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Overview and Goal

Reuse design models to optimize system exploitation: detect 
component aging and failure early to minimize down time

2024-11-18Benoît Caillaud

Model-based fault diagnostics  

Model, faults, sensors & data
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• System model : autonomous dynamical system, eg. ODEs
• Component fault : system behavior does not match one or 

several equations capturing the physics of the component

Goal

• Sensors : direct or indirect measurement of some of the 
system state variables

• Measurement data : additional equations rendering the 
model overdetermined

"̇ = $(", ')
y = )(")
y = *(')

Structural method

• Exploit the structural redundancies
• Syndrome : minimal set of of 

structurally overdetermined 
equations

• Alarm : syndrome residuals can not 
be zero

• ODEs ➜ DAEs



Overview and Goal

Li-ion batteries are keys for the sustainable electrification of vehicles.

2024-11-18Benoît Caillaud

Structural fault diagnostics for multi-mode systems

Ø Tools extension and development
Ø Overcome the complexity of diagnostics G AL:

Li-ion

• Direct diagnosis --> Exponential explosion of analysis 
complexity

• Multi-mode systems (switched systems) with 
frequent mode changes 

Challenges

• Complex systems with many components
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Ø New fault modeling approach



Multi- Mode System

Reconfigurable battery system is an example of multi-mode systems.

2024-11-18Benoît Caillaud

(motivation)
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Multi- Mode Battery System
2024-11-18Benoît Caillaud

(simplified Battery example)

A Li-ion cell is modeled by an 
equivalent circuit model.

Based on the switch positions, there are 4 valid modes!

Full bridge modular multilevel 
converter (MMC) to produce 

AC.
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Multi- Mode Battery System
2024-11-18Benoît Caillaud

Based on the switch positions, the system works in different modes!

Connected Bypassed

There are 16 possible modes, but only 4 modes are valid. 
Others are not feasible. 

Operating principle of Modular Multi-Level Converter (MMC).
Source: Wikipedia
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(Different modes)



Multi- Mode DAE*
2024-11-18Benoît Caillaud

Forward/ Backward mode: Bypass 1&2 mode:

!!" = ± !#$%% (6)
' = ± '&'#( (7)

!!" = 0 (6)
' = 0 (7) Different

' = '* (+,-./-0) 1ℎ34 '&'#( , '* (6/78./-0) 1ℎ34 − '&'#( , 3:;3 0 (7)

!!" = '* (+,-./-0) 1ℎ34 !, '* (6/78./-0) 1ℎ34 − !, 3:;3 0 (6)
Equations valid for a special mode:

Equations valid for all modes:

!̇& = )
*!
− +!

,!*!
(1)

!#$%% = !& + ?-' + @" + *#$%% (2)
B) = ' + *) (3)

B+ = !#$%% + *+ (4)

!̇& =
0!&
01 (5)

Switch dependent equations:

Same

The system structure changes when 
the mode changes!
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Measured data

*Benoît Caillaud, Mathias Malandain, Joan Thibault. Implicit structural analysis of multimode DAE systems. HSCC 2020 - 23rd 
ACM International Conference on Hybrid Systems: Computation and Control, Apr 2020, Sydney New South Wales Australia, 
France. pp.1-11, ⟨10.1145/3365365.3382201⟩.



Problem Formulation/Challenges
2024-11-18Benoît Caillaud

1. How to do diagnosis analysis for multi-mode systems with high number of
components and configurations? (contribution 1)
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2. How to model faults? Pros and cons? (contribution 2)

4. = 4096 combinations for switch configuration.

6 battery cells in one pack
Each cell has 4 modes

A general solution

F. Hashemniya, A. Balachandran, K. Mattias, and E. Frisk. Structural diagnosability analysis of switched and modular
battery packs. In Prognostics and System Health Management Conference (PHM 2024), Stockholm, Sweden. IEEE,

Even for a small system:



2023-06-05Benoît CaillaudDirect Fault Isolability Analysis 9 of 15

M: Set of equations 
X: Set of unknown variables 

Classic Dulmage-Mendelsohn Decomposition 

G/ : overdetermined part

G0 : underdetermined part 

G- :  just determined part

G0 : underdetermined part 
G- :  just determined part
G/ : overdetermined part

G/: Number of equations is more than unknown variables 

Here, there is redundancy that will be used for diagnosis 
and residual generation.



Extended DM Decomposition
Extended DM: 
Toolbox (Matlab and Python)*

Equations

Unknown variables

Faults

* E. Frisk, M. Krysander, and D. Jung. A toolbox for analysis and design of model based diagnosis systems for large scale models. IFAC-
PapersOnLine, 50(1):3287– 3293, 2017.
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Extended DM Decomposition
Extended DM: Diagnosability

Detectability:

Isolability:

Fault f is detectable if it is in the 
overdetermined part.

Not isolable from each other

Isolable from other faults

A fault *)is structurally isolable from
*1in a model M if 32"∈ (M \ {32#})/.

