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0
Introduction

In the last years, several languages of Description Logic have been introduced to model
knowledge and perform inference on it. There have been several propositions for differ-
ent application scenarios. The constructive Description Logic cALC deals with uncer-
tain or dynamic knowledge. We make use of a game-theoretic dialogue-based proving
technique that comes from the fields of philosophy and introduce rules so that we can
perform reasoning in cALC. It can be considered as an alternative technique to tableau-
based proofs, emphasizing the semantics. As we will see, showing validity efforts a high
complexity, but for this, we have a philosophical approach that might make it possible
to find out more about the logics and that provides possibilities to extend or alter the
underlying semantics.

We will see a Haskell-implementation of a simple dialogue-based reasoner for cALC that
is able to show the validity of descriptive formulæ or to refute them. For this imple-
mentation, the fuzzy structural rules will be formalized. Unfortunately, because of high
branching factors, it is not able to cope with some formulæ.

In Chapter 1, we first look at general Description Logic, its terminology and at a tableau
algorithm for the language ALC. We then consider the constructive logic cALC, its
purpose and its relationship to intuitionistic logics. We will finally see a tableau-based
algorithm for cALC.

In Chapter 2, we introduce a dialogue-based proving technique for the constructive
Description Logic. For this, we begin with dialogues for first-order logic and then
extend the underlying rules step by step until we have a system for cALC.
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The implementation of a dialogue-based reasoner is explained in Chapter 3. We first
introduce the main data structures and then have a closer look at the realisation of the
rules.

Eventually, we test the implementation for some selected formulæ in Chapter 4. Then
we compare the dialogical approach to the tableau-based. Finally, we provide some
suggestions on how to improve both the rules for the dialogues and the implementa-
tion.



1
Introduction to

Description Logic

In this first chapter, we have a general introduction to Description Logic followed by
an explanation of a constructive language called cALC, as this is the logic we are going
to cope with in the Chapters 2 and 3. But in order to be able to understand cALC,
it is reasonable to learn what Description Logic is and how to perform reasoning with
it.

1.1. Description Logic

Description Logic provides a way to describe knowledge about a specific domain of
interest. It can be used to formalize definitions and assertions by applying given opera-
tors which can also be read and understood by humans quite easily. These facts, stored
in a knowledge base, can be used to obtain new knowledge automatically. Description
Logics are traced back to semantic networks but in addition to these, they have de-
fined logical semantics which can be expressed in first-order logic (see [BCM+05], p. 6;
[BS01], p.5).

In this section we have an introduction to Description Logic. First, the terminologies
and the syntax of Description Logic are explained. Afterwards, an overview of descrip-
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tion languages is given, followed by a short introduction to inferences and proofs. In
the end, we compare Description Logic to modal logic.

1.1.1. Concepts and Roles

Using Description Logic (DL) is a way to describe concepts and their relationships to
each other. In this way, knowledge can be represented.

Concepts can be defined as “sets or classes of individual objects” ([BCM+05], p. 5).
These concepts describe for example any kind of object such as persons, vegetables,
etc., also abstract objects like geometric forms.

Now, we can also describe several types of relationships between concepts. Here is a
simple example:

Example 1.1

Let us consider seven concepts: person, captain, inferior, navigator, janitor, vacuum
cleaner and space ship. A captain commands inferiors. All inferiors and all captains are
persons. Janitors and navigators are both inferiors. Further, janitors navigate vacuum
cleaners, while navigators can navigate both ships and vacuum cleaners (they will probably
not do both at the same time). Let us suppose that not every navigator navigates vacuum
cleaners (because he/she has someone else at home who does that for him/her).

This scene can be illustrated by a semantic network (see Figure 1.1). It is just a
simplified illustration, for example, the cardinalities are missing: the captain usually
commands more than one inferior, but at least one, whereas it is not obvious that not
all navigators are able to navigate vacuum cleaners.

In this example, the is_a-relations are displayed by dashed arrows, while all other
relations are represented by solid, labelled ones. Is_a-relations indicate an increase of
generality, e.g. a captain is a person, where person is a more general concept than
captain. In Description Logic, an is_a-relation can be expressed by the subsumption
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Captain

Inferior

commands

Person

Janitor

Vacuum Cleaner

navigates

Space Ship

Navigator
navigates

navigates

Figure 1.1.: A Simplified Semantic Network

symbol v. It can also be read as an implication. So, for showing the relation between
a captain and a person the expression

Captain v Person

might be used which indicates that every captain is also a person.

The relations illustrated by solid arrows indicate properties of concepts, called roles.
A role can also be seen as a set of pairs of individuals (see [BCM+05], p. 5, 7, 46).
For instance, in the example shown above, the captain has the property to command
inferiors.

Description Logic has the ability to describe these relationships between concepts. Until
now, we have only considered atomic concepts and roles. If we want to talk about more
complex structures, we have to use composition operators. For example, a crew member
can be defined to be either the captain or an inferior (or maybe both). To express this
statement, the following logical definition might be used:

Crew_Member ≡ Captain t Inferior

The symbol t can be read as or or as union, when considering the concepts as sets:
as described at the very beginning, concepts can be seen as sets of individual objects.
To obtain the set of all crew members, the set of captains (which consists of only one
element in this case) has to be joined with the set of all inferiors. We get a set of
individuals which are either captains or inferiors (or theoretically even both).
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The sentence from above can be converted to the first-order logic expression

∀x Crew_Member(x) ←→ Captain(x) ∨ Inferior(x)

if x acquires the values of all possible individuals (see [BCM+05], p. 7).

There are also other operators which can be applied to concepts. In order to obtain
the intersection of two concepts, the operator u is used, which is similar to the log-
ical connective ∧ (for and) known from first-order logic. Further, negations (i.e. set
complements) can be expressed using the usual symbol ¬.

So, for example, to derive the concept of inferiors from the concept of crew members,
one can write

Crew_Member u ¬Captain

The operators described so far are only used on concepts. In order to express relations,
other constructs are needed. Let us begin with the existential quantification which has
the form ∃R.C where R is a role and C represents an arbitrary concept (see [BCM+05],
p. 8, 47). For example, the sentence ∃navigates.Space_Ship characterizes the concept
navigator, or to be more specific, it specifies all individuals, that have at least one
navigates-relation to the concept space ship.

The so-called value restriction ∀R.C is another possibility to describe roles. The sen-
tence ∀navigates.Space_Ship expresses something different than the existential ver-
sion. Here, we get the individuals who navigate a space ship, but no vacuum cleaners,
because the universal quantifier indicates only those individuals from which all navi-
gates-relations lead to space ship (see [DLNN97], p. 3). So, for the obtained individuals
it is necessary that there is no navigates-relation leading to another concept than space
ship.

The target concept of a possible relation and its individuals are called role-fillers (see
[BCM+05], p. 8). In the last two examples above, the individuals of the concept space
ship are the role-fillers, but we also say that the concept “Space Ship” is the role-filler.

There are languages which offer more constructs to make restrictions on roles. The
number restrictions indicate those individuals that have a minimal or a maximal number
of role-fillers (see [BCM+05], p. 8). Let us suppose that a mighty captain is a captain
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who commands at least 500 individuals. This can be defined in this way:

Mighty_Captain ≡ Captain u > 500 commands

Instead of > one can also use 6 in order to indicates individuals that do not have more
than a given number of role-fillers.

1.1.2. Families of Description Languages and their Semantics

The Language AL

There are different description languages which are more expressive than others. For
example in the basic language called AL (for attributive language), the expression
C tD is not defined, while C uD is possible. Further, negations are only allowed on
atomic concepts, that is why the statement ¬(CuD) is also impossible (see [BCM+05],
p. 47).

From now on, the letter A is used for atomic concepts, while R stands for atomic roles.
C and D represent concept descriptions, i.e. they might be atomic concepts or more
complex descriptions which are built by various concept constructors (such as t, u, ∀,
∃, . . . ) and therefore are more complex than atomic concepts.

According to [BCM+05], the basic language AL accepts expressions formed by the
following rules:

C,D −→ A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)
C uD | (intersection)
∀R.C | (value restriction)
∃R.> (limited existential quantification)

It is also remarkable, that the existential quantification can only be applied on the uni-
versal concept > as role-filler. That means that the expression ∃navigates.Space_Ship
is not possible in AL. By contrast, the statement ∃navigates.>, indicating all individ-
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uals that navigate something (i.e. navigate an arbitrary individual) is allowed. Number
restrictions are not supported anyway.

Semantics and Interpretation

Semantics are defined by a set ∆I which includes all interpreted individuals and by an
interpretation function ·I . Together they make the Interpretation I = (∆I , ·I).

“In order to define a formal semantics of AL-concepts, we consider inter-
pretations I that consist of a non-empty set ∆I (the domain of the inter-
pretation) and an interpretation function, which assigns to every atomic
concept A a set AI ⊆ ∆I and to every atomic role R a binary relation
RI ⊆ ∆I ×∆I .”

[BCM+05], p. 48

The following definitions declares how concept descriptions are interpreted semanti-
cally:

>I = ∆I

⊥I = ∅
(¬A)I = ∆I \ AI

(C uD)I = CI ∩DI

(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI }
(∃R.>)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI }

Here, we see what is behind the operators, e.g. that the conjunction (u) is interpreted
as an intersection of two sets. The negation can be understood as a subtraction of a
set (representing an atomic concept) from our interpretation domain and > represents
a set of all individuals, while ⊥ is interpreted as the empty set.

Eventually, equivalence of two concepts (C ≡ D) can be defined as consequence of
CI = DI for all interpretations I (see [BCM+05], p. 48).
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Language Extensions

By adding constructs to our basic language AL, we can make it more and more expres-
sive and powerful. To achieve that unions of concepts are also possible, the constructor
U has to be added. Such an extension is described by a syntax (CtD) and a semantics
(CI ∪DI) (see [BCM+05], p. 48, 488).

The new language ALU is now able to deal with disjunctions. For this reason, our
expression Captain t Inferior is no problem anymore.

Until now, existential quantification is only allowed on the universal concept > as role-
filler (see above). In order to make other concepts accessible as role-fillers, a further
extension named E is needed. It is able to deal with full existential quantification. Its
interpretation is defined thus:

(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

Still we face the problem with expressions like ¬(Captaint Inferior), because in AL,
the negation can only be applied to atomic concepts. The third important extension C
(for complement) solves this problem by adding the semantics interpretation

(¬C)I = ∆I \ CI

There are more constructors, which can be added to AL, such that N , which are able
to cope with number restrictions (6,>, . . . ), but we will not cover these here. Instead,
we will restrict our view (at least for now) to the constructors explained above.

All constructors can be combined to extend the basic language AL. We merely add
the constructors which we need. In this way, we can compose the languages

ALU , ALE , ALC, ALUE , ALUC, ALEC and ALUEC

from AL and the constructors U , E and C.

Anyway, it is remarkable that from the semantic point of view, if we use just C with AL,
then U and E are not really needed, because the disjunction (or union) can be expressed
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as a negated conjunction (or intersection), as well as a the full existence quantification
can be rewritten as a negated value restriction in this way (see [BCM+05], p. 49):

C tD ≡ ¬(¬C u ¬D)

∃R.C ≡ ¬∀R.¬C

The other way round, the negation from C is also available implicitly when usingALUE ,
e.g

¬(Captain u ∃navigates.(V acuum_Cleaner t Space_Ship))

≡ ¬Captain t ∀navigates.(¬V acuum_Cleaner u ¬Space_Ship)

(note that captain, vacuum cleaner and space ship are all atomic concepts and that in
AL negation is possible on atomic concepts). That is why, it is possible to abbreviate
ALUEC and even just ALUE to ALC.

So, from now on, the language ALUEC will just be referred to as ALC.

1.1.3. Formalizing and Representing Knowledge

Description Logic is usually applied to represent knowledge. It is possible to formalize a
query in form of a logical sentence and check if a concept exists that satisfies this query.
Such a sentence might be a subsumption C v D expressing that the concept D is more
general than the concept C. When regarding concepts as sets, you could read this as
concept C is always a subset of concept D (see [BCM+05], p. 9). For example the
expression Inferior v Crew_Member can be used as a query, where an underlying
DL knowledge base checks if that statement is true. In this knowledge base, all relevant
domain-specific knowledge is going to be stored. A typical DL knowledge base can be
separated into two different components, the TBox and the ABox (see [BCM+05], p.
12, 46).

