

The Synchrony Hypothesis or The Importance of Being Constructive

M. Mendler, The University of Bamberg

M. Mendler, The University of Bamberg

inspired by Tom Shiple, Gérard Berry

Synchron 2006 @ L'Alpe d'Huez-1

Synchron 2006 @ L'Alpe d'Huez-2

Synchron 2006 @ L'Alpe d'Huez-16

Non-inertial (UN-) delays permit oscillation as predicted by ternary simulation.

Synchron 2006 @ L'Alpe d'Huez-23

Synchron 2006 @ L'Alpe d'Huez-28

UN-logic satisfies the axioms

M. Mendler, The University of Bamberg

$$\begin{split} \phi \supset \Diamond_D \phi \\ \Diamond_D \Diamond_E \phi \supset \Diamond_{D+E} \phi \\ \Diamond_D \phi \land \Diamond_E \psi \supset \Diamond_{max(D,E)} (\phi \land \psi) \end{split} \\ \text{and the rule} \models \phi \supset \psi \implies \models \Diamond_D \phi \supset \Diamond_D \psi. \end{split} \\ \\ \text{Logic: lax modality (pronounced "LAGS")} \\ \text{Types, Functional Programming: strong monads.} \end{split}$$

 $\Diamond \phi$ internalises side effects and computations …

Synchron 2006 @ L'Alpe d'Huez-29

Synchron 2006 @ L'Alpe d'Huez-31

Synchron 2006 @ L'Alpe d'Huez-32

M. Mendler, The University of Bamberg

Semantical Adequacy

state nodes $S \subseteq Z$ feedback vertex set $S \cap X = \emptyset$ input nodes $X \subseteq Z$ constant input $a \in \mathbb{B}^X$ Network excitation function $S : (\mathbb{B}^X \times \mathbb{B}^S) \to \mathbb{B}^S$

UN-Calculus

Let Φ, Θ be sets of network formulas.

r

We derive sequents $\Phi \vdash \Theta$ according to the following rules.

$$\begin{split} \frac{D \leq E \quad R \subseteq S}{\Phi, \Diamond_D R \vdash \Diamond_E S, \Theta} & \Diamond id \qquad \hline \Phi \vdash \Diamond_E 1, \Theta \quad \Diamond true \\ \frac{\Phi \vdash \Diamond_D S, \Theta \quad \Phi \vdash \Diamond_E T, \Theta \quad S \cap T \subseteq R \quad F \geq max(D, E)}{\Phi \vdash \Diamond_F R, \Theta} & \Diamond \wedge R \\ \frac{\Phi, R \supset \Diamond_D S \vdash \Diamond_E R, \Theta \quad S \subseteq T \quad F \geq D + E}{\Phi, R \supset \Diamond_D S \vdash \Diamond_F T, \Theta} \supset \Diamond L \end{split}$$

*under some weak assumptions
M. Mendler, The University of Bamberg Synchron 2006 @ L'Alpe d'Huez-36

 $\forall h \in \mathsf{UN-exec}(N, a). h_i \text{ stabilises} \\ \forall h \in \mathsf{UN-exec}(N, a). \exists D. \exists \alpha. h_i[D, \infty) = \alpha \\ \end{cases}$

 $\begin{array}{l} \exists D. \ \exists \alpha. \ \forall h \in \mathsf{UN-exec}(N,a). \ h_i[D,\infty) = \alpha \\ \\ \exists D. \ \exists \alpha. \ \forall h \in \mathsf{UN-exec}(N,a). \ h_i \ \text{stabilises to} \ \alpha \ \text{at time} \ D \end{array}$

Corollary

M. Mendler, The University of Bamberg

For every UN-network ${\cal N}$ there exists a steady state response function

$$\llbracket N \rrbracket : \mathbb{B}^{\mathcal{X}} \to (\mathbb{B} \times \mathbb{R}^+)^{\mathcal{S}}_{\perp}$$

such that for all α, D such that:

- $\llbracket N \rrbracket_i(a) \neq \bot$ is the minimal stabilisation time and stable value of s_i under a
- If [[N]]_i(a) = ⊥, then s_i oscillates in at least one history.

How do we compute $\llbracket N \rrbracket$?

Synchron 2006 @ L'Alpe d'Huez-40

Soup of Delays

Every multi-set of vertices $V \subseteq \mathcal{Z} = \{y_1, y_2, z_1\}$ determines a network C(V) as follows: For every $v \in V$ with multiplicity n we break vertex v by exactly n delay elements connected up in series.

- DEL-speed-independent (*DEL-SI*) if all gate-delay networks obtained from *C* are DEL-combinational;
- DEL-delay-insensitive (*DEL-DI*) if all gate, input and wire-delay networks of *C* are DEL-combinational,

Synchron 2006 @ L'Alpe d'Huez-51

where in each case the multiplicity of delays is 1.

We can strengthen the notions to say that C is

- DEL*-SI if C is DEL-SI, and
- DEL*-DI if C is DEL-DI

M. Mendler, The University of Bamberg

for arbitrary multiplicity of delays.

Some Synchronous Causality Classes

