Fault Diagnosability Analysis of Multi-Mode Systems

*Linköping University, Sweden **INRIA, France

Fatemeh Hashemniya* <u>Benoît Caillaud</u>** Erik Frisk* Mattias Krysander* Mathias Malandain**

Overview and Goal

Model-based fault diagnostics

Goal

Reuse design models to optimize system exploitation: detect component aging and failure early to minimize down time

Model, faults, sensors & data

- System model : autonomous dynamical system, eg. ODEs
- Component fault : system behavior does not match one or several equations capturing the physics of the component
- Sensors : direct or indirect measurement of some of the system state variables
- Measurement data : additional equations rendering the model overdetermined

$$\dot{x} = f(x, t)$$
$$y = g(x)$$
$$y = Y(t)$$

Structural method

- ODEs \rightarrow DAEs
- Exploit the structural redundancies
- Syndrome : minimal set of of structurally overdetermined equations
- Alarm : syndrome residuals can not be zero

Overview and Goal

Structural fault diagnostics for multi-mode systems

Li-ion batteries are keys for the sustainable electrification of vehicles.

Challenges

- Multi-mode systems (switched systems) with frequent mode changes
- Complex systems with many components
- Direct diagnosis --> Exponential explosion of analysis complexity
 - Tools extension and development
 - Overcome the complexity of diagnostics
 - ➢ New fault modeling approach

G₍₎AL:

Multi- Mode System

(motivation)

Reconfigurable battery system is an example of multi-mode systems.

Ingia -LINKÖPING UNIVEdsitv

Multi- Mode Battery System

(simplified Battery example)

Benoît Caillaud 2024-11-18 6 of 15

Multi- Mode Battery System (Different modes)

Based on the switch positions, the system works in different modes!

There are 16 possible modes, but only 4 modes are valid. Others are not feasible.

Operating principle of Modular Multi-Level Converter (MMC). Source: Wikipedia

Connected

Multi- Mode DAE*

Equations valid for all modes:

Switch dependent equations:

(6)

Equations valid for a special mode:

$$v_{sm} = if$$
 (Forward) then v , if (Backward) then $-v$, else 0

 $i = if (Forward) then i_{pack}, if (Backward) then - i_{pack}, else 0$ (7)

*Benoît Caillaud, Mathias Malandain, Joan Thibault. Implicit structural analysis of multimode DAE systems. HSCC 2020 - 23rd ACM International Conference on Hybrid Systems: Computation and Control, Apr 2020, Sydney New South Wales Australia, France. pp.1-11, (10.1145/3365365.3382201).

Problem Formulation/Challenges

Even for a small system:

6 battery cells in one pack

 \rightarrow 4⁶ = 4096 combinations for switch configuration.

1. How to do diagnosis analysis for multi-mode systems with high number of components and configurations? (contribution 1)

A general solution

2. How to model faults? Pros and cons? (contribution 2)

Each cell has 4 modes _

F. Hashemniya, A. Balachandran, K. Mattias, and E. Frisk. Structural diagnosability analysis of switched and modular battery packs. In Prognostics and System Health Management Conference (PHM 2024), Stockholm, Sweden. IEEE,

Direct Fault Isolability Analysis

Classic Dulmage-Mendelsohn Decomposition

M: Set of equations X: Set of unknown variables

Extended DM Decomposition

* E. Frisk, M. Krysander, and D. Jung. A toolbox for analysis and design of model based diagnosis systems for large scale models. IFAC-PapersOnLine, 50(1):3287–3293, 2017.

Extended DM Decomposition

Extended DM: Diagnosability

Detectability:

Fault f is detectable if it is in the overdetermined part.

Isolability:

A fault f_i is structurally isolable from f_j in a model M if $e_{f_i} \in (M \setminus \{e_{f_i}\})^+$.