The architecture of a knowledge representation system, which is based on Description
Logic as it is illustrated by [BCM+05] is shown in Figure 1.2.
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TBox

ABox

Description
Language Reasoning

KB

Application
Programs Rules

Figure 1.2.: Architecture of a Knowledge Based System as shown by [BCM+05]

TBox

The TBox contains the intensional knowledge, i.e. general knowledge about the do-
main. It specifies the terminology of the domain (that is why it is named TBox) by
definitions and also by inclusion axioms. We have seen such a definition before. They
are usually expressed by logical equivalences, where the left side of the equation is an
atomic concept (see [BCM+05], p. 12 ff., 46, 51).

Crew_Member ≡ Captain t Inferior

Here again, a crew member is defined to be either a captain or an inferior (or even
both). This knowledge is independent from the individuals which might be members
of the concepts (or not).

An inclusion axiom has the form C v D with C and D being arbitrary concepts (see
[BCM+05], p. 14).

[BS01] define the TBox thus (p. 19)1:

“A TBox is a finite set of terminological axioms of the form C
.
= D, where

C,D are concept descriptions. The terminological axiom C
.
= D is called

concept definition [if and only if] C is a concept name.

1[BS01] use the symbol .= instead of ≡ for definitions.
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An interpretation I is a model of the TBox T [if and only if] CI = DI

holds for all terminological axioms C .
= D in T . [. . . ]”

A TBox is an acyclic terminology, if

• it does not contain multiple definitions
A ≡ C and A ≡ D . . .

• and it does not contain cyclic definitions
A1 ≡ C1, . . . An ≡ Cn where Ai occurs in Ci−1 (1 < i ≤ n) and A1 occurs in Cn

If a TBox is acyclic, then the definitions can be unfolded. That means, we can transform
the defined atomic concepts (e.g. Crew_Member) back to their concept descriptions
(e.g. Captain t Inferior) (see [BS01], p. 20). Doing this with TBoxes which are not
acyclic would obviously cause a never-ending unfolding process.

ABox

In an ABox (or world description), extensional knowledge is stored, i.e. knowledge
which addresses a certain problem. It specifies assertions about individuals (that is
why it is named ABox) (see [BCM+05], p. 12, 15, 59).

The statement
Captain(KATHRY N)

indicates that a specific individual called “KATHRYN” is a captain, while the asser-
tions

navigates(HARRY, V OY AGER) and Space_Ship(V OY AGER)

describe together that a particular individual named “HARRY” navigates a specific
space ship called “VOYAGER”.

With the help of the ABox, it is possible to check if a specific individual can be assigned
to a particular concept (see [BCM+05], p. 15). So we might for example be able to
obtain new knowledge by checking if HARRY is a navigator or a janitor.

From now on, the lower-case letters a, b and c are used for individual names. Generally
spoken, an ABox’s assertion is
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• a concept assertion C(a), where C is a concept and a is part of it or

• a role assertion R(b, c), where R is a role and c is a role-filler of R for b

An ABox is a finite set of such assertions (see [BCM+05], p. 59, 60). So, we can
construct a simple ABox:

Captain(KATHRY N) commands(KATHRY N,HARRY )

Space_Ship(V OY AGER) navigates(HARRY, V OY AGER)

Table 1.1.: A Simple ABox

In order to be able to work with these individuals, it is necessary to extend the inter-
pretation I. We then have the possibility to map an individual name a to a certain
individual aI ∈ ∆I .
Further, we assume that every individual has its unique name, so aI 6= bI with a and
b being distinct names. This feature is called the unique name assumption (UNA) (see
[BCM+05], p. 60).

As mentioned before, ∆I is the set of all individuals, so for each individual name a, aI

is an element of ∆I . I is called to be a model of a particular ABox if I

• satisfies the concept assertion C(a) which is the case if aI ∈ CI ;

• satisfies the role assertion R(a, b), which is the case if (aI , bI) ∈ RI

(see [BCM+05], p. 60; [BS01], p. 10).

But what does that mean for the TBox? Let us now look at the second part of the
definition of the TBox by [BS01] (p. 19, 20)

“[. . . ] The concept description D subsumes the concept description C w.r.t.
the TBox T (written C vT D) [if and only if] CI ⊆ DI for all models I of
T ; C is satisfiable w.r.t. T [if and only if] there exists a model I of T such
that CI 6= ∅. The Abox A is consistent w.r.t. T [if and only if] it has a
model that is also a model of T . The individual a is an instance of C w.r.t.
A and T [if and only if] aI ∈ CI holds for each model I of A and T .”

To put it in a nutshell: I satisfies an ABox A with respect to a TBox T if it satisfies
(in addition to A) also T .
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1.1.4. Inference

Now, after we know how to formalize knowledge, it is time to look at how to draw
conclusions in order to obtain new facts or verify statements.

Satisfiability

For this, we first have to check if a given or new concept C is satisfiable with respect to
a TBox T . So, if there exists a model I of T such that CI 6= ∅, then C is satisfiable.
Then I is called to be a model of C with respect to T (see [BCM+05], p. 62). One
can also say that there has to be at least one individual in the concept C so that it is
satisfiable with respect to T .

In further definitions, the constraint “with respect to T ” is dropped as it is clear that
we always talk about a particular TBox.

Subsumption

An inference problem which often occurs, is to check if a concept C is subsumed by
another concept D. That is the case if (and only if) CI ⊆ DI for all interpretations I
(see [BS01], p. 10).

Now, in ALC we have the possibility to use negations. So, C is subsumed by D, if
(and only if) C u¬D is unsatisfiable (see [BS01], p. 10). In this way, it is easy to check
if one concept is subsumed by another: we just have to check unsatisfiability.

It is also possible to express unsatisfiability by subsumption:
C is unsatisfiable, if (and only if) C v ⊥ (see [BCM+05], p. 63), i.e. C is an empty
concept.

Equivalence

Two concepts are equivalent if (and only if) CI = DI for all interpretations I (see
[BCM+05], p. 62). This is written C ≡ D and means that all individuals in C are
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individuals in D and vice versa. Formally, this means that

C ≡ D ⇐⇒ C v D & D v C

So, as already shown with the subsumption, equivalence of C and D is present if (and
only if) C u ¬D and D u ¬C are both unsatisfiable.

Disjointness

Finally, two concepts C and D are disjoint if (and only if) CI ∩DI = ∅ for every model
I (see [BCM+05], p. 62). Disjointness of C and D means that no individual of C can
be found in D and vice versa, in other words, C uD v ⊥, because CI ∩DI = ∅.

As shown before, this can be reduced to unsatisfiability of C u D. So again, we just
have to test unsatisfiability in order to show that two concepts are disjoint.

To conclude: all four kinds of inference tests can be traced back to (un)satisfiability
and also to subsumption if full negation is allowed.

Consistency

Having the assertions Captain(KATHRY N) and Janitor(KATHRY N) in our ABox,
we might have a problem, at least if the TBox tells us that a janitor is an inferior who
is commanded by the captain and nothing can be inferior to itself. So, the captain does
not command himself and that is why we have an inconsistency in our ABox which
should be detected.

[BCM+05] defines Consistency formally (p. 66):

“An ABox A is consistent with respect to a TBox T , if there is an interpre-
tation that is a model of both A and T . We simply say that A is consistent
if it is consistent with respect to the empty TBox.”

Let us consider a set of all individuals NI . Satisfiability can now be redefined using the
term of consistency of ABoxes with the set NI of all individuals:

1. “C is satisfiable [if and only if] the ABox {C(a)} for some a ∈ NI is
consistent; and”
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2. “a is an instance of C w.r.t. A [if and only if] A ∪ {¬C(a)} is incon-
sistent.”

[BS01], p. 10

After reducing satisfiability to the consistency problem, it is not hard to do the same
with subsumption, equivalence and disjointness, because, as shown before, equiva-
lence and disjointness can be reduced to subsumption which again can be reduced
to (un)satisfiability and we have just seen that this can be reduced to (in)consistency
of ABoxes.

1.1.5. Tableau-Based Reasoning

We will now look at a tableau-based algorithm for ALC which has originally been
introduced by [SSS91]. It uses the possibility to reduce the properties satisfiability
and subsumption to the the problem of consistency for ABoxes. Unfortunately, this is
only possible for languages which support negation (like ALC). For other description
logics, there are also other ways to perform reasoning (e.g. automaton based reasoning
introduced by [CDL99]). We do not cover these here.

For the beginning, we omit TBoxes and perform reasoning on ABoxes only. Reasoning
with TBoxes will be considered afterwards.

Rules

The tableau algorithm provides a set of rules which are applied to a given ABox A.
Such an application then leads to one or several new ABoxes A′, A′′. . . including
additional assertions. Of course, not every rule can be applied on any statement in
A. As in STRIPS-notation2 (without negative effects), rules have a name, conditions
and actions (effects). The rules for the various operators are shown in Table 1.2 (see
[BS01], p. 11).

2STRIPS is an algorithm used to solve planning problems in artificial intelligence (see [GNT04], p.
76 ff.).
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The →u-rule
Condition: A contains (C1 u C2)(x), but not both C1(x) and C2(x).
Action: A′ := A ∪ {C1(x), C2(x)}.

The →t-rule
Condition: A contains (C1 t C2)(x), but neither C1(x) nor C2(x).
Action: A′ := A ∪ {C1(x)}, A′′ := A ∪ {C2(x)}.

The →∃-rule
Condition: A contains (∃r.C)(x), but there is no individual name z such that

C(z) and r(x, z) are in A.
Action: A′ := A ∪ {C(y), r(x, y)}, where y is an individual name not

occuring in A.

The →∀-rule
Condition: A contains (∀r.C)(x) and r(x, y), but it does not contain C(y).
Action: A′ := A ∪ {C(y)}.

Table 1.2.: Transformation Rules of the Satisfiability Algorithm for ALC

Every rule creates either one or two new ABoxes A′ (and sometimes A′′) containing all
elements which have already been in A, but in addition also new assertions depending
on the rule which has been used. The conditions create some restrictions so that a
rule can only be applied if it generates new results. Otherwise, it would be possible to
apply one rule again and again without any new results and the algorithm would never
terminate.

It is assumed that all concept descriptions are in negation normal form (NNF), so we
do not need a →¬-rule and find clashes more easily (clashes will be described below).
This means, that we have the negation ¬ only directly in front of concept names. With
the rule of de Morgan and the rules for quantifiers, it is possible to transform any
expression to NNF in linear time (see [BS01], p. 11; [BCM+05], p. 78).
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Here is an example:

¬(∃R.(A uB)) quantification rule
⇔ ∀R.¬(A uB) de Morgan
⇔ ∀R.(¬A t ¬B) =⇒ NNF

An ABox A is consistent, if (and only if) the new succeeding ABox A′ is consistent, too.
After applying a sequence of rules to an initial ABox, we finally get an ABox where we
cannot use any more rules, because the conditions do not give us an opportunity to do
so. If this last ABox is consistent, the original one must also be consistent (at least if
the algorithm is correct) (see [BS01], p. 12).

The existential quantification rule→∃ in x creates a role-filler y. Besides, a new relation
r(x, y) is generated. By contrast, the rule →∀ can only be applied if there is already
such a generated role-filler, so the target concept C can be assigned to all the role-filling
individuals y.

The →t-rule creates two different new ABoxes A′ and A′′. The original ABox A is
consistent if and only if (at least) one of the new A′ or A′′ is so (see [BS01], p. 12).
The reason is simple: (C tD)(x) is true if (and only if) C(x) or D(x) or even both are
true. So there is no need that both conform to that condition. So if for example C(x)

in A′ leads to an inconsistency, A′′ with D(x) has to be tested on consistency.

Completeness and Clashes

“An ABox A is called complete [if and only if] none of the transformation
rules of [Table 1.2] applies to it. The ABox A contains a clash [if and only
if] {P (x),¬P (x)} ⊆ A for some individual name x and some concept name
P . An ABox is called closed if it contains a clash, and open otherwise.”

