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Data Driven Design - Artificial Neural Networks

Ig:;lat |:" I:{ Output
» Created to imitate their biological counterparts
> TWO phases Input Hidden Hidden Output
Layer N Layer 1 I Layer2 N Layer
»  Training

» nference

> Multiple layers

» Input L
e > Multiple types

> Hidden Layer(s) »  Multi-layer Perceptrons

> Output Layer » Convolutional Neural Networks

» Neurons operate on “activation functions” » Recurrent Neural Networks




ANN and Verification

Often designed as large monolithic (single) models that are difficult to verify for safety and timing requirements.

Input
Data

Input : Hidden : Hidden : Output
Layer . Layer 1 N Layer 2 . Layer




Compositional Neural Networks

Inspiration

Introducing Safety into Compositional Neural Networks

Appendices




ous neural networks for cyber-physical systems [1]-[3]
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Exploring Compositional NNs for Real-Time Systems
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Abstract—Real-time CPSs using Artificial Neural Networks
(ANNGS) are traditionally developed as monolithic black-boxes.
This results in designs that are often difficult to formally verify
against safety specifications and implement on hardware for
formal timing analysis. Consequently, their implementation as
a composntmn of smaller ANNs has recelved n:cent mterest

systems with strict safety (safety-critical) and response-time
(time-critical) specifications often mandate formal guaran-
tees on their functional [5] and timing correctness [6].
‘While several techniques have been proposed to handle
formal verification [7] of ANNs, which is an NP-Complete
problem [8], the use of such methods is usually limited to
either small networks or require complex model abstraction
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Car system on Freeway
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Figure: AV freeway/highway example. LCD: Lane change decision, LCE: Lane Change Execution, CF: Car Following
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Figure: LCD Module




CF Module

Intelligent Driver Model (IDM)

where v is the velocity of the vehicle, s is the distance between the vehicle and the vehicle in front, a is the
acceleration, v is the desired velocity, d is the acceleration exponent, and s* is the desired safe distance. We
choose vg = 30m/s and s* = 2m.
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LCE Module

Simple Polynomial Time-based model

y(t) = ast® + ayt® + aqt + ap
y(t) = 3ast® + 2a,t + a

lane_width lane_width
——ad = 2———— (2)

al=0,a2 =0,a3 =3 5
tic tic

where y(t) is the lateral position of the vehicle at time t, ag, a,, a7, and ag are the polynomial coefficients, and t is
the time. t,¢ is the desired time for lane change. Here, t;c = 5seconds and lane_width = 3.7m.




A simple System-level policy

The car must not collide into nearby cars




ANN-based CPS approaches are not dependable...

Difficulties

» ANNs prone to errors and not reasonably robust to noisy inputs.

P E.g. Sensor noise can lead to misclassifications.

Labrador_retriever




ANN-based CPS approaches are not dependable...

Difficulties
P> ANNs susceptible to adversarial attacks that lead to wrong predictions.

P E.g. Amisclassified obstacle can have horrible consequences.

True: 2, Predicted: 7
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Add Runtime Enforcers after modules

o« Seoms |
a stoorng  Enlor
Controller —————————
) av
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Enforcer_CF

Perception

» Unidirectional Runtime Enforcers at module output to modify unsafe outputs from entering the controller.

Synchron2024



Train ANN models on policies

LLLLLLLL

Controller

Perception

Enforcer_CF

» Unidirectional Runtime Enforcers at module output to modify unsafe outputs from entering the controller.

» Train ANN models based on policies to increase adherence to polcies.

Synchron2024



What policies should the Enforcers enforce?

System Level Policy

No Collision with surrounding cars.

Decompose System Level Policy

» No Collision Due to Lane Change

P No collision due to unsafe lane change decision

» No collision due to unsafe lane change execution

» No collision due to Car following

Synchron202:



What policies should the Enforcers enforce? Safety Policies

Pcr Na>=0
Pcr ANa <0
—Por Aa < —u? /(2 * gap) v

—Pcr Na > 7uz/(2 * gap)
start — @ > | violation

Figure: Safety property for car following module

No collision due to car following

» Car should brake and stop if it comes too close (determined by policyPcr) to car in front.

| 2 PCF . gap >=2m

» Recover by EDITING a = —uz/(2 * gap) or braking.




What policies should the Enforcers enforce? Safety Policies

(Peep A LCD) V (Piep A —LCD) b

—Picp A LCD

start

Figure: Safety property for LCD

No collision due to decision to lane change

» Car should only lane change when there is enough gap to lane change

» When the gap determined by both policy P,¢p and the ANN output (LCD) is safe, the car can lane change,
otherwise not.

» Recover by EDITING LCD = 0 or providing output for No lane change.




What policies should the Enforcers enforce? Safety Policies

(Lce A (t < 6)) V —LCE

LCE A (t > 6)
start —) wolanon

Figure: Safety property for LCE

No collision due to lane change

» |t should not take too long to lane change (LCE = 1). If it takes longer than 6 seconds for the lane change
process, we enter violation state.

» Recover by EDITING LCE = 0 or stopping lane change.




More on LCD policy

(Peep A LCD) V (Piep A —LCD) b

—Picp A LCD

start

Figure: Safety property for LCD
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More on LCD policy: Compositional Division of Policies
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Figure: Compositional Properties

Compositional

» Divide the model properties to models.

P Train each block using the properties

» Check overall satisfaction after training




Policy Mining Optimisation: LCD Module

>

vV Vv v VY

Prepare linear template of predicates of form A >= x1 * B 4 x2 * C, where x1, and x2 are coefficients and
A, B, C are features.

Example: Pig @ Ifx > x1 * IfxVelocity + x2 * IfxAcceleration
Linear Regression to find initial values of x1 and x2.
Run optimiser to optimise the policy plane using Mean Squared Error.

