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Context

• OCaml-based robotics platform with 
verification and real-time execution

• Preliminary work published at 2022 
FTSCS workshop

• Full paper at ICFP 2024

• Available, Reusable artifact
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Background

• Cyber-Physical Systems (CPS): Software that 
interacts with the physical environment

• Stringent safety requirements

• CPS Verification: Implementation?

• CPS Implementation: Verification?

• CPS designers shouldn’t need to choose 
between verification and implementation

• Language with both?
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Synchronous Programming
[Caspi et al., POPL ’87; Bourke et al., HSCC ’13; Colaço et al., TASE ’17]
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• Proven track record in industry

• Lustre, SCADE, Esterel, Signal, etc.

• Data as streams (over time), programs as 

stream manipulations

• Our work is based on Zélus

• Hybrid program modeling and simulation

• Streams built using unit delay and recursion

• Eventually: hybrid systems verification
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Refinement Types
[Freeman and Pfenning, PLDI ’91; Rondon et al., PLDI ’08; Vazou et al., ICFP ’14; Jhala and Vazou, FTPL ’21]

• Inspired by Liquid Haskell

• Decidable SMT-based type checking and 

subtyping

• Type refinements on streams = temporal 

properties

• Support a subset of LTL

• Interested in safety properties
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We formalize refinement types 

for a synchronous language, 

prove type safety, and implement

verified programs on physical robots.
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• Method for Automated Refinement-Type 

Verification of Lustre

• Separate compilation paths for simulation and 

execution

• Verify a discrete-time subset of Zélus

• Our contributions:

• Formal refinement type system and semantics

• Type checker inside Zélus (+ artifact) 

• Demonstration of real-time execution

MARVeLus
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A Simple Example
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A Simple Example
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“x should always be positive”

x

x + 1

1

2

2

3

3

4

4

5

5

6

…

…

let rec x

= 1 fby (x + 1) in x



Towards a Refinement Type System for Hybrid Synchronous Program Verification

A Simple Example
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let rec x:{v:int | □(x>0)} 

= 1 fby (x + 1) in x
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A Simple Example
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let rec x:{v:int | □(x>0)} 

= 1 fby (x + 1) in x

“x should always be positive”

1 > 0 ∀ x:int . x > 0 ⇒ (x + 1) > 0∧

∀ x:int . x > 0

SMT
Syntax-guided
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MARVeLus Semantics
[Caspi and Pouzet, ICFP ’96; Caspi and Pouzet, CMCS ’98]

• Like Lustre semantics…

• But adapted for type safety proofs with 
refinements

• Terms emit a value and rewrite

• One step per unit time
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Semantics Rules
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MARVeLus Types

• Like refinement types…

• But with streams and temporal 
predicates

• Syntax-guided type safety…

• But must also account for 
streams

• Modified progress and 
preservation
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Selected Typing Rules
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Typing Rules, Continued
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Type Safety
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well-typed terms

which are well-typed in the next time stepalways step to terms

Under some assumptions about the environment,
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Verified Adaptive Cruise Control
[Loos et al., FM ’11]

• Verified autonomous braking controller

for Adaptive Cruise Control

• Safety Property: Never crash into the 

obstacle: □(d > 0)

• Hardware abstractions and sensors 

trusted
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Experiment

• Verified autonomous braking 

demonstrated on physical robots

• Can follow moving vehicles

• Collision-free in all runs
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• Hybrid 

programs

• Full LTL 

specifications

• Invariant 

generation

• Verified 

compiler

• More hardware 

support

• Runtime 

monitoring

Future Work
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Future Work: Specifications

• Currently we support a limited subset of LTL

• Necessary for “predicate splitting”

• May be tricky to extend to hybrid

• Must have:

• Type safety proof

• Predictable compile-time verification

• Possible ideas:

• Synchronous Observers
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Future Work: Specifications (cont’d)

• Hybrid

• Model real systems more accurately

• Upwards Zero Crossings

• Possible Ideas:

• Differential Dynamic Logic (dL)

• Parallelism?

• Barrier Certificates
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Future Work: Robotics Integrations

• Provide an intuitive interface for 
system designers

• Current implementation:  

• Getter and setter functions to 
access robot variables

• Deterministic model for verification

• Re-use as much verified code as 
possible

• Ideally, reuse the entire verified 
controller
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Automated Braking in MARVeLus
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let rec (df, vf, af):

{(d:float)*(v:float)*(a:float)| Base Type Spec

Follower Decisions

Dynamics Invariant

let vfi : {v: float | v > 0.} = 0.8;

let dt : {v: float | v > 0.} = 0.1;

let b : {v: float | v > 0.} = 0.136;

let xl : {v: float | v > 0.} = 5.;

Constants

Initial State}) = (xl, vfi, 0.) fby

Dynamics Evolution
let v_next = max(vf + (af * dt), 0.) models (robot_get “vel”) in

let d_next = df -. (v_next * dt) models (robot_get “dist”) in

Follower Control

(d_next, v_next,

if needToBrake(d_next, v_next) then -b else amax)

in (robot_str “brake” af); (df, vf, af)

Safety Condition(

“Are we too close to do anything 

other than brake?”
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Future Work: Proof Assistant Embedding

• Goal: Embed MARVeLus in a proof 
assistant such as PVS

• Build off existing dL embedding for 
hybrid

• Mechanize the type system

• Enable code generation from 
specifications (inspired by 
PRECiSA)

• Existing work embeds Lustre in Coq 
and PVS
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Summary

• Robots and other CPS need formal 

verification

• MARVeLus provides formal verification and 

execution in a unified robotics platform

• Synchronous programs can be enhanced 

with refinement types

• Verified MARVeLus programs can execute on 

real hardware
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Contacts

• Email: chenjw@umich.edu

• Website: www.jchenrobotics.com

• Our Lab: https://marvl.engin.umich.edu
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