Exploring Policy-based training and enforcement of Compositional Neural Networks

Sobhan Chatterjee

21-11-2024

Background Inspiration Compositional NNs as decomposition

Introducing Safety into Compositional Neural Networks

Motivation

Solution

Results

Background

Inspiration

Compositional NNs as decomposition

Introducing Safety into Compositional Neural Networks

Motivation

Solution

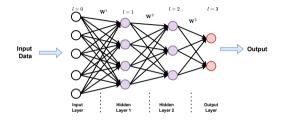
Results

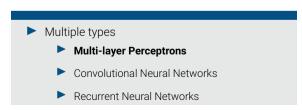
Data Driven Design - Artificial Neural Networks

- Created to imitate their biological counterparts
- Two phases
 - Training
 - Inference

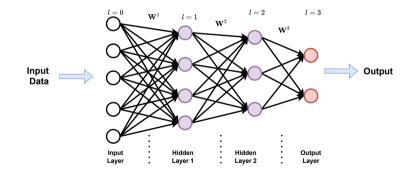
Multiple layers

- Input Layer
- Hidden Layer(s)
- Output Layer
- Neurons operate on "activation functions"





Often designed as large monolithic (single) models that are difficult to verify for safety and timing requirements.



Background

Inspiration

Compositional NNs as decomposition

Introducing Safety into Compositional Neural Networks

Motivation

Solution

Results

Synchronous neural networks for cyber-physical systems

Partha S Roop	Hammond Pearce	Keyan Monadjem
University of Auckland	University of Auckland	University of Auckland
Auckland, New Zealand	Auckland, New Zealand	Auckland, New Zealand
p.roop@auckland.ac.nz	hammond.pearce@auckland.ac.nz	kmon173@aucklanduni.ac.nz

A Compositional Approach for Real-Time Machine Learning

Nathan Allen	Yash Raje	Jin Woo Ro	Partha Roop
nall426@aucklanduni.ac.nz	yraj429@aucklanduni.ac.nz	jro002@aucklanduni.ac.nz	p.roop@auckland.ac.nz
University of Auckland	University of Auckland	University of Auckland	University of Auckland
Auckland, New Zealand	Auckland, New Zealand	Auckland, New Zealand	Auckland, New Zealand

A compositional approach using Keras for neural networks in real-time systems

Xin Yang	Partha Roop	Hammond Pearce	Jin Woo Ro
The University of Auckland	The University of Auckland	The University of Auckland	The University of Auckland
Auckland, New Zealand	Auckland, New Zealand	Auckland, New Zealand	Auckland, New Zealand
xyan510@aucklanduni.ac.nz	p.roop@auckland.ac.nz	hammond.pearce@auckland.ac.nz	jro002@aucklanduni.ac.nz

Background

Inspiration

Compositional NNs as decomposition

Introducing Safety into Compositional Neural Networks

Motivation

Solution

Results

2024 22nd ACM-IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE)

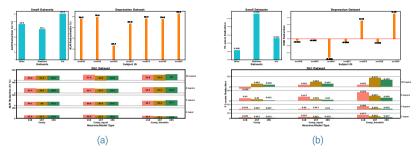
Exploring Compositional Neural Networks for Real-Time Systems

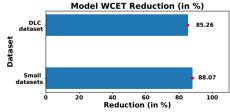
Sobhan Chatterjee^{* †}, Nathan Allen^{*}, Nitish Patel^{*} and Partha Roop^{*} *Department of Electrical, Computer and Software Engineering, Faculty of Engineering University of Auckland, Auckland, New Zealand [†]Email: schb534@aucklanduni.ac.nz

Abstract—Real-time CPSs using Artificial Neural Networks (ANNs) are traditionally developed as monolithic black-boxes. This results in designs that are often difficult to formally verify against safety specifications and implement on hardware for formal timing analysis. Consequently, their implementation as a composition of smaller ANNs has received recent interest. These are easier to implement, narallelise and validate. Despite systems with strict safety (safety-critical) and response-time (time-critical) specifications often mandate formal guarantees on their functional [5] and timing correctness [6].