Convex optimisation. We stop when 90% datapoints satisfy the learnt policy.

BFGS (Broyden—Fletcher—Goldfarb—Shanno) as optimiser.




Example Policy Plot
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Figure: Blue plane is the plane from Linear Regression and the Green plane is after optimisation




Policy Data Satisfaction

Datayeft e Left
Combi Prp A\ P, V (Prp A P
Dataiy: = (Pup A Pur) ombiner |= (Prp A Prr)) V (Poe A PLr)) - (- Tun e
‘ y Y

Combine 1

> (if-else)
—>

Combines = ((Prp A Prr)) V (PLp A Pup)) A (Por A Pop)

Combine 2

Datayigy ~— —> Right (AND)

Datarignt = (Prp A Prr)

Datacentre —> Centre —

Datacentre = (Pop A Por)

» Obtain the policies.
» Obtain datapoints satisfying the combined policies.

> |eft LC: 69422, Right LC: 61342 and No LC: 43667
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Implementation

Python
language language

LCD Model LCD Enforcer

LCE Model Contoller |, | |CEEnforcer
(To plant)

CF Enforcer

CF Model

P easyRTE tool for Runtime Enforcement. https://github. com/PRETgroup/easy-rteh

» Python for synchronous execution.

Synchron2024



https://github.com/PRETgroup/easy-rte
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Results: LCD Policies

Ifx > 16.07 + 6.62 * IfxVelocity + 10.74 x [fxAcceleration

Ipx < —18.15 + —2.82 * IpxVelocity + —2.52 * IpxAcceleration
rfx > 13.19 + —3.11 * rfxVelocity + —1.7 * rfxAcceleration

rpx < —15.75 4 3.82 * rpxVelocity + —2.01 * rpxAcceleration
fx > 17.76 + 3.79 * fxVelocity + —11.99 * fxAcceleration

px < —15.84 + —1.12 * pxVelocity + 4.48 * pxAcceleration

|
» 71% adherence to P,¢p for models not trained with policy on test data.

» 83% adherence to P, for models not trained with policy on test data.

Synchron2024



Enforcement Results

Enforcement of LCD and CF
Inputs: LCD=1, P=@ -> New LCD=0

Inputs: X=7, LCE=1 —> New LCE=0
Inputs:

Acceleration=0, Velocity=201.00502512562815, and Gap=1.99 —> New Acceleration=-100.502510

Enforcement of LCE

Inputs: LCD=0, P=1 —-> New LCD=0
Inputs: X=7, LCE=1 —> New LCE=0

Inputs: Acceleration=0.7732927017091369, Velocity=21.67380790043201, and Gap=53.833012477972495 —> New Acceleration=0.773293
Step: 50, Time: 2.0s, LCD: @, LCE: @, Lateral Speed: @, Accel: 0.77, Vel: 21.67, Gap: 53.83

No Enforcement: Transparency

Inputs: LCD=0, P=1 —> New LCD=0
Inputs: X=0, LCE=False —> New LCE=0

Inputs: Acceleration=0.8911531126722197, Velocity=20.143163804952586, and Gap=50.31879548446812 -> New Acceleration=0.891153
Step: 4, Time: 0.2s, LCD: @, LCE: @, Lateral Speed: @, Accel: 0.89, Vel: 20.14, Gap: 50.32

Synchron2024 29/37



Conclusion

» Compositional models offer better timing performance

P Data-based compositional policy mining based for linear predicates.

» Policy trained compositional models are better than ones not trained on policies.

|
» Add more policies: Liveness, timed policies.

» Restricted to Linear predicates.
» Proper simulation in SUMO.
» Python based enforcement.

» Series and parallel execution of modules.

Synchron2024
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Compositional Premise: Example

MONOLITHIC

INPUTS

3 Classes: C0, C1, C2

OUTPUTS

COMPOSITIONAL

INPUTS

I}

INPUTS

I}

A
Class C1

argmax(Outputs) if any two or more models output > 1

Cco
C1

C2  ifnone of C0 and C1 models output >0.5

if model CO outputs > 0.5
if model C1 outputs > 0.5

l

OUTPUTS




Datasets

Small datasets: Classification

~ e L
NGSIM dataset: Classification Iris: Classify ris flowers

> US Highway 101 dataset: 7.50 - - il Rllssliy i g

8.35a.m : 4824 cars. P Diabetes: Classify severity of diabetes
» 180 Emeryville dataset: 4.00 - 4.15 » Divide based on confusion matrix
P Divide based on intuition > Dataset from UCSD, USA
P Left LC Samples: 4380 » 14 mild-moderately depressed participants
R » Predict Mood Score: 1 (happy) - 7 (depressed)
P NoLC samples: 11006 P Divide features into clusters and build models for each
» 6 clusters: Diet, Activity, Heart, Psychological, Sleep and

Neurocognitve.
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Compositional Premise

MONOLITHIC

REGRESSION
COMPOSTIONAL

INPUTS.
V
INPUTS

MODEL

ﬂ N

V4 Output = Y w; * output;
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ouTPUTS

Figure: Caption



Compositional Premise

MONOLITHIC

INPUTS.

MODEL

l

ouTPUTS

COMPOSITIONAL
CLASSIFICATION

INPUTS

=

Merge Block

I

%
ouTPUTS

Figure: Caption




Implementation Pipeline

@

Weights

Synchronous Semantics L Mapping

TensorFlow-Keras . >
Model Architecture Compiler VHDL Model

(Python) (Python)

P Linear Approximation of activations
» 32-bit Fixed-point numbers: 16 bit integer and 16 bit decimal
» Multi-cycle execution of neuron instances

» Pipelined execution of neurons

Synchron2024
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