[BS01], p. 12

So, for example an ABox with both assertions

Captain(x) and ¬Captain(x)
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contains a clash, and therefore the ABox is inconsistent and unsatisfiable. If this is a
case for an ABox A′, we have to backtrack. Maybe a t has been disassembled earlier
(let us say in A), so there is a chance that another ABox A′′ is satisfiable. If such a
branch does not exist, we are finished and our original ABox is inconsistent. Otherwise
we have to look for clashes in A′′ again until the tableau is either closed (then the
original ABox is not satisfiable) or it is complete and there is a branch which does not
contain a clash.

Running the Algorithm

At the beginning we always start with a prototypical ABox with the abstract individual
x. Our aim is to show that this prototype is satisfiable or it is not. We just have to
apply all possible rules until the tableau is either closed or there are no more applicable
rules left.

Let us look at the subsumption again. As shown before, C v D is true if (and only
if) C u ¬D is unsatisfiable. For a prototypical (fresh) individual x this means that we
can check the subsumption by applying the algorithm on the ABox {C(x) u ¬D(x)}.
If it leads to a closed tableau, then {C(x) u ¬D(x)} is inconsistent and therefore
C(x) v D(x) eventually is satisfiable.

Correctness

There are several ways to obtain new knowledge. In any case, it is important that
the results are correct. The inference procedure is of no value if it tells us wrong
conclusions, while it is also not very helpful if it does not find facts which are obviously
there. Further, it is always helpful if the termination of an algorithm is guaranteed.

Let us consider a set of ABoxes S = {A1, . . . ,Ak}, where A1 represents the initial
ABox of our tableau followed by all ABoxes which result by applying rules on the
ABox before. S is consistent if and only if there is some i, 1 ≤ i ≤ k, such that Ai is
consistent ([BCM+05], p. 80).
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Termination Let C0 be an ALC-concept in negation normal form. There cannot be
an infinite sequence of rule applications

{{C0(x0)}} → S1 → S2 → · · ·

([BS01], p. 12).
The proof for the extended language ALCN is given by [BCM+05] (p. 81).

Soundness Assume that S ′ is obtained from the finite set of ABoxes S by applica-
tion of a transformation rule. Then S is consistent [if and only if ] S ′ is consistent.
([BCM+05], p. 81)
[BCM+05] explains this as an “easy consequence of the definition of the transformation
rules” (p. 80) which are shown in Table 1.2. This leads us to the fact that any closed
ABox A is inconsistent (see [BS01], p. 12).

Completeness Any complete and clash-free ABox A has a model. ([BCM+05], p. 82)
In other words: Any complete and open ABox A is consistent. ([BS01], p. 12)
[BCM+05] provide a proof for this lemma (p. 82, 83).

With all this, we can formulate the following theorem:

It is decidable whether or not an ALC-concept is satisfiable.

[BS01], p. 13

Example

It is now time to see the algorithm in action. The following example is adapted from
[BCM+05] (p. 78):

Let us suppose that we want to prove that the following subsumption is always cor-
rect:

(∃R.A u ∃R.B) v (∃R.(A uB))
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So everything we have to do is to show that the expression

∃R.A u ∃R.B u ¬∃R.(A uB)

is unsatisfiable. As the algorithm does not provide rules for negation, we have to
transform that statement to NNF.

∃R.A u ∃R.B u ∀R.(¬A t ¬B)

Let us construct an initial ABoxA with the abstract individual x which shall be member
of each concept.

A = {(∃R.A u ∃R.B u ∀R.(¬A t ¬B))(x)}

This is where the algorithm starts. First, the only applicable rule is →u . We use it
twice.

A′1 = A ∪ {(∃R.A)(x), (∃R.B)(x), (∀R.(¬A t ¬B))(x)}

Now we have four single elements in our ABox A′1. The→u-rule cannot be applied once
more, because this would not lead to any new results. So we can apply the →∃-rule on
∃R.A or on ∃R.B. Rule →∀ cannot be applied on the last element of A′1, because it
requires that there is already a R-relation from x to at least one role-filler, but there is
no such role-filler right now.
Let us apply the →∃-rule twice (i.e. on both elements). It generates new individuals
each time. We call them y and z.

A′2 = A′1 ∪ {A(y), R(x, y), B(z), R(x, z)}

Because we now have our role-fillers with the corresponding concepts, the →∃-rule
cannot be applied again. But because we now have our relations leading from x, we
can finally apply →∀ on (∀R.(¬At¬B))(x). We can apply this rule twice, because we
have two different relations which lead from x to other individuals (y and z).

A′3 = A′2 ∪ {(¬A(y) t ¬B(y)), (¬A(z) t ¬B(z))}

We can decide if we want to apply →t on y or on z so let us start with y. But here we
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have to branch, because →t constructs two different ABoxes.

A′4 = A′3 ∪ {¬A(y)} A′′4 = A′3 ∪ {¬B(y)}

In A′2 we already had A(y). This results in a clash in A′4. Anyway, the tableau is still
not closed, so we still do not know if A is unsatisfiable. For this, we have to prove that
there is also a clash in A′′4. To do so, let us apply →t on ¬A(z) t ¬B(z). Again, two
different ABoxes are obtained:

A′′5 = A′′4 ∪ {¬A(z)} A′′′5 = A′′4 ∪ {¬B(z)}

A clash occurs in A′′′5 due to the element B(z) which we already have in A′2. Still, the
left branch A′′5 is open. Looking at the rule-conditions makes us realize that no rule is
applicable here. So, we are done. There is no closed tableau and by completeness of
the algorithm we conclude that A is satisfiable and therefore the initial subsumption
is not valid.

The complete tableau is shown in Figure 1.3. The crosses x mean that we have a clash
at that position.

Reasoning with TBoxes

In order to involve definitions of an acyclic TBox, it is enough to unfold these. We have
already seen how this can be done. If a TBox contains such a definition, it should then
be unfolded on demand (see [BS01], p. 20, 21). So if a defined concept A ≡ C occurs
negated and non-negated in an ABox (A(x),¬A(x)), it is not necessary to unfold them,
because we then already have our contradiction and therefore a clash.

But if considering general TBoxes (which might contain cycles), the algorithm will
probably not terminate when unfolding a concept again and again, without ever de-
tecting a clash. So if (general) TBoxes are allowed, we also need a mechanism which
detects such cycles. [BCM+05] describes a strategy to detect loops and how to block
the corresponding ABoxes, so the algorithm will finally terminate (see p. 86). We will
not talk about blocking here in detail.
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Figure 1.3.: Illustration of a Tableau

Miscellaneous

Extending ALC to other, more expressive languages (like for example ALCN or lan-
guages with transitive or reflexive roles) makes it compulsory to alter the set of possible
rules when using a tableau algorithm. Of course, then correctness and completeness
has to be checked again (see [BS01], p. 15 ff).

1.1.6. Description Logic and Modal Logic

According to [Baa09], “ALC is just a syntactic variant of the basic multimodal logic K”
(p. 7). Concepts are then expressed as propositional variables while roles are relations
between worlds in modal logic. The pendant to the value restriction is then the Box
operator 2. Existential quantification is expressed by the Diamond 3.

If the used modal logic was not multimodal, we would not be able to distinguish between
the different role names. So, the role names might be written as indices to the modal
operators (2 and 3).
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[Baa09] defines the function θ, which translates an ALC concept description C to a
modal formula thus (p.7):

θ(A) ←− a (name of atomic concept A)
θ(C uD) ←− θ(C) ∧ θ(D)

θ(C tD) ←− θ(C) ∨ θ(D)

θ(¬C) ←− ¬θ(C)

θ(∀r.C) ←− 2rθ(C)

θ(∃r.C) ←− 3rθ(C)

In this way, our example ∃navigates.Space_Ship could be translated to such a modal
expression:

3navigates space_ship

Later, we will talk about modal logics again and use them to construct bridges to
Description Logic in various contexts.

1.1.7. Summary

Here are again the most important issues about Description Logic:

• Description Logic is used to describe knowledge and derive new facts. Concepts
and roles are used for this.

• There are several languages which are more or less expressive than others. All
are extensions to the basic language AL.

• Concept definitions and terminologies with inclusion axioms are stored in the
TBox, while knowledge about individuals (world descriptions) is saved in the
ABox. Both components are elements of the Knowledge Base.

• The properties equivalence and disjointness of concepts can be reduced to the
properties of subsumption and unsatisfiability in ALC. For ABoxes, subsumption
and unsatisfiability can both be reduced to inconsistency.

• The tableau algorithm for ALC introduced by [SSS91] performs inferences on
ABoxes using these properties.
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• ALC is similar to the multimodal modal logic K. An arbitrary ALC-expression
can be transformed to a modal logic formula using a simple function.

Next, we will look at the constructive language cALC.

1.2. The Constructive Description Logic cALC

In the last years, new description languages have been introduced, that have intu-
itionistic or constructive semantics, i.e. they have a special perspective on Description
Logic.

For example, [FFF10] have introduced the Basic Constructive Description Logic BCDL
that focuses information term semantics. [HRdP10] have introduced an intuitionistic
ALC, called iALC, that they suggest to apply in fields of law.

The constructive language cALC has been introduced by [MS09] with the aim to cope
with domains which contain dynamic or incomplete knowledge.

In this section, we have an introduction to cALC. After showing the purpose and after
explaining syntax and semantics, we will see how to perform tableau-based proofs in
cALC.

1.2.1. Why Constructive?

Intuitionist and Classical Logic

Before we consider reasons for working with constructive Description Logic, it might
be helpful to have a short introduction to intuitionist logic3 which has its roots in some
mathematical fields of philosophy (see [Pri01], p. 99) and which is sometimes also
referred to as constructive logic.

3In some sources it is called intuitionistic logic, in others intuitionist logic. We use both terminologies,
but do not make any difference.
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Let us consider the assertion
A ∨ ¬A

in propositional logic. It says, that A is either true or false. It is an axiom which is
always true in classical logic. For example, the expression

Sun_shining ∨ ¬Sun_shining

always makes a correct assertion. Either the sun is shining, or it is not shining. This
rule is called the Law of the excluded middle or excluded third (see [Min00], p. 1).

But now, let us consider the assertion “There are infinitely many twin primes”, where a
twin prime is a pair of prime numbers (a, b) with b−a = 2, for example (3, 5) or (11, 13)

are twin primes. Although we know that there are infinitely many prime numbers, there
is still no known way to prove or refute that there are infinitely many twin primes (see
[Pri01], p. 101).

Now, some might think, that the assertion about the twin primes is true, some might
disagree, but it is obvious that (at least till now) there is no proof which shows that
it is and also no proof which shows that it is not true. It might be, but we cannot be
sure about it.

Intuitionist Logic deals with such proof-expressions. The assertion A ∧ B says that
there is a proof which shows that A is true and there is also a proof that shows that
B is true, so it indicates a proof for A and B. Analogous, A∨B is an expression for a
proof which again is a proof of A or a proof of B (see [Pri01], p. 100).

Now, ¬A does not say that it is just wrong that there is a proof for A. Instead, a “proof
of [¬A] is a proof that there is no proof for A” ([Pri01], p.100). It is obvious, that then
A ∨ ¬A is not necessarily true for all A, because there might be a way to proof A, or
to refute A, but it is also possible that neither one, nor the other can be proved and
this is one issue that makes intuitionist logic different to classical logic.

Constructiveness in Description Logic

Let us move away from general intuitionist logic and have a look on constructiveness
in Description Logic.
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As [MS09] describe, information which are stored in a knowledge base, are often dy-
namic or incomplete. The individuals which are represented in the knowledge are
abstract. Of course, they are not real at all (p. 208), because it is not possible to store
every single information of an individual in a knowledge base.

Sometimes, it is inevitable to cope with abstractions and abstracted concepts. This is
especially necessary if we deal with individuals, we do not have the complete knowledge
about or individuals whose features are not static.

In order to exclude wrong conclusions, it is necessary to alter our description language,
so that it is able to cope with these abstract entities. The language cALC is such an
alternation.

To illustrate that problem, here is an example which is based on the fairy tale Snow
White and the Seven Dwarfs4.