While several techniques have been proposed to handle formal verification [7] of ANNs, which is an NP-Complete problem [8], the use of such methods is usually limited to either small networks or require complex model abstraction

Observations





Background

Inspiration

Compositional NNs as decomposition

Introducing Safety into Compositional Neural Networks

Motivation

Solution

Results

Background

Inspiration

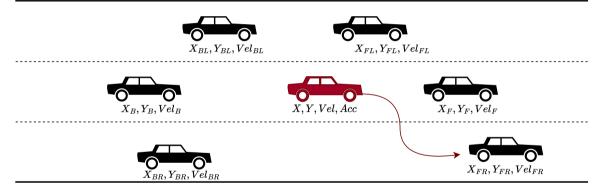
Compositional NNs as decomposition

Introducing Safety into Compositional Neural Networks

Motivation

Solution

Results



Simple Autonomous Vehicle (AV) Case Study

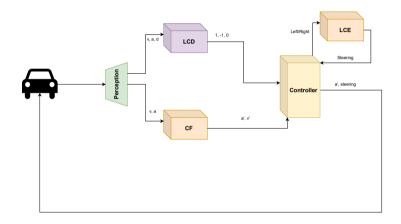


Figure: AV freeway/highway example. LCD: Lane change decision, LCE: Lane Change Execution, CF: Car Following

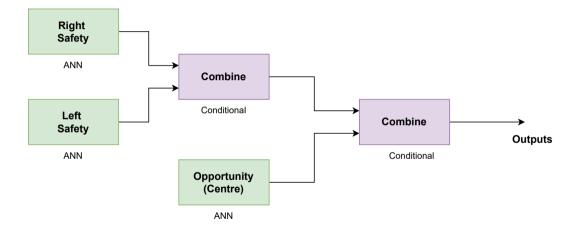


Figure: LCD Module

CF Module

Intelligent Driver Model (IDM)

$$\dot{\mathbf{v}} = \mathbf{a} \left(1 - \left(\frac{\mathbf{v}}{\mathbf{v}_0} \right)^{\delta} - \left(\frac{\mathbf{s}^*}{\mathbf{s}} \right)^2 \right)$$

$$\dot{\mathbf{s}} = \mathbf{v}$$
(1)

where v is the velocity of the vehicle, s is the distance between the vehicle and the vehicle in front, a is the acceleration, v_0 is the desired velocity, δ is the acceleration exponent, and s^* is the desired safe distance. We choose $v_0 = 30m/s$ and $s^* = 2m$.

LCE Module

Simple Polynomial Time-based model

$$y(t) = a_{3}t^{3} + a_{2}t^{2} + a_{1}t + a_{0}$$
$$\dot{y}(t) = 3a_{3}t^{2} + 2a_{2}t + a_{1}$$
$$a1 = 0, a2 = 0, a3 = 3\frac{lane_{a}width}{t_{LC}^{2}}, a4 = -2\frac{lane_{a}width}{t_{LC}^{3}} \quad (2)$$

where y(t) is the lateral position of the vehicle at time t, a_3 , a_2 , a_1 , and a_0 are the polynomial coefficients, and t is the time. t_{LC} is the desired time for lane change. Here, $t_{LC} = 5$ seconds and lane_width = 3.7m.

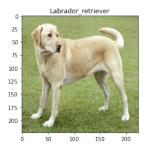
The car must not collide into nearby cars

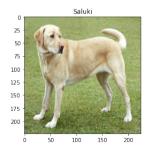
Difficulties

ANNs prone to errors and not reasonably robust to noisy inputs.

+

E.g. Sensor noise can lead to misclassifications.

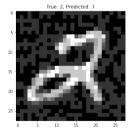




Difficulties

ANNs susceptible to adversarial attacks that lead to wrong predictions.

E.g. A misclassified obstacle can have horrible consequences.



Background

Inspiration

Compositional NNs as decomposition

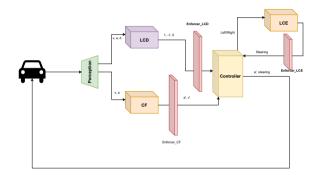
Introducing Safety into Compositional Neural Networks

Motivation

Solution

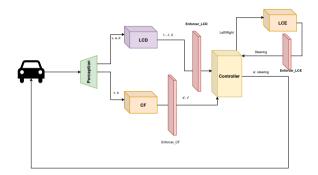
Results

Add Runtime Enforcers after modules



> Unidirectional Runtime Enforcers at module output to modify unsafe outputs from entering the controller.

Train ANN models on policies



Unidirectional Runtime Enforcers at module output to modify unsafe outputs from entering the controller.

Train ANN models based on policies to increase adherence to polcies.

System Level Policy

No Collision with surrounding cars.

Decompose System Level Policy

- No Collision Due to Lane Change
 - No collision due to unsafe lane change decision
 - No collision due to unsafe lane change execution
- No collision due to Car following

What policies should the Enforcers enforce? Safety Policies

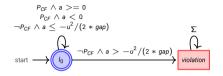


Figure: Safety property for car following module

No collision due to car following

- Car should brake and stop if it comes too close (determined by policyP_{CF}) to car in front.
- \blacktriangleright P_{CF} : gap >= 2m

• Recover by EDITING
$$a = -u^2/(2 * gap)$$
 or braking.

