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Data Driven Design - Artificial Neural Networks

▶ Created to imitate their biological counterparts

▶ Two phases
▶ Training

▶ Inference

▶ Multiple layers
▶ Input Layer

▶ Hidden Layer(s)

▶ Output Layer

▶ Neurons operate on “activation functions”
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▶ Multiple types
▶ Multi-layer Perceptrons

▶ Convolutional Neural Networks

▶ Recurrent Neural Networks
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ANN and Verification

Often designed as large monolithic (single) models that are difficult to verify for safety and timing requirements.
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Synchronous neural networks for cyber-physical systems [1]–[3]
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Exploring Compositional NNs for Real-Time Systems
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Car system on Freeway
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Simple Autonomous Vehicle (AV) Case Study
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Figure: AV freeway/highway example. LCD: Lane change decision, LCE: Lane Change Execution, CF: Car Following
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LCD Module
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Figure: LCD Module
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CF Module

Intelligent Driver Model (IDM)

v̇ = a

(
1 −
(

v

v0

)δ

−
(

s∗

s

)2
)

ṡ = v

(1)

where v is the velocity of the vehicle, s is the distance between the vehicle and the vehicle in front, a is the
acceleration, v0 is the desired velocity, δ is the acceleration exponent, and s∗ is the desired safe distance. We
choose v0 = 30m/s and s∗ = 2m.
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LCE Module

Simple Polynomial Time-based model

y(t) = a3t
3 + a2t

2 + a1t + a0

ẏ(t) = 3a3t
2 + 2a2t + a1

a1 = 0, a2 = 0, a3 = 3
lane width

t2LC
, a4 = −2

lane width

t3LC
(2)

where y(t) is the lateral position of the vehicle at time t, a3, a2, a1, and a0 are the polynomial coefficients, and t is
the time. tLC is the desired time for lane change. Here, tLC = 5seconds and lane width = 3.7m.
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A simple System-level policy

The car must not collide into nearby cars
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ANN-based CPS approaches are not dependable...

Difficulties
▶ ANNs prone to errors and not reasonably robust to noisy inputs.

▶ E.g. Sensor noise can lead to misclassifications.

+ =
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ANN-based CPS approaches are not dependable...

Difficulties
▶ ANNs susceptible to adversarial attacks that lead to wrong predictions.

▶ E.g. A misclassified obstacle can have horrible consequences.

+ =

Synchron2024 14 / 37



Outline

Compositional Neural Networks
Background
Inspiration
Compositional NNs as decomposition

Introducing Safety into Compositional Neural Networks
Motivation
Solution
Results

Appendices

Synchron2024 14 / 37



Add Runtime Enforcers after modules

Pe
rc
ep

tio
n

LCD

CF

Controller

LCE

v, a, d

v, a
a', v'

1, -1, 0

a', steering

Left/Right

Steering

Enforcer_CF

Enforcer_LCD

Enforcer_LCE

▶ Unidirectional Runtime Enforcers at module output to modify unsafe outputs from entering the controller.
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Train ANN models on policies
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▶ Unidirectional Runtime Enforcers at module output to modify unsafe outputs from entering the controller.

▶ Train ANN models based on policies to increase adherence to polcies.
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What policies should the Enforcers enforce?

System Level Policy

No Collision with surrounding cars.

Decompose System Level Policy

▶ No Collision Due to Lane Change
▶ No collision due to unsafe lane change decision

▶ No collision due to unsafe lane change execution

▶ No collision due to Car following
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What policies should the Enforcers enforce? Safety Policies

l0start violation

PCF ∧ a >= 0
PCF ∧ a < 0

¬PCF ∧ a ≤ −u2/(2 ∗ gap)

¬PCF ∧ a > −u2/(2 ∗ gap)

Σ

Figure: Safety property for car following module

No collision due to car following

▶ Car should brake and stop if it comes too close (determined by policyPCF) to car in front.

▶ PCF : gap >= 2m

▶ Recover by EDITING a = −u2/(2 ∗ gap) or braking.

Synchron2024 18 / 37



What policies should the Enforcers enforce? Safety Policies

l0

start

violation
¬PLCD ∧ LCD

(PLCD ∧ LCD) ∨ (PLCD ∧ ¬LCD)

¬PLCD ∧ ¬LCD

Σ

Figure: Safety property for LCD

No collision due to decision to lane change

▶ Car should only lane change when there is enough gap to lane change

▶ When the gap determined by both policy PLCD and the ANN output (LCD) is safe, the car can lane change,
otherwise not.

▶ Recover by EDITING LCD = 0 or providing output for No lane change.
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What policies should the Enforcers enforce? Safety Policies

l0start violation
LCE ∧ (t > 6)

(LCE ∧ (t ≤ 6)) ∨ ¬LCE Σ

Figure: Safety property for LCE

No collision due to lane change

▶ It should not take too long to lane change (LCE = 1). If it takes longer than 6 seconds for the lane change
process, we enter violation state.