Detectable

Not Detectable

2023-06-05Benoît Caillaud 11 of 15



Multi-mode DM Decomposition
2024-11-18Benoît Caillaud 12 of 15

Albert Benveniste, Benoît Caillaud, Mathias Malandain, Joan Thibault. Algorithms for the Structural Analysis of Multimode 
Modelica Models. Electronics, 2022, 11 (17), pp.1-63.

e1_under: mode2
e1_det:   mode1
e1_over:  mode3

e4_under: False
e4_det:   mode2 
e4_over:  mode1 ^ mode3 



Fault Modeling
2024-11-18Benoît Caillaud 13 of 15

Fault as Signal Fault as Boolean mode variables

e_1:   X_1 = X_2

If ¬F1 then   e_f1:  X_3 = 5X_2

Fault 
True
False

e_f1:  X_3 = 5X_2 + f1

e_1:   X_1 = X_2

e_f1_under: False 
e_f1_det:   mode1 ^ mode2
e_f1_over:  ¬mode3

e_f1_under: False 
e_f1_det:   mode1 ^ mode2 ^ ¬F1
e_f1_over:  ¬mode3 ^ ¬F1 ^ ¬F3



Multi-mode Isolability Matrix
2024-11-18Benoît Caillaud

GI:1' − J,03 ⇒ *,- L:: J,03;*M'4N:3 − J,03 +/I:1 O;,:/P':'1B G/1-'Q

15 of 15

#!"## #$ #%
#!"## 0 0 0

#$ 0 0 0

#% 0 0 0

#!"## #$ #%
#!"## 0 0 1

#$ 0 0 1

#% 1 1 0

G,03 1 G,03 2



Alarm filtering & correlation at runtime
2024-11-18Benoît Caillaud 16 of 15

Statistical 
filtering

MSO set

f1

f2 ⊆ { f1, f2 }

diagnosticsalarmsdata

Jung, Frisk, Krysander. Quantitative Stochastic Fault 
Diagnosability Analysis. Control Engineering Practice, 2018.



Conclusion and Future Work
2024-11-18Benoît Caillaud 17 of 15

• 2 types of fault modeling with diagnosability definitions
o Signal: better for large systems, but small number of faults
o Boolean variable: relevant for higher number of faults and multiple simultaneous faults

• A methodology for conducting structural fault diagnostics for multi-mode systems
o Using a multi-mode extension of the Dulmage-Mendelsohn decomposition

• Complexity study on a battery pack with n SMs in series
o Scales up to about 10 cells ; definitely does not scale up to a full pack

• Generalizing our approach to more complex multi-mode models
o Some faults can only occur in some modes

• Algorithmic improvements of mmDM
o Improve computation time : modular algorithm, based on message 

passing principles †

Future Work

† Benveniste, Caillaud, Malandain, Thibault. Towards the separate compilation of Modelica: 
modularity and interfaces for the index reduction of incomplete DAE systems. Modelica’23
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Implicit representation of the structure of a multimode DAE system

A multimode Dulmage-Mendelsohn decomposition algorithm

A compositional approach: the CoSTreD method

Focus on the ArgMax algorithm

2 / 16



Encoding a model (in a nutshell)

• Everything is encoded as functions of the mode variables

• BDDs (Binary Decision Diagrams) are an appropriate framework:

• Compact and canonical representation of Boolean functions as DAGs

• E�cient computations on such functions

• Integer functions: variable-length little-endian binary encoding (list of BDDs)

• Negation ¬ and equality check in O(1), other operations include:

Conjunction/disjunction: ^/_
Existential quantification: 9a. f (a, b)
Universal quantification: 8a. f (a, b)

• However: very sensitive to variable and computation ordering
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Useful sets

• M encodes the modes (model-dependent encoding)

• I =
S

m2M
Im encodes the equations (unary representation)

• J =
S

m2M
Jm encodes the variables (unary representation)

• E =
S

m2M
Em encodes the equation-variable edges (unary representation)

(Unary encoding of a set S provides access to P(S).)

4 / 16



Encoding the problem data

The following data can be obtained by parsing the original model:

Name Type Meaning

�M M ! B Set of possible modes

�I M ⇥ I ! B Mode dependency of equations

�J M ⇥ J ! B Mode dependency of variables

�E M ⇥ E ! B Mode dependency of edges

� M ⇥ E ! N Values of the �m,i,j ’s

5 / 16



Implicit representation of the structure of a multimode DAE system

A multimode Dulmage-Mendelsohn decomposition algorithm

A compositional approach: the CoSTreD method

Focus on the ArgMax algorithm
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The Dulmage-Mendelsohn decomposition

• Canonical decomposition of a bipartite graph

(S [ T ,E )

• Applied to a system of algebraic equations,
yields a partition into three subsystems:

• Iu: underdetermined part (variables in Ju)

• Ie: ‘enabled’ (square) part (variables in Je)

• Io: overdetermined part (variables in Jo)