What policies should the Enforcers enforce? Safety Policies

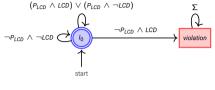


Figure: Safety property for LCD

No collision due to decision to lane change

- Car should only lane change when there is enough gap to lane change
- When the gap determined by both policy P_{LCD} and the ANN output (LCD) is safe, the car can lane change, otherwise not.
- Recover by EDITING LCD = 0 or providing output for No lane change.

What policies should the Enforcers enforce? Safety Policies

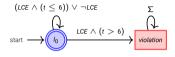


Figure: Safety property for LCE

No collision due to lane change

- It should not take too long to lane change (*LCE* = 1). If it takes longer than 6 seconds for the lane change process, we enter violation state.
- Recover by EDITING LCE = 0 or stopping lane change.

More on LCD policy

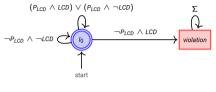
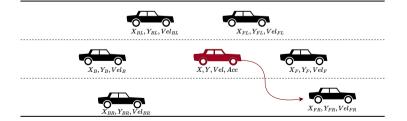


Figure: Safety property for LCD



More on LCD policy: Compositional Division of Policies

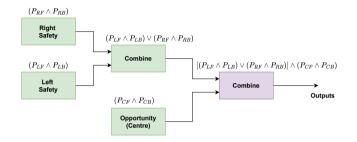


Figure: Compositional Properties

Compositional

- Divide the model properties to models.
- Train each block using the properties
- Check overall satisfaction after training

- Prepare linear template of predicates of form A >= x1 * B + x2 * C, where x1, and x2 are coefficients and A, B, C are features.
- Example: P_{LF} : Ifx > x1 * IfxVelocity + x2 * IfxAcceleration
- Linear Regression to find initial values of x1 and x2.
- Run optimiser to optimise the policy plane using Mean Squared Error.
- Convex optimisation. We stop when 90% datapoints satisfy the learnt policy.
- BFGS (Broyden-Fletcher-Goldfarb-Shanno) as optimiser.

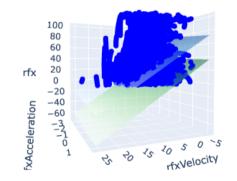
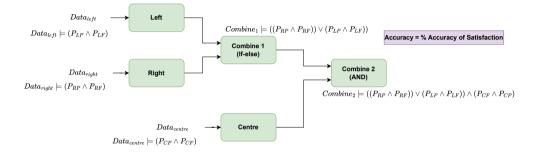
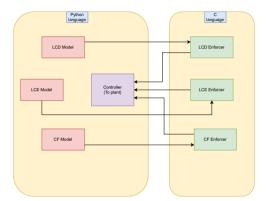


Figure: Blue plane is the plane from Linear Regression and the Green plane is after optimisation



- Obtain the policies.
- Obtain datapoints satisfying the combined policies.
- Left LC: 69422, Right LC: 61342 and No LC: 43667

Implementation



easyRTE tool for Runtime Enforcement. https://github.com/PRETgroup/easy-rteh

Python for synchronous execution.

Related work

Deep Specification Mining

Tien-Duy B. Le School of Information Systems Singapore Management University, Singapore btdle.2012@smu.edu.sg David Lo School of Information Systems Singapore Management University, Singapore davidlo@smu.edu.sg

Policy-Based Diabetes Detection using Formal Runtime Verification Monitors

1st Abhinandan Panda School of Electrical Sciences IIT Bhubaneswar Bhubaneswar, India Email: ap53@iitbbs.ac.in 2nd Srinivas Pinisetty School of Electrical Sciences IIT Bhubaneswar Bhubaneswar, India Email: spinisetty@iitbbs.ac.in 3rd Partha Roop Dept. of Electr. & Comput. Eng. University of Auckland Auckland, New Zealand Email: p.roop@aucklanduni.ac.nz

Assumption Generation for Learning-Enabled Autonomous Systems

Authors: 😩 Corina S. Păsăreanu, 😩 Ravi Mangal, 😩 Divya Gopinath, 😩 Huafeng Yu 🕴 Authors Info & Claims

Runtime Verification: 23rd International Conference. RV 2023. Thessaloniki, Greece. October 3–6. 2023. Proceedings • Pages 3 - 22 https://doi.org/10.1007/978-3-031-44267-4_1

Background

Inspiration

Compositional NNs as decomposition

Introducing Safety into Compositional Neural Networks

Motivation

Solution

Results

$$\begin{split} & |fx>16.07+6.62*|fxVelocity+10.74*|fxAcceleration|\\ & |px<-18.15+-2.82*|pxVelocity+-2.52*|pxAcceleration|\\ & rfx>13.19+-3.11*rfxVelocity+-1.7*rfxAcceleration|\\ & rpx<-15.75+3.82*rpxVelocity+-2.01*rpxAcceleration|\\ & fx>17.76+3.79*fxVelocity+-11.99*fxAcceleration|\\ & px<-15.84+-1.12*pxVelocity+4.48*pxAcceleration|\\ \end{split}$$

71% adherence to P_{LCD} for models not trained with policy on test data.