Example 1.2

Once, there was a Queen who was not able to get along with the fact that she was not the
most beautiful person in the land. That is why she wanted to kill her stepdaughter Snow
White who has been (according to the Queen’s speaking mirror) thousandfold more beauti-
ful. Snow White fled to the Seven Dwarfs, but the evil stepmother followed her, masked as
an old lady who sold apples. One of these apples (the red one) had been poisoned. Snow
White did not realise that the old woman was her stepmother, but still, she did not trust
her first. So, the jealous Queen ate the pale part of the manipulated apple (that was the
part which was not poisoned). Snow White, now convinced that it would not be dangerous,
ate the red part and died (fortunately only temporarily).

Of course we could define a concept Apple by joining both concepts Red_Apple and
Pale_Apple, where the red apples are poisoned, so they cause death, while the pale
ones are still sour and cause stomach ache (but at least, they do not kill us).

4The original version can be found in Kinder- und Hausmärchen by the Grimm Brothers as Schnee-
wittchen.



28 1. Introduction to Description Logic

Apple

Red Apple

Pale Apple

Death
cause

Stomach Ache
cause

Figure 1.4.: The Queen’s Knowledge about her Apples

offered apple

harmful apple�

harmless apple

�

Trouble
cause

Happinesscause

Apple

Figure 1.5.: Snow White’s Knowledge about Apples

Apple ≡ Red_Apple t Pale_Apple

Red_Apple v ∀cause.Death

Pale_Apple v ∀cause.Stomach_Ache

So far, we do not need constructiveness, because the stepmother is able to distinguish
which apples are dangerous and which can be eaten without risk (apart from the stom-
ach ache). The Queen’s knowledge about her apples is illustrated in Figure 1.4.

But now, let us consider the scene from Snow White’s point of view. Knowing that her
stepmother tries to kill her, she acts carefully, because the Queen has tried to murder
her several times before. Her knowledge about apples is shown in Figure 1.5.

Snow White only knows that the old lady offers her an (abstract) apple and that it
might be either harmful or harmless. Her problem is, that she is not able to say which
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apples are the bad ones, because she does not know that her stepmother has marked
the poisoned ones red. So, she cannot be sure about the outcome of eating the offered
piece of red apple.

Now the Queen uses an artful trick by eating the pale part of the apple which is not
harmful. So her naive stepdaughter eats the rest and dies. Anyway, she could not have
known.

Regarding Figure 1.5, the harmless and the harmful apple contain more information
than our abstract offered apple (which does not really exist in reality), i.e. they are
more concrete than the abstract one. This increase of information is represented by
refinement-relations, illustrated by the dotted edges and the symbol � (not to mix this
up with the number restriction 6). Anyway, neither offered apple, nor harmful apple,
nor harmless apple are concepts any more, but entities. These are all members of an
enveloping concept which is indicated by the red cloud.

Application in Reality

Let us move away from fairy tales and go back to reality again. [MS09] and [MS08]
outline that auditing in economy gives a good example for an application. Automated
auditing is getting more and more important and besides, it is a delicate issue due to
new strict laws like the Sarbanes-Oxley Act5.

Many processes which have to be monitored are dynamic, so their states are changing
for a period of time. Further, people holding a certain position in a company may
change, i.e. they might be replaced by others while the auditing process is taking
place. Eventually, the abstract concept ‘CEO of company X’ does not say anything
about personal qualities of a particular person doing the job. Finally, an abstraction
from irrelevant available data can simplify the complexity of the process. Quick checks
can be performed when abstracting. (see [MS09], p. 209).

5The Sarbanes-Oxley Act is a US law of 2002 which has been initiated to “protect investors by
improving the accuracy and reliability of corporate disclosures made pursuant to the securities
laws, and for other purposes” http://www.sec.gov/about/laws/soa2002.pdf

http://www.sec.gov/about/laws/soa2002.pdf
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cALC and Intuitionistic Logic

The tautologies of classical logic which do not hold for intuitionistic logic are also not
valid in cALC (see [MS09], p. 213). This can be explained with the lack of information
about an entity. So, for example, we might not be sure if an entity x is an element of
a concept C or if it is not. That is why the expression C(x) t ¬C(x) ≡ > is not a
tautology anymore which means that it is probably not true for all entities x.

We will compare cALC to intuitionistic logic in Section 1.2.3 in detail.

1.2.2. Syntax and Semantics

Syntax

Next, we will have a look at the syntax of cALC. As before, the letters C and D

represent concept descriptions, while A is used for atomic concepts and R for roles.

C,D −→ A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (negation)
C uD | (intersection)
C tD | (union)
C v D | (subsumption)
∀R.C | (value restriction)
∃R.C (full existential quantification)

(see [MS09], p. 211)

It is noteworthy that the subsumption has been added (it has not been part of ALC’s
syntax definition). The reason is that we do not need it in ALC, because we can
substitute it there:

C v D ⇐⇒ ¬C tD

This is not possible in cALC, because now, these operators are independent from each
other. The subsumption is now denoted to be a “concept-forming operator”. Anyway,
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> can still be written as ¬⊥ and the negation ¬ and the bottom concept ⊥ can still
be represented by each other thus ([MS09], p. 211):

⊥ = A u ¬A and ¬C = C v ⊥

The Refinement Relation

Further, we have the new refinement relation expressed by the symbol �. It is used
on entities. The term entity is now used instead of individual, because in contrast to
individuals, entities are abstract or “partially defined”, i.e. they do not contain the
amount of information, an individual (which represents real objects) usually contains
(see [MS09], p. 211).

The expression a � b points out that the entity b is more concrete or at least as concrete
as the entity a. In other words, b carries at least the same amount of information as a.
We say, that b refines a. This relation is reflexive6. However, if a � b and b � a, then
both entities need not to be equal. Further, if an entity a is member of a concept C
and a � b, then b must also be a member of the concept C (see [MS09], p. 211).

In our apple-example, the entity apple is more abstract than the harmful apple which
contains more information (the information that it is harmful). Analogous the harmless
apple refines the more abstract one. This can be expressed by the statements

apple � harmful_apple and apple � harmless_apple

Now, the harmless and the harmful apple both contain the same amount of information.
So these statements are true, too7:

harmful_apple � harmless_apple and harmless_apple � harmful_apple

Therefore, both entities have the same amount of information, but obviously, they are
not equal.

6For any reflexive relation R ⊆ A×A we have ∀a ∈ A . (a, a) ∈ R (see [EMGR+01], p. 80).
7These refinement relations are not illustrated in Figure 1.5, because they might have caused confusion
at that point.
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Due to the property of reflexivity, every entity refines itself. Further, the refinement
relation is also transitive8 (see [MS09], p. 211).

Semantics

The original interpretation structure I used by ALC has to be extended for cALC:

I = (∆I ,�I ,⊥I , ·I)

Every part of it has its own function explained in Table 1.3 (see [MS09], p. 211, 212).
The set NC contains all concept names, while the role names are all elements of NR.

∆I A set containing all entities, i.e. abstract or partially defines individuals
�I A transitive and reflexive relation over ∆I

⊥I A set containing the fallible entities; it is a subset of ∆I

·I An interpretation function which maps each role name R ∈ NR to a binary
relation RI ⊆ ∆I ×∆I and each atomic concept A ∈ NC to a set ⊥I ⊆ AI ⊆
∆I

Table 1.3.: Semantic Interpretation Structure of cALC

The refinement relation has already been explained before.

The set of fallible entities can be considered thus:

“Fallible elements b ∈ ⊥I may be thought of as over-constrained tokens
of information, self-contradictory objects of evidence or undefined compu-
tations. [. . . ] Fallible entities are information-wise maximal elements and
therefore included in every concept, i.e., ⊥I ⊆ CI for all C.”

[MS09], p. 212

Let us now look at how the concept descriptions are interpreted semantically. For this,
we use the set ∆Ic for non-fallible entities. It can be defined as ∆I \ ⊥I .

8Transitivity is defined as ∀a, b, c ∈ A . (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R for R ⊆ A × A (see
[EMGR+01], p. 80).
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>I = ∆I

(¬C)I = {x | ∀y ∈ ∆Ic .x �I y ⇒ y /∈ CI}
(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(C v D)I = {x | ∀y ∈ ∆I .(x �I y & y ∈ CI)⇒ y ∈ DI}
(∀R.C)I = {x | ∀y ∈ ∆I .x �I y ⇒ ∀z ∈ ∆I .(y, z) ∈ RI ⇒ z ∈ CI}
(∃R.C)I = {x | ∀y ∈ ∆I .x �I y ⇒ ∃z ∈ ∆I .(y, z) ∈ RI & z ∈ CI}

(see [MS09], p. 212)

In ALC, (¬C)I is defined as ∆I \C. But now, in cALC, this expression is stronger as it
indicates that all of C’s refinements are fallible, too. >, u, t are similar inALC, but the
subsumption C v D now also holds for all refinements of C. Also, the quantifications
to the role-filler C hold for C’s refinements.

An important feature of ⊥I is that for all concepts C, ⊥I ⊆ CI . This can be proved
by induction (see [MS09], p. 230, 231)

1.2.3. Intuitionistic and Constructive Description Logic

cALC and Modal Logic

As we have seen in Section 1.1.6, ALC is similar to the multimodal logic K. For cALC,
there is also such a counterpart called CK (constructive K, see [MdP05]). There is a
CK which has been introduced before by [Wij90] but which is not completely the same
as the CK we will consider here in detail, although it is quite close to it.

Differences Between Constructive and Intuitionistic Logics

Not every axiom that holds in an intuitionistic modal logic, also holds in CK (see
[MS10] p. 2 ff). [PS86] have introduced five axioms which hold in the intuitionistic
modal logic IK. The axioms provided by [FS80] (FS) are similar but with a focus on the
“duality between 2 and 3” ([Sim94], p. 51). Both include all theorems of intuitionistic
propositional logic (IPL) (see [MS10], p. 2). The axioms of IK and FS are listed in
Table 1.4.
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Axioms (IK) Axioms (FS)
All theorems of IPL All theorems of IPL
IK1 : 2(A ⊃ B) ⊃ (2A ⊃ 2B) FS1 : 2>
IK2 : 2(A ⊃ B) ⊃ (3A ⊃ 3B) FS2 : 2(A ∧B) ≡ (2A ∧2B)

IK3 : ¬3⊥ FS3 : ¬3⊥
IK4 : 3(A ∨B) ⊃ (3A ∨3B) FS4 : 3(A ∨B) ≡ (3A ∨3B)

IK5 : (3A ⊃ 2B) ⊃ 2(A ⊃ B) FS5 : (3A ⊃ 2B) ⊃ 2(A ⊃ B)

FS6 : 3(A ⊃ B) ⊃ (2A ⊃ 3B)

Table 1.4.: Axioms for the Intuitionistic Modal Logics IK and FS (see [MS10], p. 2)

Now, [MS10] present several reasons, why not all of these axioms hold in constructive
modal logic. For example the axiom IK4/FS4 is not valid anymore (see p. 2 ff). It
is not so easy to understand why, that is why we will explain it with an illustrative
example.

Example 1.3

Let us suppose that I have a door and two keys which look the very same, so I cannot
distinguish them. A key might be able to open a door, but then it cannot close it (then it
is an o-key). It is also possible that a key closes a door but then it cannot open it (then it
is a c-key). Anyway, I do not know if I have one o-key and one c-key, or if both of my keys
are c-keys or both are o-keys. However, as both of my keys look equal, I assume that they
are both the same type of key.

Our modal operator �put denotes the process of turning one of my keys in the key-hole
of the door. So, no matter which key I take, the formula �put(open ∨ closed) is always
true, because after I have put the key into the key-hole and turned it around, the door
is open or closed.

Now, after putting one of my keys into the key-hole and turning it, I can check if the
door is closed. Let us suppose that it is, then �putclosed is true and �putopen is false.
Still, if I take the other key by mistake (which is an o-key as I cannot distinguish them)
next time and put it into the keyhole, then suddenly �putclosed is not true anymore.
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Although �putopen ∨ �putclosed has been true before my first try, I have made my
decision after putting the c-key into the key-hole for the first time.

The modal operator �put has been dissolved and �putclosed is assumed to be true, but
in reality, it is not because I have not tested both keys. So, the formula

�put(open ∨ closed) ⊃ (�putopen ∨ �putclosed)

is not true in CK.