Multi-mode DM Decomposition

el_det: model	
e1_over: mode3	

e4_under:	False
e4_det:	mode2
e4_over:	model ^ mode3

Fault Modeling

Fault as Signal

e_1: X_1 = X_2 e f1: X 3 = 5X 2 + f1

e_f1_under:	False
e_f1_det:	model ^ mode2
e_f1_over:	-mode3

Multi-mode Isolability Matrix

Single	e — mo	de Fa	ult Isc	olai	bility .	Matrix	С
	f _{cell}	f_v	f _i			fcell	f_v
f _{cell}	0	0	0		f _{cell}	0	0
f_{v}	0	0	0		f_v	0	0
fi	0	0	0		f_i	1	1
Mode 1						Mod	e 2

	f _{cell}	f _v	fi	
f _{cell}	0	0	1	
f_{v}	0	0	1	
f _i	1	1	0	
Mode 2				

Multi	-m	$ode \Rightarrow for$	All modes	*
	NF	f_{cell}	f_v	f_i
$f_{\rm cell}$	1	0	0	$m \in \{2, 4\}$
f_v	1	0	0	$m \in \{2, 4\}$
f_i	1	$m \in \{2, 4\}$	$m \in \{2,4\}$	0

Table 3. Multi-mode fault diagnosability.

	NF	$f_{{ m cell},k}$	$f_{v_{\operatorname{cell},k}}$	$f_{i_{\mathrm{cell},k}}$	$f_{i_{ m pack}}$	$f_{ u_{ m pack}}$
$f_{\text{cell},k}$	Т	F	$\neg bypass_k$	Т	T	\mathbf{T}
$f_{v_{\text{cell},k}}$	Т	$\neg bypass_k$	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
$f_{i_{\text{cell},k}}$	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
$f_{i_{\mathrm{pack}}}$	¬bypass _{all}	¬bypass _{all}	¬bypass _{all}	¬bypass _{all}	\mathbf{F}	¬bypass _{all}
$f_{v_{\text{pack}}}$	Т	Т	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}

Alarm filtering & correlation at runtime

Jung, Frisk, Krysander. *Quantitative Stochastic Fault Diagnosability Analysis*. Control Engineering Practice, 2018.

Conclusion and Future Work

- A methodology for conducting structural fault diagnostics for multi-mode systems

 Using a multi-mode extension of the Dulmage-Mendelsohn decomposition
- 2 types of fault modeling with diagnosability definitions
 - Signal: better for large systems, but small number of faults
 - Boolean variable: relevant for higher number of faults and multiple simultaneous faults
- Complexity study on a battery pack with n SMs in series
 - Scales up to about 10 cells ; definitely does not scale up to a full pack

Future Work

- Generalizing our approach to more complex multi-mode models
 - Some faults can only occur in some modes
- Algorithmic improvements of mmDM
 - Improve computation time : modular algorithm, based on message passing principles [†]

⁺ Benveniste, Caillaud, Malandain, Thibault. *Towards the separate compilation of Modelica: modularity and interfaces for the index reduction of incomplete DAE systems*. Modelica'23

Fatemeh.Hashemniya@liu.se

Benoit.Caillaud@inria.fr

Erik.Frisk@liu.se

Mattias.Krysander@liu.se

Mathias.Malandain@inria.fr

A Multimode Dulmage-Mendelsohn Decomposition Algorithm

Benoît Caillaud Mathias Malandain November 18th, 2024

Implicit representation of the structure of a multimode DAE system

A multimode Dulmage-Mendelsohn decomposition algorithm

A compositional approach: the CoSTreD method

Focus on the ArgMax algorithm

• Everything is encoded as functions of the mode variables

- BDDs (Binary Decision Diagrams) are an appropriate framework:
 - Compact and canonical representation of Boolean functions as DAGs
 - Efficient computations on such functions
 - Integer functions: variable-length little-endian binary encoding (list of BDDs)
- Negation \neg and equality check in $\mathcal{O}(1)$, other operations include:

Conjunction/disjunction: \land/\lor

Existential quantification: $\exists a. f(a, b)$

Universal quantification: $\forall a. f(a, b)$

- Everything is encoded as functions of the mode variables
- BDDs (Binary Decision Diagrams) are an appropriate framework:
 - Compact and canonical representation of Boolean functions as DAGs
 - Efficient computations on such functions
 - Integer functions: variable-length little-endian binary encoding (list of BDDs)
- Negation \neg and equality check in $\mathcal{O}(1)$, other operations include:

Conjunction/disjunction: \land / \lor

Existential quantification: $\exists a. f(a, b)$

Universal quantification: $\forall a. f(a, b)$

- Everything is encoded as functions of the mode variables
- BDDs (Binary Decision Diagrams) are an appropriate framework:
 - Compact and canonical representation of Boolean functions as DAGs
 - Efficient computations on such functions
 - Integer functions: variable-length little-endian binary encoding (list of BDDs)
- Negation \neg and equality check in $\mathcal{O}(1)$, other operations include:

Conjunction/disjunction: \land/\lor Existential quantification: $\exists a. f(a, b)$ Universal quantification: $\forall a. f(a, b)$

- Everything is encoded as functions of the mode variables
- BDDs (Binary Decision Diagrams) are an appropriate framework:
 - Compact and canonical representation of Boolean functions as DAGs
 - Efficient computations on such functions
 - Integer functions: variable-length little-endian binary encoding (list of BDDs)
- Negation \neg and equality check in $\mathcal{O}(1)$, other operations include:

Conjunction/disjunction: \land/\lor Existential quantification: $\exists a. f(a, b)$ Universal quantification: $\forall a. f(a, b)$

- *M* encodes the modes (model-dependent encoding)
- $I = \bigcup_{m \in M} I_m$ encodes the equations (unary representation)
- $J = \bigcup_{m \in M} J_m$ encodes the variables (unary representation)
- $E = \bigcup_{m \in M} E_m$ encodes the equation-variable edges (unary representation)

(Unary encoding of a set S provides access to $\mathcal{P}(S)$.)

The following data can be obtained by parsing the original model:

Name	Туре	Meaning
Ҳм	$M ightarrow \mathbb{B}$	Set of possible modes
χ_I	$M imes I o \mathbb{B}$	Mode dependency of equations
χ_J	$M imes J o \mathbb{B}$	Mode dependency of variables
XΕ	$M imes E o \mathbb{B}$	Mode dependency of edges
σ	$M \times E \to \mathbb{N}$	Values of the $\sigma_{m,i,j}$'s

Implicit representation of the structure of a multimode DAE system

A multimode Dulmage-Mendelsohn decomposition algorithm

A compositional approach: the CoSTreD method

Focus on the ArgMax algorithm

The Dulmage-Mendelsohn decomposition

- Canonical decomposition of a bipartite graph $(S \cup T, E)$
- Applied to a system of algebraic equations, yields a partition into three subsystems:
 - I_{u} : underdetermined part (variables in J_{u})
 - I_e : 'enabled' (square) part (variables in J_e)
 - I_o : overdetermined part (variables in J_o)
- Uses: over-/underdetermination diagnostics (model debugging), health monitoring

Matrix representation [Dulmage & Mendelsohn, 'Two Algorithms for Bipartite Graphs', 1963]

- Canonical decomposition of a bipartite graph $(S \cup T, E)$
- Applied to a system of algebraic equations, yields a partition into three subsystems:
 - I_{u} : underdetermined part (variables in J_{u})
 - I_e : 'enabled' (square) part (variables in J_e)
 - I_o : overdetermined part (variables in J_o)
- Uses: over-/underdetermination diagnostics (model debugging), health monitoring

Matrix representation [Dulmage & Mendelsohn, 'Two Algorithms for Bipartite Graphs', 1963]

- Canonical decomposition of a bipartite graph $(S \cup T, E)$
- Applied to a system of algebraic equations, yields a partition into three subsystems:
 - I_{u} : underdetermined part (variables in J_{u})
 - I_e : 'enabled' (square) part (variables in J_e)
 - I_o : overdetermined part (variables in J_o)
- Uses: over-/underdetermination diagnostics (model debugging), health monitoring