83% adherence to P_{LCD} for models not trained with policy on test data.

(3)

Enforcement Results

Enforcement of LCD and CF

Inputs: LCD=1, P=0 -> New LCD=0
Inputs: X=7, LCE=1 -> New LCE=0

Inputs: Acceleration=0, Velocity=201.00502512562815, and Gap=1.99 -> New Acceleration=-100.502510

Enforcement of LCE

Inputs: LCD=0, P=1 -> New LCD=0 Inputs: X=7, LCE=1 -> New LCE=0 Inputs: Acceleration=0.7732927017091369, Velocity=21.67380790043201, and Gap=53.833012477972495 -> New Acceleration=0.773293 Step: 50, Time: 2.0s, LCD: 0, LCE: 0, Lateral Speed: 0, Accel: 0.77, Vel: 21.67, Gap: 53.83

No Enforcement: Transparency

Inputs: LCD=0, P=1 -> New LCD=0
Inputs: X=0, LCE=False -> New LCE=0
Inputs: Acceleration=0.8911531126722197, Velocity=20.143163804952586, and Gap=50.31879548446812 -> New Acceleration=0.891153
Step: 4, Time: 0.2s, LCD: 0, LCE: 0, Lateral Speed: 0, Accel: 0.89, Vel: 20.14, Gap: 50.32

Summary

- Compositional models offer better timing performance
- Data-based compositional policy mining based for linear predicates.
- Policy trained compositional models are better than ones not trained on policies.

- Add more policies: Liveness, timed policies.
- Restricted to Linear predicates.
- Proper simulation in SUMO.
- Python based enforcement.
- Series and parallel execution of modules.

Background

Inspiration

Compositional NNs as decomposition

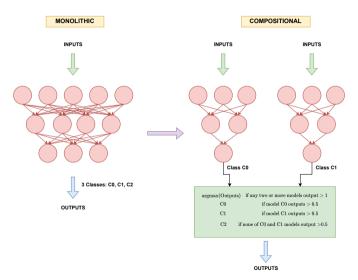
Introducing Safety into Compositional Neural Networks

Motivation

Solution

Results

Compositional Premise: Example



Datasets

NGSIM dataset: Classification

- US Highway 101 dataset: 7.50 -8.35 a.m : 4824 cars.
- I80 Emeryville dataset: 4.00 4.15
 & 5.00 5.30 p.m : 4383 cars.
- Divide based on intuition
- ▶ Left LC Samples: 4380
- Right LC Samples: 1290
- No LC samples: 11006

Small datasets: Classification

- Iris: Classify iris flowers
- Wine: Classify wine type
- Diabetes: Classify severity of diabetes
- Divide based on confusion matrix

Depression Dataset: Regression

- Dataset from UCSD, USA
- 14 mild-moderately depressed participants
- Predict Mood Score: 1 (happy) 7 (depressed)
- Divide features into clusters and build models for each
- 6 clusters: Diet, Activity, Heart, Psychological, Sleep and Neurocognitve.

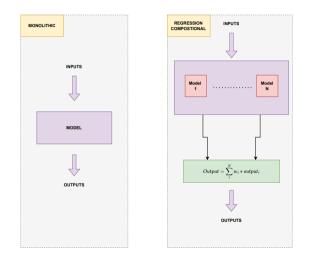


Figure: Caption

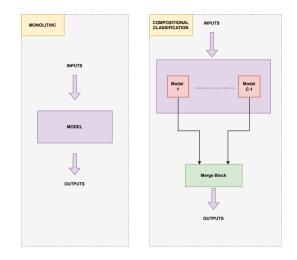


Figure: Caption

Linear Approximation of activations

- 32-bit Fixed-point numbers: 16 bit integer and 16 bit decimal
- Multi-cycle execution of neuron instances
- Pipelined execution of neurons

- P. S. Roop, H. Pearce, and K. Monadjem, "Synchronous neural networks for cyber-physical systems," in 2018 16th ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE), 2018, pp. 1–10.
- [2] N. Allen, Y. Raje, J. W. Ro, and P. Roop, "A Compositional Approach for Real-Time Machine Learning," in Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design, ser. MEMOCODE '19, event-place: La Jolla, California, New York, NY, USA: Association for Computing Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3359986.3361204.
- [3] X. Yang, P. Roop, H. Pearce, and J. W. Ro, "A compositional approach using Keras for neural networks in real-time systems," in 2020 Design, Automation Test in Europe Conference Exhibition (DATE), 2020, pp. 1109–1114.