The axioms IK3/FS3 and IK5/FS5 do not hold in CK either (see [MS10], p. 2 ff). The
set of axioms is reduced, so that only the following remain and these are valid for
constructive issues:

Axioms (CK-1) Axioms (CK-2)
All theorems of IPL All theorems of IPL
IK1 : 2(A ⊃ B) ⊃ (2A ⊃ 2B) FS1 : 2>
IK2 : 2(A ⊃ B) ⊃ (3A ⊃ 3B) FS2 : 2(A ∧B) ≡ (2A ∧2B)

FS6 : 3(A ⊃ B) ⊃ (2A ⊃ 3B)

Table 1.5.: Axioms for the Constructive Modal Logic CK (see [MS10], p. 4)

Back to Description Logic

So because CK is related to cALC, the axioms might simply be converted syntactically.
IK3, IK4, IK5 and also their counterparts FS3, FS4 and FS5 can be refuted by the
tableau proofing systems introduced by [MS09], while the remaining axioms hold.

So, there are axioms from intuitionistic logic which are not valid in constructive logic,
whereas there are also classical axioms which do not hold in intuitionistic and therefore
also not in constructive logic. Table 1.6 gives an overview of some of these tautologies
(see [MS09], p. 217).

Excluded Middle C t ¬C = >
Double Negation ¬¬C = C

Dualities ∃R.C = ¬∀R.¬C
∀R.C = ¬∃R.¬C

Table 1.6.: Axioms which are valid in Classical but not in Intuitionistic Logics
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1.2.4. Inference

Let us now look at the properties of satisfiability and subsumption in cALC. They are
slightly different to the associated notions of ALC. In addition, we have to consider
the fallible entities, too.

To be able to cope with these in a simple tableau calculus, the ABox is not enough
anymore. So, a constraint system is introduced.

Constraints

Constraints are used for a tableau algorithm which is explained in the next section. A
constraint can be written as one of these expressions:

x : +C, x : −C, xRy, x � x′, x : −RD

The letters x, x′ and y represent entities, while C and D are used for concept descrip-
tions and R ∈ NR for role names again (see [Sch]). The meanings of the different
constraint types are explained in Table 1.7 (see [Sch]).

x : +C For the entity x the concept C is true, i.e. x ∈ CI

x : −C For the entity x the concept C is false, i.e. x /∈ CI

xRy There is a role relation R between the entities x and y
x � x′ The entity x′ refines the entity x
x : −RD For all constructible R-successors of the entity x, D is false

Table 1.7.: Constraint System for cALC

Right now, only the first two rows of the table are interesting. We will talk about the
others later.

Now the question occurs, why we need a constraint like x : −C, because it might be
enough to deal with negated concepts ¬C instead.
Well, it is important to know, that x : +(¬C) does not express the same as x : −C.
As we have seen in the definition of the semantics in Section 1.2.2, (¬C)I represents
all entities which are not element of CI including their refining entities. So x : +(¬C)

means that the entity x is not element of CI , but all of x’s refinements are not element
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of CI either. On the other hand, x : −C does not say anything about the refinements
of x. We only know that x /∈ CI and that x : +(¬C) implies x : −C, but not vice versa
(see [Sch]).

Constraint System

For the next steps, we first need to know what a constraint system is. [Sch] provides
the following definition:

“A constraint system is a pair S = (C,A) where C is a finite, non-empty set
of constraints and the second component A ⊆ V [with V being an alphabet
of variable symbols,] is a set of variables, called the active set of S, such that
every element of A occurs in at least one of the constraints from C. The set
of variables occuring in C is called the support of S, written Supp(S). Note
that A ⊆ Supp(S) and Supp(S) is not empty.”

Constraint Satisfiability and Subsumption

Let us now consider satisfiability9.

An entity x is said to satisfy a concept C in an interpretation I, if and only if x ∈ CI .
In [MS09], the validity relation |= is used to express the same thing: I;x |= C (see
[MS09], p. 212).

Further, I is said to be a model of C, written I |= C, if and only if all possible entities
x ∈ ∆I satisfy the concept C (see [MS09], p. 212).

[Sch] defines the constraint satisfiability thus:

“Let I be an interpretation. An I-assignment is a valuation function α

mapping each variable symbol x ∈ V to an element of ∆I . We say that α

9General satisfiability, subsumption, disjointness and equivalence with respect to a given TBox for
cALC are not explained here because we will concentrate on proofs based on constraint systems.
They are covered by [MS09].
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satisfies a constraint w in I, written I;α |= w, according to the following
rules:

I;α |= x : +C if α(x) ∈ CI ,

I;α |= x : −C if α(x) /∈ CI ,

I;α |= xRy if (α(x), α(y)) ∈ RI ,

I;α |= x � x′ if (α(x), α(x′)) ∈�I

I;α |= x : −RD if ∀z ∈ ∆I .(α(x), z) ∈ RI ⇒ z /∈ DI .

A constraint system S = (C,A) is satisfied by an interpretation I and an
I-assignment α if for all w ∈ C it holds that I;α |= w and for all variables
x ∈ A the assignment α(x) is infallible, i.e., α(x) /∈ ⊥I . We call the pair
(I, α) a model of S. A constraint system S is satisfiable if it has a model.”

For a concrete concept C, this means that

“C is satisfiable (w.r.t. the empty TBox) [if and only if] the constraint
system S = ({x : +C, x : −⊥}, {x}) is satisfiable”

The subsumption is defined analogously:

“A concept C is subsumed by a concept D (w.r.t. the empty TBox) [if and
only if] the constraint system S = ({x : +C, x : −D}, {x}) is not satisfiable”

This reminds us of the subsumption for ALC, but now, we do not have ¬D(x), instead,
D is enveloped by a negative constraint. The corresponding proofs are provided by
[Sch] and are not discussed here.

1.2.5. Tableau-Based Proofs for cALC

Now we consider a proving technique introduced by [Sch], that is based on constraint
systems.

Rules

Similar to the tableau algorithm by [SSS91], this calculus comes with a set of rules.
However, now we have two different sets: one handles positive constraints (x : +C)
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while the other copes with negative ones (x : −C). In addition, we have rules for re-
finements, for −R-constraints, one special rule for ⊥ and rules for implication, because,
as mentioned before, in cALC, the implication is a concept-forming operator ([MS09],
p. 211). All rules are listed in Figure 1.6. Note that [Sch] uses the symbol ⊃ for the
implication instead of v.

To understand the actions and preconditions, we have to explain some terms (see
[Sch]):

• As mentioned before, a R-successor y of an entity x is a role-filler y in our
constraint system S. Such a relation between two entities x and y is expressed
by the constraint xRy. So, y is a R-successor of x if xRy ∈ C.

• x′ is a �∗-successor of x if x � x′ ∈ C. Since the refinement-relation is reflexive,
all entities refine themselves, too.

• If we want to exclude those self-refinements, we talk about �+-successors. In
other words: x′ is a �+-successor of x if and only if x′ is a �∗-successor of x and
x 6= x′ ([Sch]).

Saturation and Clashes

“A constraint system S = (C,A) is called saturated if no completion rule is
applicable to it. A saturated constraint system S∗ with S∗ ⊇ S is called a
saturation of S.”

[Sch]

This is similar to the completeness of the satisfiability algorithm for ALC. By contrast,
a clash detection is achieved differently.

“S contains a clash if for some a ∈ Supp(C) [with Supp(C) being the set of
all variables occuring in C] and arbitrary concept description C one of the
following conditions holds:

1. a ∈ A and a : +C and a : −C is in C;
2. a ∈ A and a : +⊥ is in C;
3. a ∈ A and a : +⊥ and a : −C is in C;
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(→¬−) S = (C,A) →¬− S′ = ({x � x′, x′ : +C} ∪ C,A ∪ {x′})
if for some x ∈ A, x : −¬C is in C, x′ is a new variable and there exists no �+-successor x′′ of x
in S, with x′′ : +C ∈ C.

(→¬+) S = (C,A) →¬+ S′ = ({x : −C} ∪ C,A)
if for some x ∈ A, x : +¬C is in C and x : −C is not in C.

(→u+) S = (C,A) →u+ S′ = ({x : +C, x : +D} ∪ C,A)
if for some x ∈ A, x : +C uD is in C and C does not contain both x : +C and x : +D.

(→u−) S = (C,A) →u− S′ = ({x : E} ∪ C,A); for E = −C or E = −D
if for some x ∈ A, x : −C uD is in C and neither x : −C nor x : −D is in C.

(→t+) S = (C,A) →t+ S′ = ({x : E} ∪ C,A); for E = +C or E = +D

if for some x ∈ A, x : +C tD is in C and neither x : +C nor x : +D is in C.

(→t−) S = (C,A) →t− S′ = ({x : −C, x : −D} ∪ C,A)
if for some x ∈ A, x : −C tD is in C and x : −C, x : −D are not both in C.

(→⊃+) S = (C,A) →⊃+ S′ = ({x : E} ∪ C,A); for E = −C or E = +D

if for some x ∈ A, x : +C ⊃ D is in C, and neither x : −C nor x : +D is in C.

(→⊃−) S = (C,A) →⊃− S′ = ({x � x′, x′ : +C, x′ : −D} ∪ C,A ∪ {x′})
if for some x ∈ A, x : −C ⊃ D is in C, x′ is a new variable and there exists no �∗-successor x′′ of
x in S, with x′′ : +C, x′′ : −D in C.

(→∀+) S = (C,A) →∀+ S′ = ({y : +C} ∪ C,A)
if for some x ∈ A, x : +∀R.C is in C and there exists a R-successor y of x in S with y ∈ A and
y : +C is not in C.

(→∀−) S = (C,A) →∀− S′ = ({x � x′, x′Ry, y : −D} ∪ C,A ∪ {x′, y})
if x : −∀R.D is in C, x′, y are new variables and there exists no �∗-successor x′′ of x and R-successor
y′′ of x′′ in S, with y′′ : −D in C.

(→∃+) S = (C,A) →∃+ S′ = ({xRy, y : +C} ∪ C,A)
if for some x ∈ A, x : +∃R.C is in C, y is a new variable and there is no R-successor z of x in S
such that z : +C is in C.

(→∃−) S = (C,A) →∃− S′ = ({x � x′, x′ : −RD} ∪ C,A ∪ {x′})
if for some x ∈ A, x : −∃R.D is in C, x′ is a new variable and there exists no �∗-successor x′′ of x
in S such that x′′ : −RD is in C.

(→R−) S = (C,A) →�− S′ = ({y : −D} ∪ C,A ∪ {y})
if for some x ∈ A, x : −RD is in C, there exists a R-successor y of x in S such that y : −D is not
in C.

(→�+) S = (C,A) →�+ S′ = ({x′ : +C} ∪ C,A)
if for some x, x : +C is in C and x′ is a �+-successor of x in S and x′ : +C is not in C.

(→R⊥+) S = (C,A) →R⊥+ S′ = ({y : +⊥} ∪ C,A)
if for some x, x : +⊥ is in C and y is a R-successor of x in S and y : +⊥ is not in C.

Figure 1.6.: Completion Rules of the Constraint Calculus for cALC ([Sch])
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If S contains no clash it is called clash-free. [. . . ] If a constraint system
contains a clash, then it is not satisfiable.”

[Sch]

The other way round, this means that a constraint system is satisfiable if it is saturated
and clash-free.

So, we now have to check if there are any positive ⊥s or if we have the same concept
description C in a positive and a negative constraint regarding the same active entity.

[Sch] provides proofs for satisfiability and subsumption and also for the correctness of
the algorithm. We will not consider these here because this would go beyond the scope
of this work.

Running the Algorithm

We start the algorithm with a new constraint system S0 = (C0,A0). We first introduce
an initial abstract entity x that we put into the (previously empty) active set, so
A0 = {x}.

C0 contains our initial constraints. If we want to check satisfiability for a concept
description C, we add the constraints x : +C and x : −⊥ to C and begin to apply rules.
As soon as S is satisfied and clash-free, C is proved to be satisfiable (see [Sch]).

For proving a subsumption C v D, we add the two constraints x : +C and x : −D to
an empty C and try to lead S to a clashing system, i.e. a system containing clashes for
each alternative (see [Sch]).

Example

It is time to see the algorithm in action: Let us consider IK2 in Description Logic.