Matrix representation [Dulmage & Mendelsohn, 'Two Algorithms for Bipartite Graphs', 1963]

- $\bullet\,$ Requires a maximum matching ${\cal M}$ of the system's adjacency graph
- Define *I^u* (resp. *J^u*): set of unmatched equations *i* ∈ *I* (resp. variables *j* ∈ *J*); then:
 - I_o , J_o : reachable via an alternating path from I^u
 - $I_{\mathfrak{u}}$, $J_{\mathfrak{u}}$: reachable via an alternating path from J^{u}
 - I_e , J_e : remaining equations and variables
- The decomposition does not depend on the choice of a maximal matching.

- $\bullet\,$ Requires a maximum matching ${\cal M}$ of the system's adjacency graph
- Define I^u (resp. J^u): set of unmatched equations i ∈ I (resp. variables j ∈ J); then:
 - I_o , J_o : reachable via an alternating path from I^u
 - $I_{\mathfrak{u}}, J_{\mathfrak{u}}$: reachable via an alternating path from J^{u}
 - $I_{\mathfrak{e}}, J_{\mathfrak{e}}$: remaining equations and variables
- The decomposition does not depend on the choice of a maximal matching.

- $\bullet\,$ Requires a maximum matching ${\cal M}$ of the system's adjacency graph
- Define *I^u* (resp. *J^u*): set of unmatched equations *i* ∈ *I* (resp. variables *j* ∈ *J*); then:
 - I_o , J_o : reachable via an alternating path from I^u
 - $I_{\mathfrak{u}}, J_{\mathfrak{u}}$: reachable via an alternating path from J^{μ}
 - I_e , J_e : remaining equations and variables
- The decomposition does **not** depend on the choice of a maximal matching.

- $\bullet\,$ Requires a maximum matching ${\cal M}$ of the system's adjacency graph
- Define I^u (resp. J^u): set of unmatched equations i ∈ I (resp. variables j ∈ J); then:
 - I_o , J_o : reachable via an alternating path from I^u
 - I_{μ} , J_{μ} : reachable via an alternating path from J^{μ}
 - I_e , J_e : remaining equations and variables
- The decomposition does **not** depend on the choice of a maximal matching.

- $\bullet\,$ Requires a maximum matching ${\cal M}$ of the system's adjacency graph
- Define I^u (resp. J^u): set of unmatched equations i ∈ I (resp. variables j ∈ J); then:
 - I_o , J_o : reachable via an alternating path from I^u
 - I_{μ} , J_{μ} : reachable via an alternating path from J^{μ}
 - I_e , J_e : remaining equations and variables
- The decomposition does not depend on the choice of a maximal matching.

Already existing: description of all perfect matchings Modified: description of all matchings

 $\mu: M \times \mathcal{P}(E) \to \mathbb{B} \text{ (each equation is connected to one and only one variable)}$ $\nu: M \times \mathcal{P}(E) \to \mathbb{B} \text{ (each variable is connected to one and only one equation)}$ $\Upsilon: M \times \mathcal{P}(E) \to \mathbb{B} \text{ (an edge must be active to be part of a matching)}$ $X := \mu \wedge \nu \wedge \Upsilon \text{ (all perfect matchings)}$

Already existing: description of all perfect matchings Modified: description of all matchings

 $\mu: M \times \mathcal{P}(E) \to \mathbb{B} \text{ (each equation is connected to at most one variable)}$ $\nu: M \times \mathcal{P}(E) \to \mathbb{B} \text{ (each variable is connected to at most one equation)}$ $\Upsilon: M \times \mathcal{P}(E) \to \mathbb{B} \text{ (an edge must be active to be part of a matching)}$ $X := \mu \land \nu \land \Upsilon \text{ (all partial matchings)}$