▶ Recover by EDITING LCE = 0 or stopping lane change.
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More on LCD policy

l0

start
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¬PLCD ∧ LCD
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Figure: Safety property for LCD
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More on LCD policy: Compositional Division of Policies

Right 
Safety

Left 
Safety

Combine

Opportunity
(Centre)

Combine
Outputs

Figure: Compositional Properties

Compositional

▶ Divide the model properties to models.

▶ Train each block using the properties

▶ Check overall satisfaction after training
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Policy Mining Optimisation: LCD Module

▶ Prepare linear template of predicates of form A >= x1 ∗ B + x2 ∗ C, where x1, and x2 are coefficients and
A, B, C are features.

▶ Example: PLF : lfx > x1 ∗ lfxVelocity + x2 ∗ lfxAcceleration

▶ Linear Regression to find initial values of x1 and x2.

▶ Run optimiser to optimise the policy plane using Mean Squared Error.

▶ Convex optimisation. We stop when 90% datapoints satisfy the learnt policy.

▶ BFGS (Broyden–Fletcher–Goldfarb–Shanno) as optimiser.
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Example Policy Plot

Figure: Blue plane is the plane from Linear Regression and the Green plane is after optimisation

▶ PRF : rfx > x1 ∗ rfxVelocity + x2 ∗ rfxAccelration
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Policy Data Satisfaction

Left

Right

Combine 1
(If-else)

Centre

Combine 2
(AND)

Left

Right

Combine 1
(If-else)

Centre

Combine 2
(AND)

More Steps to Compute
%Accuracy of
Satisfaction

Accuracy = % Accuracy of Satisfaction

▶ Obtain the policies.

▶ Obtain datapoints satisfying the combined policies.

▶ Left LC: 69422, Right LC: 61342 and No LC: 43667
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Implementation

LCD Model LCD Enforcer

LCE Model

CF Model

Controller
(To plant) LCE Enforcer

CF Enforcer

C
language

Python
language

▶ easyRTE tool for Runtime Enforcement. https://github.com/PRETgroup/easy-rteh

▶ Python for synchronous execution.
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Results: LCD Policies

lfx > 16.07 + 6.62 ∗ lfxVelocity + 10.74 ∗ lfxAcceleration

lpx < −18.15 +−2.82 ∗ lpxVelocity +−2.52 ∗ lpxAcceleration

rfx > 13.19 +−3.11 ∗ rfxVelocity +−1.7 ∗ rfxAcceleration

rpx < −15.75 + 3.82 ∗ rpxVelocity +−2.01 ∗ rpxAcceleration

fx > 17.76 + 3.79 ∗ fxVelocity +−11.99 ∗ fxAcceleration

px < −15.84 +−1.12 ∗ pxVelocity + 4.48 ∗ pxAcceleration

(3)

▶ 71% adherence to PLCD for models not trained with policy on test data.

▶ 83% adherence to PLCD for models not trained with policy on test data.
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Enforcement Results

Enforcement of LCD and CF

Enforcement of LCE

No Enforcement: Transparency
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Conclusion

Summary

▶ Compositional models offer better timing performance

▶ Data-based compositional policy mining based for linear predicates.

▶ Policy trained compositional models are better than ones not trained on policies.

▶ Add more policies: Liveness, timed policies.

▶ Restricted to Linear predicates.

▶ Proper simulation in SUMO.

▶ Python based enforcement.

▶ Series and parallel execution of modules.
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THANKS!
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Compositional Premise: Example

INPUTS INPUTS INPUTS

OUTPUTS

OUTPUTS

MONOLITHIC COMPOSITIONAL

3 Classes: C0, C1, C2

Class C0 Class C1
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Datasets

NGSIM dataset: Classification
▶ US Highway 101 dataset: 7.50 -

8.35 a.m : 4824 cars.

▶ I80 Emeryville dataset: 4.00 - 4.15
& 5.00 - 5.30 p.m : 4383 cars.

▶ Divide based on intuition

▶ Left LC Samples: 4380

▶ Right LC Samples: 1290

▶ No LC samples: 11006

Small datasets: Classification
▶ Iris: Classify iris flowers

▶ Wine: Classify wine type

▶ Diabetes: Classify severity of diabetes

▶ Divide based on confusion matrix

Depression Dataset: Regression

▶ Dataset from UCSD, USA

▶ 14 mild-moderately depressed participants

▶ Predict Mood Score: 1 (happy) - 7 (depressed)

▶ Divide features into clusters and build models for each

▶ 6 clusters: Diet, Activity, Heart, Psychological, Sleep and
Neurocognitve.
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Compositional Premise

MODEL

INPUTS

OUTPUTS

MONOLITHIC

Model 
1

Model
N

OUTPUTS

INPUTSREGRESSION
COMPOSTIONAL

Figure: Caption
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Compositional Premise

Merge Block

Model 
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Model
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Figure: Caption
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Implementation Pipeline

TensorFlow-Keras
Model FPGACompiler

Weights

Architecture

(Python) (Python)

VHDL Model
MappingSynchronous Semantics

▶ Linear Approximation of activations

▶ 32-bit Fixed-point numbers: 16 bit integer and 16 bit decimal

▶ Multi-cycle execution of neuron instances

▶ Pipelined execution of neurons
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