∀R.(A v B) v (∃R.A v ∃R.B)



42 1. Introduction to Description Logic

We want to show that this axiom is always true in cALC. For this, we begin with
generating an initial constraint system S0 = (C0,A0) with

C0 = {x : +∀R.(A v B), x : −∃R.A v ∃R.B}

and A0 = {x}. This first state is illustrated in Figure 1.7 (on page 44). Entities that
are elements of the active set are represented by yellow rectangles. On the left side, we
have the positive constraints (x : +C) and on the right side the negative ones (x : −C)
and the −R-constraints (x : −RD).

Now, on the left side, we have a value restriction. However, we cannot apply (→∀+)

because we do not have an active R-successor. On the right side we have a subsumption.
The conditions for (→⊃−) hold, so let us apply it. We get S1 = (C1,A) with

C1 = C0 ∪ {x � x′, x′ : +∃R.A, x′ : −∃R.B} A1 = A0 ∪ {x′}

So, we now have a �+-successor x′ of x. As we know, if an expression is true for
an arbitrary entity x, then it is also true for all of its refinements, i.e. all of x’s �∗-
successors. For our example, this means that ∀R.(A v B) must be true for x′ either.
The rule (→�+) moves a positive constraint of an entity to a direct �+-successor. So
let us apply it to x : +∀R.(A v B). We get S2 = (C2,A2) with

C2 = C1 ∪ {x′ : ∀R.(A v B)} A2 = A1

The new state is illustrated in Figure 1.8. Note that refinement relations between two
entities are displayed by dotted arrows.

Now we have two possibilities. Either we apply (→∃+) to x′ : +∃R.A or (→∃−) to
x : −∃R.B. Let us try the first one. We generate a R-successor y of x′ and obtain
S3 = (C3,A3) with

C3 = C2 ∪ {x′Ry, y : +A} A3 = A2

This might become a problem: y is not element of the active set. To be more concrete,
this means that we now have a R-successor of x′, so at first sight it might be possible
to apply (→∀+) to x′ : +∀(A v B), but another condition is that the R-successor must
be an element of the active set. So this is a dead-end.
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Now let us apply (→∃−) to x′ : −∃R.B. We then have S4 = (C4,A4) with

C4 = C3 ∪ {x′ � x′′, x′′ : −RB} A4 = A3 ∪ {x′′}

So, as we have the new �+-successor x′′ of x′, we can move the positive constraints
from x′ to x′′ by applying rule (→�+) twice. We then have S5 = (C5,A5) with

C5 = C4 ∪ {x′′ : +∃R.A, x′′ : +∀R.(A v B)} A5 = A4

Now, the only possibility we have is to apply rule (→∃+) to x′′ : +∃R.A. This will
generate an inactive R-successor again. Let us call it z. Our new constraint system
S6 = (C6,A6) is illustrated in Figure 1.9. Role-relations are displayed by solid arrows,
while entities that are not listed in A are denoted by grey rectangles. We have

C6 = C5 ∪ {x′′Rz, z : +A} A6 = A5

But now, as we have a new R-successor of x′′, we can apply (→R−). And this rule has
the side-effect that it activates the R-successor. We obtain S7 = (C7,A7) with

C7 = C6 ∪ {z : −B} A7 = A6 ∪ {z}

As z is now a member of the active set, we can finally apply (→∀+) in x′′. We get
S8 = (C8,A8) with

C8 = C7 ∪ {z : +A v B} A8 = A7

The only possible way to continue is to apply (→⊃+) to z : +A v B. The result contains
two different constraint systems. Let us call them S9 and S ′9 with S9 = (C9,A9) and
S ′9 = (C ′9,A′9) where

C9 = C8 ∪ {z : −A} C ′9 = C8 ∪ {z : +B} A9 = A′9 = A8

Both constraint systems, S9 and S ′9, are saturated, i.e. we are not able to apply any
more rules. Entity z is illustrated in Figure 1.10 in both alternatives and we see that
they both contain clashes (underlined constraints). Therefore, shown by refutation, we
know that ∀R.(A v B) v (∃R.A v ∃R.B) is valid in cALC.
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xx : +∀R.(A v B) x : −∃R.A v ∃R.B

Figure 1.7.: The First Step of Proving IK2 in cALC

x

x′

x : +∀R.(A v B) x : −∃R.A v ∃R.B

x′ : +∃R.A x : +∀R.(A v B) x′ : −∃R.B

Figure 1.8.: A cALC-Tableau after Applying two Rules

x

x′

y

R

x′′

z

R

x : +∀R.(A v B) x : −∃R.A v ∃R.B

x′ : +∃R.A x′ : +∀R.(A v B) x′ : −∃R.B

y : −A x′′ : +∃R.A x′′ : +∀R.(A v B) x′′ : −RB

z : +A

Figure 1.9.: A cALC-Tableau with two Inactive Entities

zz : +A z : +A v B z : −B z : −A

zz : +B z : +A z : +A v B z : −B

Figure 1.10.: The same Entity with different Constraints
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1.2.6. Summary

Here are again the most important issues about the constrictive Description Logic
cALC:

• Constructiveness is needed when dealing with incomplete or dynamic knowledge.

• Constructive logics are similar to intuitionistic logics but even more restrictive.

• The constructive Description Logic cALC has a modal counterpart, CK.

• We use refinement-relations that are transitive and reflexive to express an increase
of information from one entity to another one in cALC.

• The tableau-algorithm for cALC introduced by [Sch] performs inferences on ABoxes
making use of constraint systems.





2
A Game-Theoretic

Decision Procedure

Let us now deal with dialogical games.

Dialogical Logic as we consider it here has been introduced by Paul Lorenzen and
Kuno Lorenz as a method to decide about the validity of logical formulæ, especially in
intuitionistic logic. The idea behind this procedure is that two players battle against
each other in a logical way (see [RK05], p. 360; [Kei09]).

In this chapter, we first look at how dialogical logic works for first-order logics. We will
then extend the underlying rules step by step until we have a decision procedure for
cALC that can be used as an alternative to tableau-based reasoning.

2.1. Introduction to Dialogical Games for First-Order
Logics

This section gives a short introduction to dialogical logic. Let us move away from
Description Logic for a while: after looking at the general idea behind dialogical logic,
we will consider intuitionistic and classical first-order logic in that dialogical way.
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2.1.1. Why and How?

Why Dialogues?

Dialogical Logic is related to argumentations between two parties. Several kinds of
logics can be transformed to dialogical rules in order to specify their semantics. These
rules vary from logic to logic. New logics have also been invented by altering rules. For
example, classical logic uses slightly different rules as intuitionistic logic. Eventually, a
way is given to check validity of logical formulæ, in other words: we can use dialogues
to prove the truth (or the falsity) of an expression (see [RK05], p. 362; [Kei09]).

There are several fields of application where Dialogical Logic can be used. Regarding
the set of rules, one could reveal possible relations to other logics. Another appli-
cation can be found in the area of artificial intelligence, for example when trying to
design multi-agent systems where both logic and games theories are applied (see [RK05],
p. 362).

Principle

When we consider an ordered dialogue, we probably think about a sequence of argu-
ments. First, an agent (maybe a person) P (let us call him Peter) makes an assertion.
Talking to his friend O (Olga), who is not in line with him, leads to an attack against
Peter’s assertion. O gives a new argument, so P now has the choice: either he coun-
terattacks Olga’s argument or he defends his own assertion (see [RK05], p. 364). In
this way, both can go on until they realize that one of them is not right. Finally, they
might come to the result that Peter’s assertion was either right or wrong.

In Dialogical Logic, the two parties can attack or defend a given formula, depending on
the underlying argumentation rules. In any case, the parties are not allowed to argue
in a jumbled way. The discussion flow is also bound to special rules. We will consider
these later.
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Language and Expressions

For now, we talk about classical and intuitionistic first-order logic. We use a language
LFOL based on this. An expression of this language can be (see definition given by
[Kei09]):

• any first-order formula
(with the connectives ∧, ∨, →, ¬ and the quantifiers ∀ and ∃)

• the symbols L, R, ∨, ∀x/c, ∃x
where x represents a variable and c a constant of our language

A dialogically signed expression has the form 〈X, f, e〉 with

• X being a label O or P representing one of the two players

• f being a force symbol ? or !

• e being an expression, e.g. ∀x(A(x) ∨ ¬A(x))

Regarding the players, the label P is used for Proponent, while O means Opponent. The
force symbol ? depicts an attack of an disputant’s argument and ! is used to indicate
a defence.
The variables X and Y , representing the players, are elements of the set {O,P}; in
addition, because we talk about two different agents battling each other, we assume
that X 6= Y (see [RK05], p. 363; [Kei09]).

So eventually, the signed expression 〈X, f, e〉 indicates that the player X performs the
action f (which is ? or !) with a given expression e. From now on, we will omit the
brackets and write X-f -e instead (see [Kei09]).

2.1.2. Rules

There are two different sets of rules with different functions. On the one hand we have
particle rules which define how a given formula can be attacked and how to defend a
formula against a specific attack. On the other, there are structural rules which handle
the “organisation” of a game (see [RK05], p. 364, 367). We will now look at these two
kinds of rules in detail.
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Particle Rules

Particle rules define which attacking and defending actions can be performed depending
on the primary connective or quantification of the corresponding formula. They are said
to “state the local semantics”, because they “show how the game runs locally” ([RK05],
p. 364), i.e. particle rules are applied independently from the rest of the dialogue
(see [Kei09]).

Table 2.1 gives an overview of the different rules. The row Assert indicates the structure
of a given signed expression, where the letters A and B represent arbitrary first-order-
formulæ. The second row then shows the possible attack(s) and the last how to defend
against such an attack.

∧ ∨ ¬
Assert X-!-A ∧B X-!-A ∨B X-!-¬A
Attack Y -?-L or Y -?-R Y -?-∨ Y -!-A

Defend X-!-A resp. X-!-B X-!-A or X-!-B —

→ ∀ ∃
Assert X-!-A→ B X-!-∀xA X-!-∃xA
Attack Y -!-A Y -?-∀x/c† Y -?-∃
Defend X-!-B X-!-A[x/c] X-!-A[x/c]‡

Table 2.1.: Particle Rules for FOL-Semantics (see [Kei09])

When attacking the formula A ∧ B, Y can choose if he challenges A (i.e. the left side
L of the conjunction) or B (the right side R), because before, player X asserted that
both A and B are true. By contrast, with the expression A ∨B, X asserts that either
A or B (or both) is true. So if Y attacks this formula, then X may choose if he wants
to show that A is true or if he prefers to show that B is true.

Handling the quantifiers is quite similar. If player X asserts a formula ∀x A, then Y
can choose an arbitrary constant c and demand X to show that his assertion is true for
x being replaced by Y ’s c. The other way round, the expression ∃x A indicates that
there must be at least one x, for which A is true, so if Y attacks this, then X may

†for any c that Y chooses
‡for any c that X chooses
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choose the constant c for which he wants to show that A is true (see [RK05], p. 365;
[Kei09]).

Here are two examples:

Assertion P-!-∀x sunShines(x) The sun always shines.
Attack O-?-∀x/today Show me for today!
Defence P-!-sunShines(today) The sun shines today.
Assertion P-!-∃x sunShines(x) There is at least one day, when the sun shines.
Attack O-?-∃ Show me!
Defence P-!-sunShines(today) The sun shines today.

In both examples, our constant is the term today. In the first, O chooses the day, later
P does.

Y attacks negated formulæ by asserting the contrary (i.e. omitting ¬). This is the
only case where no defence is possible. However, with this attack, Y provides a new
assertion which might be counterattacked by X (see [Kei09]):

Assertion P-!-¬(rain(today) ∧ rain(yesterday)) It is not true that it rains to-
day and it rained yesterday

Attack O-!-rain(today) ∧ rain(yesterday) You are wrong! It is true!
Attack P-?-L Show me that it rains today!

Now the implication: the assertion A → B expresses that if A is true, then B is also
true. This expression is correct anyway if A is not true, so Y attacks by asserting A in
order to claim that X is not able to construct a proof showing that B is also true (see
[Kei09]).

An attack and the corresponding defence together form a pair that we call a round. An
attack opens a round whereas a defence closes it (see [Kei09]).

Note that an atomic formula which is not decomposable (e.g. rain(today)) cannot be
attacked. We call such expressions prime formulæ.
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Structural Rules

Structural rules provide a set of guidelines about the “general organisation of the game”
([RK05], p. 367) or the “global semantics” ([Kei09]). With other rules we follow other
aims, for example (as mentioned before), intuitionistic logic uses slightly different rules
than classical logic. Here, we will concentrate on rules which make it possible to check
validity of logical formulæ.

