

1

2

2

3

3

4

4

5

5

6

…

…

let rec x

= 1 fby (x + 1) in x

Towards a Refinement Type System for Hybrid Synchronous Program Verification

A Simple Example

9

“x should always be positive”

x

x + 1

1

2

2

3

3

4

4

5

5

6

…

…

let rec x

= 1 fby (x + 1) in x

Towards a Refinement Type System for Hybrid Synchronous Program Verification

A Simple Example

10

let rec x:{v:int | □(x>0)}

= 1 fby (x + 1) in x

x

x + 1

1

2

2

3

3

4

4

5

5

6

…

…

“x should always be positive”

Towards a Refinement Type System for Hybrid Synchronous Program Verification

A Simple Example

11

let rec x:{v:int | □(x>0)}

= 1 fby (x + 1) in x

“x should always be positive”

1 > 0 ∀ x:int . x > 0 ⇒ (x + 1) > 0∧

∀ x:int . x > 0

SMT
Syntax-guided

Towards a Refinement Type System for Hybrid Synchronous Program Verification

MARVeLus Semantics
[Caspi and Pouzet, ICFP ’96; Caspi and Pouzet, CMCS ’98]

• Like Lustre semantics…

• But adapted for type safety proofs with
refinements

• Terms emit a value and rewrite

• One step per unit time

12

Environment Term
Value

New Term

Functions Terms

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Semantics Rules

13

Towards a Refinement Type System for Hybrid Synchronous Program Verification

MARVeLus Types

• Like refinement types…

• But with streams and temporal
predicates

• Syntax-guided type safety…

• But must also account for
streams

• Modified progress and
preservation

14

Environment Term Type

Functions Terms

Beginning of All of , later

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Selected Typing Rules

15

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Typing Rules, Continued

16

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Type Safety

17

well-typed terms

which are well-typed in the next time stepalways step to terms

Under some assumptions about the environment,

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Verified Adaptive Cruise Control
[Loos et al., FM ’11]

• Verified autonomous braking controller

for Adaptive Cruise Control

• Safety Property: Never crash into the

obstacle: □(d > 0)

• Hardware abstractions and sensors

trusted

18

dn

xn
f xn

l

vn
f

x0
f

vn
l

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Experiment

• Verified autonomous braking

demonstrated on physical robots

• Can follow moving vehicles

• Collision-free in all runs

19

Towards a Refinement Type System for Hybrid Synchronous Program Verification

• Hybrid

programs

• Full LTL

specifications

• Invariant

generation

• Verified

compiler

• More hardware

support

• Runtime

monitoring

Future Work

20

Specification Execution
Verification /

Compilation

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Future Work: Specifications

• Currently we support a limited subset of LTL

• Necessary for “predicate splitting”

• May be tricky to extend to hybrid

• Must have:

• Type safety proof

• Predictable compile-time verification

• Possible ideas:

• Synchronous Observers

21

ψ[0] ψ[1] ψ[2] ψ[3] ψ[4] …

ψ1[0] ψ2[0] ψ2[1] ψ2[2] ψ2[3] …

Beginning of All of , later

≡

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Future Work: Specifications (cont’d)

• Hybrid

• Model real systems more accurately

• Upwards Zero Crossings

• Possible Ideas:

• Differential Dynamic Logic (dL)

• Parallelism?

• Barrier Certificates

22

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Future Work: Robotics Integrations

• Provide an intuitive interface for
system designers

• Current implementation:

• Getter and setter functions to
access robot variables

• Deterministic model for verification

• Re-use as much verified code as
possible

• Ideally, reuse the entire verified
controller

23

Controller

Robot

Interfaces

Controller

Simulated Robot

Discrete

Continuous

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Automated Braking in MARVeLus

24

let rec (df, vf, af):

{(d:float)*(v:float)*(a:float)| Base Type Spec

Follower Decisions

Dynamics Invariant

let vfi : {v: float | v > 0.} = 0.8;

let dt : {v: float | v > 0.} = 0.1;

let b : {v: float | v > 0.} = 0.136;

let xl : {v: float | v > 0.} = 5.;

Constants

Initial State}) = (xl, vfi, 0.) fby

Dynamics Evolution
let v_next = max(vf + (af * dt), 0.) models (robot_get “vel”) in

let d_next = df -. (v_next * dt) models (robot_get “dist”) in

Follower Control

(d_next, v_next,

if needToBrake(d_next, v_next) then -b else amax)

in (robot_str “brake” af); (df, vf, af)

Safety Condition(

“Are we too close to do anything

other than brake?”
dn

xn
f x l

vn
f

x0
f

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Future Work: Proof Assistant Embedding

• Goal: Embed MARVeLus in a proof
assistant such as PVS

• Build off existing dL embedding for
hybrid

• Mechanize the type system

• Enable code generation from
specifications (inspired by
PRECiSA)

• Existing work embeds Lustre in Coq
and PVS

25

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Summary

• Robots and other CPS need formal

verification

• MARVeLus provides formal verification and

execution in a unified robotics platform

• Synchronous programs can be enhanced

with refinement types

• Verified MARVeLus programs can execute on

real hardware

26

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Acknowledgements

• The Zélus Team

• Marc Pouzet and Timothy Bourke

• Ranjit Jhala and Niki Vazou

• NASA Langley Formal Methods

• Tanner Slagel, Lauren White, Laura Titolo,

Aaron Dutle and César Muñoz

• Many more

27

Thanks!

Towards a Refinement Type System for Hybrid Synchronous Program Verification

Contacts

• Email: chenjw@umich.edu

• Website: www.jchenrobotics.com

• Our Lab: https://marvl.engin.umich.edu

28

ICFP 2024 Paper

mailto:chenjw@umich.edu
http://www.jchenrobotics.com/
https://marvl.engin.umich.edu/

	Slide 1: Towards a Refinement Type System for Hybrid Synchronous Program Verification
	Slide 2: Context
	Slide 3: Background
	Slide 4: Synchronous Programming
	Slide 5: Refinement Types
	Slide 6
	Slide 7: MARVeLus
	Slide 8: A Simple Example
	Slide 9: A Simple Example
	Slide 10: A Simple Example
	Slide 11: A Simple Example
	Slide 12: MARVeLus Semantics
	Slide 13: Semantics Rules
	Slide 14: MARVeLus Types
	Slide 15: Selected Typing Rules
	Slide 16: Typing Rules, Continued
	Slide 17: Type Safety
	Slide 18: Verified Adaptive Cruise Control
	Slide 19: Experiment
	Slide 20: Future Work
	Slide 21: Future Work: Specifications
	Slide 22: Future Work: Specifications (cont’d)
	Slide 23: Future Work: Robotics Integrations
	Slide 24: Automated Braking in MARVeLus
	Slide 25: Future Work: Proof Assistant Embedding
	Slide 26: Summary
	Slide 27: Acknowledgements
	Slide 28: Contacts

