Universität Bamberg - Logo

News

ITCO Absolventenpreis

Christophe Quignon erhält ITCO Absolventenpreis
ausführlich

Kolloquium Mittwoch, 27.03.2013

Johannes Wicht (MA AI Präsentation): Entwicklung eines Systems zur Erkennung von Eskalationen in der Assist-Datenbank (in Kooperation mit Siemens)
ausführlich

27.02.13

Dagstuhl Seminar "Approaches and Applications of Inductive Programming"


ausführlich

Kolloquium Montag, 26.11.2012

Matthias Linhardt (MA CiTH Präsentation): Konzeption und exemplarische Ausführung eines Assistenzsystems für ein Content-Management-System (in Kooperation mit docufy)
ausführlich

MAC Montag, 12.11.2012

Michael Siebers: (Goal-dependent) Conditional Annulling of Actions in Automated Planning
ausführlich

Kolloquium Montag, 5. 11. 2012

Lukas Berle (BA Präsentation, Projekt EMN-Moves): Matching natural language activity descriptions by using self-expanding ontologies -- An application to support mobility of elderly people
ausführlich

22.10.12

ESF-Forschungsprojekt "Alumnae Tracking" 01.10.2012

Im Oktober ist das ESF-finanzierte Projekt "Alumnae-Tracking" gestartet. Ziel des Projekts ist die Analyse von Bildungs- und Berufsverläufen der Absolventen der Informatik im Gendervergleich.
ausführlich

Pressebericht KogWis 2012

Kognitionswissenschaftler tagen in Bamberg
ausführlich

News

 

 

Short portrait Cognitive Systems 

In the research domain Cognitive Systems (CogSys) we are concerned with the development of approaches, concepts, and methods for design, description, construction and analysis of intelligent systems based on cognitive principles. Our research strategy is to combine empirical studies of cognitive phenomena, development of algorithms, and their testing in different areas of application. Main topics of our group are induction and learning as well as planning and problem solving in single- and multi-agent settings. Especially, we are interested in the inductive synthesis of recursive functional programs from incomplete specifications (e.g., input/output examples) which can be seen as a general approach to learning productive rules from experience. Furthermore, we investigate analogical reasoning as a powerful approach to problem solving as a special mechanism of knowledge acquisition. Application areas are, for example, support of human problem solvers in the domains of software development, classifier learning for medical diagnostics, quality control, decision support or incident mining and assistant systems for activities of daily life. 

Introductory slides and hand-out in German: [pdf slides] [pdf text]