- ArgMax and choice algorithms already implemented (by induction on the BDD structure)
 - ArgMax needs a weight function $\omega: M imes \mathcal{P}\left(E
 ight)
 ightarrow \mathbb{N}$ as input
- Create ω such that every edge has weight 1
 - Results in the choice of one maximum matching per mode
- Finally: compute one characteristic function $T_e: M \to \mathbb{B}$ per edge (in which modes is this edge in the chosen matching?)
 - Already implemented specialized inductive algorithm

- ArgMax and choice algorithms already implemented (by induction on the BDD structure)
 - ArgMax needs a weight function $\omega: M imes \mathcal{P}\left(E
 ight)
 ightarrow \mathbb{N}$ as input
- Create ω such that every edge has weight 1
 - Results in the choice of one maximum matching per mode
- Finally: compute one characteristic function $T_e: M \to \mathbb{B}$ per edge (in which modes is this edge in the chosen matching?)
 - Already implemented specialized inductive algorithm

- ArgMax and choice algorithms already implemented (by induction on the BDD structure)
 - ArgMax needs a weight function $\omega: M imes \mathcal{P}\left(E
 ight)
 ightarrow \mathbb{N}$ as input
- Create ω such that every edge has weight 1
 - Results in the choice of one maximum matching per mode
- Finally: compute one characteristic function T_e : M → B per edge (in which modes is this edge in the chosen matching?)
 - Already implemented specialized inductive algorithm

- Important observation: in a given 'propagation step', either only edges in ${\cal M}$ are followed, or only edges outside ${\cal M}$
- Easy to translate in the multimode setting:
 - Three functions a_i, u_i, t_i : M → B for every equation i; for instance, initial value of a_i (unmatched eqs):

$$\neg \left(\bigvee_{e \in \mathcal{I}^{-1}(l)} T_e\right) \land \chi_l(\cdot, l)$$

- Same idea for every variable j
- Simple iterations until the over- and under- determined parts are known (fixpoint)

- Important observation: in a given 'propagation step', either only edges in ${\cal M}$ are followed, or only edges outside ${\cal M}$
- Easy to translate in the multimode setting:
 - Three functions o_i, u_i, c_i : M → B for every equation i; for instance, initial value of o_i (unmatched eqs):

$$\neg \left(\bigvee_{e\in\mathcal{I}^{-1}(i)}T_e\right)\wedge\chi_I(\cdot,i)$$

- Same idea for every variable *j*
- Simple iterations until the over- and under- determined parts are known (fixpoint)

- Important observation: in a given 'propagation step', either only edges in ${\cal M}$ are followed, or only edges outside ${\cal M}$
- Easy to translate in the multimode setting:
 - Three functions o_i, u_i, e_i : M → B for every equation i; for instance, initial value of o_i (unmatched eqs):

$$\neg \left(\bigvee_{e \in \mathcal{I}^{-1}(i)} T_e\right) \land \chi_l(\cdot, i)$$

- Same idea for every variable *j*
- Simple iterations until the over- and under- determined parts are known (fixpoint)

- Important observation: in a given 'propagation step', either only edges in ${\cal M}$ are followed, or only edges outside ${\cal M}$
- Easy to translate in the multimode setting:
 - Three functions o_i, u_i, e_i : M → B for every equation i; for instance, initial value of o_i (unmatched eqs):

$$\neg \left(\bigvee_{e \in \mathcal{I}^{-1}(i)} T_e\right) \land \chi_l(\cdot, i)$$

- Same idea for every variable *j*
- Simple iterations until the over- and under- determined parts are known (fixpoint)

- Important observation: in a given 'propagation step', either only edges in ${\cal M}$ are followed, or only edges outside ${\cal M}$
- Easy to translate in the multimode setting:
 - Three functions o_i, u_i, c_i : M → B for every equation i; for instance, initial value of o_i (unmatched eqs):

$$\neg \left(\bigvee_{e\in\mathcal{I}^{-1}(i)}T_e\right)\wedge\chi_I(\cdot,i)$$

- Same idea for every variable *j*
- Simple iterations until the over- and under- determined parts are known (fixpoint)