In this case, we assume that the first player is P whose initial assertion is called thesis,
while all following actions are namedmoves (‘P moves ’ are performed by the proponent,
while ‘O moves ’ are done by the opponent). P now tries to prove this first statement,
whereas O tries to refute it. O starts by attacking P’s thesis (first move). If P finds a
way to win the game, no matter how O performs his moves (e.g. which constants he
chooses in attacks), the thesis is correct ([Kei09]).

A dialogical game is defined to be a sequence of dialogical signed expressions X-f -e. A
dialogue is a set of such dialogical games. It has the structure of a tree with the root
containing several premises and P’s thesis. Every decision about the next move which
is made by O in the game, generates a new branch of the tree. For now, P’s moves will
not create any new branches (see [Kei09]).

A new branch is generated in these cases (see [Kei09]):

• O attacks a conjunction (selecting L or R)

Assertion P-!-A ∧B
Attack O-?-L or O-?-R

• O defends a disjunction

Assertion O-!-A ∨B
Attack P-?-∨
Defence O-!-A or O-!-B

• O has the choice of either defending an assertion against an attack performed by
P or counterattacking P’s attack:

Assertion O-!-(A ∨B)→ C

Attack P-!-A ∨B
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Defence or Attack O-!-C or O-?-∨

A strategy can be understood as a function of commands telling a player what to do in
the next step depending on all moves which have been done in the game. If P has a
strategy which makes him win all games of a dialogue, then his strategy is a winning
strategy (see [Kei09]).

So let us now look at the different structural rules. We concentrate on the rules which
make the dialogues test validity. There are also other possibilities, for example regarding
persuasion instead of validity (see [RK05], p.371). To keep the rules correct and simple,
only the following “asymmetric rules” are presented where we assume that “O makes
the best possible move” ([RK05], p. 372).

The first rule only makes clear, inter alia, that P introduces the thesis and that a Pmove
is followed by an O move and vice versa.

(SR-ST0) (starting rule): “Expressions are numbered and alternately uttered by
P and O. The thesis is uttered by P. All even numbered expressions including the thesis
are P-labelled, all odd numbered expressions are O moves. Every move below the thesis
is a reaction to an earlier move with another player label and performed according to the
particle and the other structural rules.”

[RK05], p. 372

The next rule gives definitions for the terms closed, open and finished and specifies under
which conditions a player wins the dialogue. These definitions evoke the presented
tableaux for the description logics ALC and cALC.

(SR-ST1)1 (winning rule): “A [dialogical game] is closed [if and only if] it contains two
copies of the same prime formula, one stated by X and the other one by Y , and neither of
these copies occurs within the brackets ’<’ and ’>’ (where any expression which has been
bracketed between these signs in a [dialogical game] either cannot be counterattacked in
this [game], or it has been chosen in this [game] not to be counterattacked). Otherwise it
is open. The player who stated the thesis wins the [game] [if and only if] the [dialogical
game] is closed. A [game] is finished if it is closed or if no other move is allowed by the
(other) structural and particle rules of the game. The player who started the dialogue
as a challenger wins if the [dialogical game] is finished and open.”

[RK05], p. 372

1In [RK05] the term “dialogical game” is not used, whereas it is in [Kei09], so some rules have been
slightly adjusted. Note that we sometimes write “game” instead of “dialogical game” what means
the same.
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Well, the formulation for this rule is quite confusing because, according to the particle
rules, a prime formula can never be attacked. So, it is not clear in which cases the
brackets ‘<’ and ‘>’ appear. As prime formulæ cannot be counterattacked anyway, it
seems that they always has to be bracketed, what does not make much sense.

Omitting the part with those brackets does not improve it. It would be possible to
prove formulæ like (A → B) → (A → C), but of course, this is nonsense (we will
consider the dialogue for this example at the end of Section 2.1.3).

So let us reformulate that rule and replace the old one by this:

(SR-ST1) (altered winning rule): A dialogical game is closed if and only if it contains
two copies of the same prime formula, one stated byX and the other one by Y . Otherwise
it is open. A dialogical game is finished if no other move is allowed by the (other)
structural and particle rules of the game. The player who stated the thesis wins the
game if and only if it is closed and finished and the last move of the game has been
performed by this player. The player who started the dialogue as a challenger wins if the
game is finished and if he/she has performed the last move of the game.

So far, the rules are applicable for classical and intuitionistic logic. Next, we have to
introduce two different rules depending on the logic we use. Here we define when we are
allowed to attack and defend (independently of the particle rules). Regarding defence,
the intuitionistic version is much stricter than the classical one. In later examples, we
will see why.

(SR-ST2I) (intuitionist ROUND closing rule): “In any move, each player may
attack a (complex) formula asserted by his partner or he may defend himself against the
last not already defended attack. Defences may be postponed as long as attacks can be
performed. Only the latest open attack may be answered: if it is X’s turn at position n
and there are two open attacks m, l such that m < l < n, then X may not at position n
defend himself against m.”

(SR-ST2C) (classical ROUND closing rule): “In any move, each player may attack
a (complex) formula asserted by his partner or he may defend himself against any attack
(including those which have already been defended).”

[RK05], p. 372

The next rule states that only O may create new branches in the dialogue and under
which conditions this happens.

(SR-ST3) (strategy branching rule): “At every propositional choice (i.e., when O de-
fends a disjunction, reacts to the attack against a conditional or attacks a conjunction),
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O will motivate the generation of two [dialogical games] differentiated only by the ex-
pressions produced by the choice. O will move into a second [dialogical game] [if and
only if] he loses the first chosen one. No other move will generate new [games].”

[RK05], p. 372

Restrictions on prime formulæ: P is not allowed to introduce them, because O would
not be able to attack them, so P would win too easily.

(SR-ST4) (formal use of prime formulæ): “P cannot introduce prime formulæ:
any prime formula must be stated by O first. Prime formulæ can not be attacked.”

[RK05], p. 373

Last but not least, there is a rule for repetitions. If repeating a particle rule on a
specific expression was allowed unrestrictedly, the dialogue would probably never end
(see [RK05], p. 369). Again, we have an intuitionist and a classical version:

(SR-ST5C) (classical no delaying tactics rule): “P may perform once a new de-
fence (attack) of an existential (universal) quantifier using a different constant (but not
new) [if and only if] the first defence (attack) compelled P to introduce a new constant.
No other repetitions are allowed.”

(SR-ST5I) (intuitionist no delaying tactics rule): “P may perform a repetition of
an attack if and only if O has introduced a new prime formula which can now be used
by P.”

(rule split; original rule (SR-ST5) from [RK05], p. 373)

Eventually, the complete dialogue has the form of a tableau. With the definitions
provided by the rules, we can use dialogues to check the validity of a logical for-
mula given by the proponent. So, if the dialogue is started by him with his thesis
to be proved, this thesis is valid if the resulting dialogue/tableau is closed (see [RK05],
p. 373).

2.1.3. Some Examples

To make it clearer how dialogical logics work, some examples are provided here.

In these examples the dialogues are presented in tables with the opponent and the
proponent having their own columns. The right sub-column, where each belongs to a
player, shows an assertion, i.e. a thesis, an attack or a defence. The left sub-column
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indicates if the corresponding move is an attack or a defence and which assertion it
refers to. For example ‘?1’ denotes that the expression in the right sub-column is an
attack referring to the rival’s assertion in row 1, whereas ‘!2’ means that in this move,
the player defends his own assertion against the rival’s attack in row 2.

The Excluded Third

As already explained in Section 1.2.1, the formula A∨¬A is valid in classical but not in
intuitionistic logic. We will see both variants here2 but let us begin with the classical
one:

O P

1 P - ! - A ∨ ¬A
2 ?1 O - ? - ∨ !2 P - ! - ¬A
3 ?2 O - ! - A !3 P - ! - A

Table 2.2.: The Excluded Third in a Classical Dialogue

1. P starts with his assertion which shall be proved to be true. Then it is O’s turn.

2. Everything she can do is to attack the thesis, i.e. attack the ∨. One might think
that P may choose if he defends the thesis with A or ¬A. But that is not really
true, because according to rule SR-ST4 it is not allowed for the proponent to
introduce prime formulæ unless they have been stated by the opponent before.
So P may only defend with ¬A.

3. O attacks the negation. This is her ‘mistake’, because now O has stated A which
is a prime formula. P may defend the thesis again because the rule SR-ST2C
allows this.
The same prime formula A has now been stated by both the proponent and the
opponent. According to the winning rule (SR-ST1), the dialogical game is closed
and P is the winner. As O is not able to backtrack (see next example), this makes
the assertion to be valid in classical logic.

As we know, the statement A ∨ ¬A is not valid in intuitionistic logic. This is the
game:

2This example with its explanations is adapted from [RK05], p. 370, 371.



2.1. Introduction to Dialogical Games for First-Order Logics 57

O P

1 P - ! - A ∨ ¬A
2 ?1 O - ? - ∨ !2 P - ! - ¬A
3 ?2 O - ! - A —

Table 2.3.: The Excluded Third in an Intuitionist Dialogue

Instead of rule SR-ST2C we now have to obey SR-ST2I. It is not allowed to defend
the same formula twice. Generally, it is only possible to defend “the last not already
defended attack”. No further moves are possible, so the dialogue is finished and open
and therefore O wins the game (SR-ST1). The formula is not valid in intuitionistic
logic.

Backtracking

This example3 shows what happens if O loses a game but is able to retry.

O P

1 P - ! - (A ∨B)→ A

2 ?1 O - ! - A ∨B ?2 P - ? - ∨
3 !2 O - ! - A !2 P - ! - A
3’ !2 O - ! - B —

Table 2.4.: The Opponent Tracks Back

This is the explanation:

1. The proponent announces his thesis (A ∨B)→ A.

2. O attacks the thesis by claiming that A ∨ B is true. P cannot defend the thesis
because A is a prime formula which has not been stated by O yet (SR-ST4), so
P counterattacks by doubting O’s assertion.

3. O defends her assertion of row 2. She selects the left side A. P is now allowed to
defend the thesis and claims A. So the game is closed and therefore O seems to
have lost, but . . .

3adapted from [Kei09]
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1

2

3 3’
x

P-!-(A ∨B)→ A

O-!-A ∨B P-?-∨

O-!-A P-!-A O-!-B —

Figure 2.1.: Illustration of a Dialogue

3’. . . . because O has defended a disjunction, a second dialogical game has been gen-
erated (indicated by the prime (’) after the row number) and O is now allowed
to move to this (SR-ST3). That is why she may defend her assertion of row 2
once more. P is not able to counterattack this and loses the game.

So because the complete dialogue could not be closed but only one of the branches,
the formula (A ∨B)→ A is not valid. The structure of the dialogue tree is illustrated
in Figure 2.1. Each line in the dialogue-table is represented by a node. O moves are
written to the left of these nodes and P moves to the right. The x marks the branched
game which is closed.

Closed and Not Finished

This last examples shows that it is not enough for P to win a game if it is just closed.
As stated before, the formula (A→ B)→ (A→ C) is not valid (if you do not believe
this, you can check this for example with a calculus for logical proofs like the Fitch
Calculus4).

O P

1 P - ! - (A→ B)→ (A→ C)

2 ?1 O - ! - A→ B !2 P - ! - A→ C

3 ?2 O - ! - A ?2 P - ! - A
Table 2.5.: Closed but Unfinished Dialogue

Here, P closes the game with a counterattack against A→ B, so the prime formula A
is stated by both P and O. However, the game is not won by P because O may still
answer with a defence and after that, P is not able to move further:

4The Fitch Calculus is described and explained in [BE99].
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O P

1 P - ! - (A→ B)→ (A→ C)

2 ?1 O - ! - A→ B !2 P - ! - A→ C

3 ?2 O - ! - A ?2 P - ! - A
4 !3 O - ! - B —

2.1.4. Summary

This was a short introduction to Dialogical Logic. Here are the most important issues
again:

• Dialogical Logic carries semantics in its rules.

• It can be used for different logics. The set of rules merely has to be modified.

• The proponent tries to verify a formula. The opponent tries to refute it.