• Uses: over-/underdetermination diagnostics

(model debugging), health monitoring

Matrix representation [Dulmage & Mendelsohn, ‘Two

Algorithms for Bipartite Graphs’, 1963]
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A graph-based algorithm for DM

• Requires a maximum matching M of the system’s adjacency graph

• Define I u (resp. Ju): set of unmatched equations i 2 I (resp.
variables j 2 J); then:

• Io, Jo: reachable via an alternating path from I u

• Iu, Ju: reachable via an alternating path from Ju

• Ie, Je: remaining equations and variables

• The decomposition does not depend on the choice of a maximal

matching.

e1

e2

e3

e4

e5

e6

e7

x1

x2

x3

x4

x5

x6

x7
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Multimode adaptation: computing all partial matchings

Already existing: description of all perfect matchings

Modified: description of all matchings

µ : M ⇥ P (E ) ! B (each equation is connected to one and only one variable)

⌫ : M ⇥ P (E ) ! B (each variable is connected to one and only one equation)

⌥ : M ⇥ P (E ) ! B (an edge must be active to be part of a matching)

X := µ ^ ⌫ ^⌥ (all perfect matchings)
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Multimode adaptation: computing all partial matchings

Already existing: description of all perfect matchings

Modified: description of all matchings

µ : M ⇥ P (E ) ! B (each equation is connected to at most one variable)

⌫ : M ⇥ P (E ) ! B (each variable is connected to at most one equation)

⌥ : M ⇥ P (E ) ! B (an edge must be active to be part of a matching)
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Multimode adaptation: picking one maximum matching per mode

• ArgMax and choice algorithms already implemented (by induction on the BDD structure)

• ArgMax needs a weight function ! : M ⇥ P (E) ! N as input

• Create ! such that every edge has weight 1

• Results in the choice of one maximum matching per mode

• Finally: compute one characteristic function Te : M ! B per edge (in which modes is this edge in
the chosen matching?)

• Already implemented specialized inductive algorithm
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Multimode adaptation: the Dulmage-Mendelsohn algorithm

• Important observation: in a given ‘propagation step’, either only

edges in M are followed, or only edges outside M

• Easy to translate in the multimode setting:

• Three functions oi , ui , ei : M ! B for every equation i ; for instance,

initial value of oi (unmatched eqs):

¬

0

@
_

e2I�1(i)

Te

1

A ^ �I (·, i)

• Same idea for every variable j

• Simple iterations until the over- and under- determined parts are

known (fixpoint)

e1

e2

e3

e4

e5

e6

e7

x1

x2

x3

x4

x5

x6

x7
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Implicit representation of the structure of a multimode DAE system

A multimode Dulmage-Mendelsohn decomposition algorithm

A compositional approach: the CoSTreD method

Focus on the ArgMax algorithm
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Principle of CoSTreD: Decomposing a constraint problem

Primal graph of the constraint system
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Principle of CoSTreD: Decomposing a constraint problem

Use sparsity and low tree width to compute a decomposition
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Principle of CoSTreD: Forward Reduction Process

project local constraints on shared variables
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Principle of CoSTreD: Forward Reduction Process

Pass to parent and combine with local constraints
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Principle of CoSTreD: Forward Reduction Process

... and so on, up to the tree root
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Principle of CoSTreD: Forward Reduction Process

... and so on, up to the tree root
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Principle of CoSTreD: Backward Propagation Process

Compute partial solution at the root
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Principle of CoSTreD: Backward Propagation Process

Pass solution down the tree, combine with local constraints and compute partial solution
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Principle of CoSTreD: Backward Propagation Process

... and so on, down to the leaves

13 / 16



Application to mmDM: ArgMax(Boolean constraints wedge weight function)

• CoSTreD exploits the sparsity and low tree

width of physical models

• Cost model for computation time and
memory consumption

) graphical optimization problem WAP

) strongly related to treewidth

(NP-complete)

• Naive but e↵ective solving: greedy

heuristics (min-degree)

• CoSTreD can also be used for MaxSAT

and QBF problems
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Implicit representation of the structure of a multimode DAE system

A multimode Dulmage-Mendelsohn decomposition algorithm

A compositional approach: the CoSTreD method

Focus on the ArgMax algorithm
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The ArgMax algorithm for maximum-weight matchings

• Input:

• X : M ⇥ E ! B (all perfect matchings)

• (!k : M ⇥ E ! B)k=0...N�1 (matching weights in little-endian representation)

• Let SN ⌘ X ; for k = N � 1 down to 0:

• !max
k ⌘ 9~E .(Sk+1 ^ !k) (!max

k : M ! B)
• Sk ⌘ Sk+1 ^ (!k , !max

k )

• Output:

• S0 : M ⇥ E ! B represents all maximum-weight perfect matchings

• ArgMax may also be used for selecting one matching in every mode from S0: replace (!k)k=0...N�1

with (�E (e))e2E to get a lexicographical order
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