Implicit representation of the structure of a multimode DAE system

A multimode Dulmage-Mendelsohn decomposition algorithm

A compositional approach: the CoSTreD method

Focus on the ArgMax algorithm

Principle of CoSTreD: Decomposing a constraint problem

Primal graph of the constraint system

Principle of CoSTreD: Decomposing a constraint problem

Use sparsity and low tree width to compute a decomposition

Principle of CoSTreD: Decomposing a constraint problem

Use sparsity and low tree width to compute de decomposition

project local constraints on shared variables

Pass to parent and combine with local constraints

project resulting constraints on shared variables

Pass to parent and combine with local constraints

... and so on, up to the tree root

... and so on, up to the tree root

Principle of CoSTreD: Backward Propagation Process

Compute partial solution at the root

Principle of CoSTreD: Backward Propagation Process

Pass solution down the tree, combine with local constraints and compute partial solution

Principle of CoSTreD: Backward Propagation Process

... and so on, down to the leaves

- CoSTreD exploits the sparsity and low tree width of physical models
- Cost model for computation time and memory consumption
 - ⇒ graphical optimization problem WAP ⇒ strongly related to treewidth (NP-complete)
- Naive but effective solving: greedy heuristics (min-degree)
- CoSTreD can also be used for MaxSAT and QBF problems

- CoSTreD exploits the sparsity and low tree width of physical models
- Cost model for computation time and memory consumption
 - \Rightarrow graphical optimization problem WAP
 - \Rightarrow strongly related to treewidth (NP-complete)
- Naive but effective solving: greedy heuristics (min-degree)
- CoSTreD can also be used for MaxSAT and QBF problems

- CoSTreD exploits the sparsity and low tree width of physical models
- Cost model for computation time and memory consumption
 - \Rightarrow graphical optimization problem WAP
 - \Rightarrow strongly related to treewidth (NP-complete)
- Naive but effective solving: greedy heuristics (min-degree)
- CoSTreD can also be used for MaxSAT and QBF problems

- CoSTreD exploits the sparsity and low tree width of physical models
- Cost model for computation time and memory consumption
 - \Rightarrow graphical optimization problem WAP
 - \Rightarrow strongly related to treewidth (NP-complete)
- Naive but effective solving: greedy heuristics (min-degree)
- CoSTreD can also be used for MaxSAT and QBF problems

Implicit representation of the structure of a multimode DAE system

A multimode Dulmage-Mendelsohn decomposition algorithm

A compositional approach: the CoSTreD method

Focus on the ArgMax algorithm

- $X: M \times E \rightarrow \mathbb{B}$ (all perfect matchings)
- $(\omega_k: M imes E o \mathbb{B})_{k=0...N-1}$ (matching weights in little-endian representation)
- Let $S_N \equiv X$; for k = N 1 down to 0:
 - $\omega_k^{\max} \equiv \exists \vec{E}.(S_{k+1} \wedge \omega_k)$ $(\omega_k^{\max}: M \to \mathbb{B})$
 - $S_k \equiv S_{k+1} \wedge (\omega_k \Leftrightarrow \omega_k^{\max})$
- Output:
 - $S_0: M \times E \to \mathbb{B}$ represents all maximum-weight perfect matchings
- ArgMax may also be used for selecting one matching in every mode from S₀: replace (ω_k)_{k=0...N-1} with (χ_E(e))_{e∈E} to get a lexicographical order

- $X: M \times E \rightarrow \mathbb{B}$ (all perfect matchings)
- $(\omega_k: M imes E o \mathbb{B})_{k=0...N-1}$ (matching weights in little-endian representation)
- Let $S_N \equiv X$; for k = N 1 down to 0:
 - $\omega_k^{\max} \equiv \exists \vec{E}.(S_{k+1} \wedge \omega_k)$ $(\omega_k^{\max}: M \to \mathbb{B})$
 - $S_k \equiv S_{k+1} \wedge (\omega_k \Leftrightarrow \omega_k^{\max})$
- Output:
 - $S_0: M \times E \to \mathbb{B}$ represents all maximum-weight perfect matchings
- ArgMax may also be used for selecting one matching in every mode from S₀: replace (ω_k)_{k=0...N-1} with (χ_E(e))_{e∈E} to get a lexicographical order

- $X: M \times E \rightarrow \mathbb{B}$ (all perfect matchings)
- $(\omega_k: M imes E o \mathbb{B})_{k=0...N-1}$ (matching weights in little-endian representation)
- Let $S_N \equiv X$; for k = N 1 down to 0:
 - $\omega_k^{\max} \equiv \exists \vec{E}.(S_{k+1} \wedge \omega_k)$ $(\omega_k^{\max}: M \to \mathbb{B})$
 - $S_k \equiv S_{k+1} \wedge (\omega_k \Leftrightarrow \omega_k^{\max})$
- Output:
 - $S_0: M \times E \to \mathbb{B}$ represents all maximum-weight perfect matchings
- ArgMax may also be used for selecting one matching in every mode from S₀: replace (ω_k)_{k=0...N-1} with (χ_E(e))_{e∈E} to get a lexicographical order

- $X: M \times E \rightarrow \mathbb{B}$ (all perfect matchings)
- $(\omega_k: M imes E o \mathbb{B})_{k=0...N-1}$ (matching weights in little-endian representation)
- Let $S_N \equiv X$; for k = N 1 down to 0:
 - $\omega_k^{\max} \equiv \exists \vec{E}.(S_{k+1} \wedge \omega_k)$ $(\omega_k^{\max}: M \to \mathbb{B})$
 - $S_k \equiv S_{k+1} \wedge (\omega_k \Leftrightarrow \omega_k^{\sf max})$
- Output:
 - $S_0: M \times E \to \mathbb{B}$ represents all maximum-weight perfect matchings
- ArgMax may also be used for selecting one matching in every mode from S₀: replace (ω_k)_{k=0...N-1} with (χ_E(e))_{e∈E} to get a lexicographical order

- $X: M \times E \rightarrow \mathbb{B}$ (all perfect matchings)
- $(\omega_k: M \times E \to \mathbb{B})_{k=0...N-1}$ (matching weights in little-endian representation)
- Let $S_N \equiv X$; for k = N 1 down to 0:
 - $\omega_k^{\max} \equiv \exists \vec{E}.(S_{k+1} \wedge \omega_k)$ $(\omega_k^{\max}: M \to \mathbb{B})$
 - $S_k \equiv S_{k+1} \wedge (\omega_k \Leftrightarrow \omega_k^{\sf max})$
- Output:
 - $S_0: M \times E \to \mathbb{B}$ represents all maximum-weight perfect matchings
- ArgMax may also be used for selecting one matching in every mode from S₀: replace (ω_k)_{k=0...N-1} with (χ_E(e))_{e∈E} to get a lexicographical order

- $X: M \times E \rightarrow \mathbb{B}$ (all perfect matchings)
- $(\omega_k: M imes E o \mathbb{B})_{k=0...N-1}$ (matching weights in little-endian representation)
- Let $S_N \equiv X$; for k = N 1 down to 0:
 - $\omega_k^{\max} \equiv \exists \vec{E}.(S_{k+1} \wedge \omega_k)$ $(\omega_k^{\max}: M \to \mathbb{B})$
 - $S_k \equiv S_{k+1} \wedge (\omega_k \Leftrightarrow \omega_k^{\sf max})$
- Output:
 - $S_0: M \times E \to \mathbb{B}$ represents all maximum-weight perfect matchings
- ArgMax may also be used for selecting one matching in every mode from S₀: replace (ω_k)_{k=0...N-1} with (χ_E(e))_{e∈E} to get a lexicographical order