• Validity of formulæ can be checked with the proponent introducing them as thesis
and winning the games.

• Dialogue-based proofs have similarities to tableau-based proofs.

2.2. Dialogues for the Description Logic ALC

It is now time to extend our game semantics so that we are able to perform game-
theoretic proofs for Description Logics. For now, we restrict our view to the language
ALC. Other extensions might also be possible but are not important here, because
they might not be helpful for our aim which is to find a procedure for cALC.

All explanations are referred to dialogues for modal logic. Because of the close rela-
tionship to ALC and because this work is about Description Logic, these extended
dialogical proofs are presented directly for ALC by using the corresponding syntax and
terminology.
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2.2.1. Aims and Problems

We are looking for a method to create dialogues for ALC. In Description Logics, truth
depends on individuals we are considering at that moment. This is similar to truth in
modal logics, where it depends on a given context or world.

Let us again consider the assertion based on Example 1.1 from page 4:

Crew_Member u ¬Captain

It is a concept description for inferiors and therefore describes a set of individu-
als who are crew members but no captains. For these individuals, the expression
∃comands.Inferior is obviously wrong, while it should be true for all members of the
concept Captain. That is why truth might be considered to be dependent from the
individual we are looking at at the moment we make an assertion.

The tableau-based algorithm by [SSS91] we discussed in Section 1.1.5 refers in each
step to one or several abstract individuals (e.g. x, y, . . . ) of a prototypical ABox A.
It is suggested to do something similar in the dialogues. We start our proofs for the
abstract individual x. After some steps, new (also abstract) individuals are introduced,
as it has been done in the tableau-based proof.

Our aim is to extend the structural rules for first-order logics of Section 2.1 by adding
new rules. The original rules shall remain as they are as far as possible, because the
system should also work with propositional logics, considering them as special cases of
Description Logic, i.e. we then work only with respect to one single individual x and
do not generate new ones (see [RR98], p. 6).

[RR98] have introduced such a dialogical system for different modal logics. As we use
the term individual, they talk about ‘Dialogkontexte’ (dialogue contexts).

2.2.2. Notation

In order to distinguish different abstract individuals, we could use variables as before,
but instead, we now prefer numbers, because it is easier to calculate with them. Our
starting individual receives the number 1 (see [RR98], p. 6). All individuals generated
in 1 then have a higher number, of course.
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Let us define our new language LALC. There are similarities to LFOL. An expression
of this new language can be:

• any concept description
A, C uD, C tD, C v D, ¬C, ∀r.C or ∃r.C
with A being an atomic concept, C and D being arbitrary concept descriptions
(including atomic concepts) and r being an arbitrary role (from now on, we use
r for roles instead of R which is still the counterpart of L)

• the symbols L, R, t, ∀r, ∃r
where r represents a role.

For now, we write Au¬A for ⊥ and ¬(Au¬A) for >, so we do not need these symbols
in our language. Of course, when dealing with classical description logic, we can also
write A t ¬A for >.

A dialogically signed expression has the form 〈X, f, e, i〉 with

• X being a label O or P representing one of the two players

• f being a force symbol ? or !

• e being an expression, e.g. ∀r.(C t ¬C)

• i being an individual

Of course ∀r and ∃r are different from ∀x and ∃x of first-order logic. However, we do
not need the first-order versions in Description Logic, so we can replace them. But as
we will see later, there are also similarities between the descriptive and the first-order
version of ∀ and ∃.

When using abstract individuals, we let i be a number such that i ∈ Z+5. If we are
applying a certain ABox, it might be reasonable to let i be a string representing the
individual as it is defined in the ABox.

Note that [RR98] use their context numbers in a different way. They do not attach
the number to a move but mark the change of a context by a separating line in their
dialogue tables. Adding the number to a move (i.e. attaching it to an expression) is
similar to the notations of hybrid logic which is a variant of modal logic. There, each

5Z+ is the set of all positive integers.
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expression refers to a certain world in which the formula is true (see [Bla01]). For
example the statement

@12(A ∨B)

expresses that in world number 1, the assertion 2(A ∨B) is true and therefore, A ∨B
is true for all of 1’s successors.6

Regarding Description Logic, it seems to make more sense to use such a hybrid notation
representing our individuals than context switches as [RR98] use them. Due to the
ABox in Description Logic, a reference to a certain individual is always given. That is
why we add our individual number or name i to the move information.

As before, X and Y are variables which represent the players, where X 6= Y . The sym-
bol ? is used for attacks and ! for defences. We write X-f -e-i instead of 〈X, f, e, i〉.

2.2.3. Rules

Particle Rules

The particle rules for ALC do not vary much from those of first-order logic, except for
the quantification. [Kei09] uses a similar notation for modal dialogic.

u t ¬
Assert X - ! - C uD - i X - ! - C tD - i X - ! - ¬C - i
Attack Y - ? - L - i Y - ? - R - i Y - ? - t - i Y - ! - C - i
Defend X - ! - C - i X - ! - D - i X - ! - C - i X - ! - D - i —

v ∀r ∃r
Assert X - ! - C v D - i X - ! - ∀r.C - i X - ! - ∃r.C - i
Attack Y - ! - C - i Y - ? - ∀r/i∗ - i † Y - ? - ∃r - i
Defend X - ! - D - i X - ! - C - i∗ X - ! - C - i∗ ‡

Table 2.6.: Particle Rules for ALC-Semantics

Prime formulæ, i.e. atomic concepts, cannot be attacked, of course.

6For a detailed introduction to hybrid logic, see for example [BvBW07], p. 821–868.
†for any r-filling individual i∗ of i that Y chooses
‡for any r-filling individual i∗ of i that X chooses
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When attacking the formula ∀r.C for an individual i, Y may choose a role-filler i∗ for
which X has to defend his assertion, because before, X has claimed that all of i’s
role-fillers are in the concept C. By contrast, if X asserts ∃r.C for an individual i and
Y attacks that assertion, then X may choose the role-filler i∗, because he has asserted
that there is just (at least) one role-filler that is an element of concept C.

It is obvious that the only way to change the individual in focus, i.e. the individual a
player is making an assertion about, is either the attack of ∀r or the defence of ∃r. We
call these two moves choice of individual. All other moves do not change the scope (see
[RR98], p. 7). Of course, it is always possible to attack or defend an earlier assertion
of an individual which has already been in focus before, as long as the structural rules
do not forbid this.

Here is one example:

Assertion P - ! - ∀navigates.Space_Ship - HARRY
Everything that Harry navigates is a space ship.

Attack O - ? - ∀navigates/VOYAGER - HARRY
Show me that this is true for the Voyager, which is navigated by Harry!

Defence P - ! - Space_Ship - VOYAGER
The Voyager is a space ship.

With her attack, O introduces the new individual Voyager as role-filler and changes
the focus from Harry to it. Because P has claimed that everything which is navigated
by Harry is a space ship, he now has to show that Voyager is also a space ship.

Structural Rules

Now, the structural rules have to be altered so that our game semantics is valid for
ALC.

As before, P may state prime formulæ if O has stated them before. It is reasonable
to modify that rule, so that a prime formula can only be asserted by P for a given
individual, if O has stated it for the same individual before, because for other individuals
we have other truths. We alter rule SR-ST4 thus:
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(SR-ST4ALC) (formal use of prime formulæ for Description Logics): “only
O may introduce prime formulæ. P cannot use a prime formula O did not utter first [for
the same individual ]. O can introduce a new prime formula anytime he wants, according
to the other rules.”

see [RK05], p. 388 “for modal formal use of prime formulæ”

Now, what about introducing new individuals, i.e. changing the individual in focus to
an individual which has not occured in the game yet? In fact, it would be a problem
to allow P to introduce new individuals, so only O is allowed to do this.

(SR-ST6ALC) (formal rule for individuals): O may introduce a new individual
anytime the other rules let him do so. P cannot introduce a new individual, and his
choices when changing the focus of an individual are restricted to individuals which are
direct role-fillers of the individual in focus.

based on SR-ST9.1 and SR-ST9.2K by [RK05], p. 388, 389

‘Direct role-filler ’ means that only roles to another individual (that have been intro-
duced by O before) which are reachable from the individual of focus, can be accessed.
Reflexivity, symmetry or transitivity are not supported as we also do not have these
features in ALC.

The other rules may remain as they are. We use SR-ST2I and SR-ST5I for intuition-
istic ALC and SR-ST2C and SR-ST5C for classical.

2.2.4. Strategies

Let us suppose that both players, P and O, are agents (maybe even persons) which
both want to win. For O, it is always wise to introduce a new individual whenever it
is possible. By contrast, it is better for P to keep the focus on individuals which have
already been introduced (according to SR-ST6ALC, he is not allowed to introduce
new individuals anyway). The reason is simple: P may state only prime formulæ for a
certain individual for which O has stated the same formula before, so O will try to ‘run
away’ to new individuals and state her expressions there (see [RR98], p. 8).
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2.2.5. Some Examples

Now let us try to prove some tautologies. In Section 1.2.3, we have seen some for CK.
With a translated syntax, they should also be valid for intuitionistic ALC.

IK2 for ALC

Let us suppose that A and B are atomic concepts and therefore prime formulæ.

O P

1 P - ! - ∀r.(A v B) v (∃r.A v ∃r.B) - 1
2 ?1 O - ! - ∀r.(A v B) - 1 !2 P - ! - ∃r.A v ∃r.B - 1

3 ?2 O - ! - ∃r.A - 1 !3 P - ! - ∃r.B - 1

4 ?3 O - ? - ∃r - 1 ?3 P - ? - ∃r - 1

5 !4 O - ! - A - 2 ?2 P - ? - ∀r/2 - 1

6 !5 O - ! - A v B - 2 ?6 P - ! - A - 2

7 !6 O - ! - B - 2 !4 P - ! - B - 2

Table 2.7.: An ALC-Dialogue

Here is the explanation:

1. P states his thesis. As an abstract dummy individual, the number 1 is used. In
the tableau algorithm, we might have used x instead.

2. O attacks the thesis by asserting the left side of the subsumption. So, she claims
that this left part is true for the dummy individual. P reacts with the correspond-
ing defence.

3. O does the same as before with the new subsumption. P defends his defence.

4. Now it is getting interesting: O attacks the existence quantification. This can be
read as “Show me that there is a role-filler for individual 1 which is an element of
the concept A”. The problem is that P is not allowed to introduce new individuals,
so he cannot change the focus (SR-ST6ALC). A defence is not possible, so it is
time to attack one of O’s earlier assertions. P chooses the existence quantification
of row 3.
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5. O is allowed to introduce new individuals. So she does by changing the focus to
the individual number 2 and states the prime formula A for this individual. One
might think that P is now allowed to change the focus to defend himself against
O’s last attack. In fact, rule SR-ST6ALC would allow this, because individual
2 is accessible from individual 1, but then he would state the prime formula B
which has not been stated by O yet and this is not allowed (SR-ST4ALC)! So,
everything he can do is to attack O’s value restriction of row 2. Note that he
could not have done this before, because there has been no individual which he
could have referred to. O has introduced the only available role-filler just in her
last step.

6. O defends herself. She has to state the assertion for individual number 2, because
P told her to do so. The resulting subsumption is attacked by P.

7. O defends again by stating the prime formula B for individual 2. Now finally, P is
allowed to defend himself against O’s attack of row 4. He changes the focus from
1 to 2 and states B. No other moves are possible and P wins the game because
there is no way for O to backtrack.

Dualities

This is an example adapted from [RR98]. It shows that the distribution of ∀r and ∃r
is not given in intuitionistic logic. Again, A represents an atomic concept.

O P

1 P - ! - ¬∀r.¬A v ∃r.A - 1

2 ?1 O - ! - ¬∀r.¬A - 1 !2 P - ! - ∃r.A - 1

3 ?2 O - ? - ∃r - 1 ?2 P - ! - ∀r.¬A - 1

4 ?3 O - ? - ∀r/2 - 1 !4 P - ! - ¬A - 2

5 ?4 O - ! - A - 2 !3 P - ! - A - 2

Table 2.8.: Dualities in a Dialogue

P’s defence in row 5 is only possible in classical logic, because for intuitionistic logic,
according to rule SR-ST2I, P would only be allowed to defend himself against the
last attack of the rival which has been performed by O in row 5 and which cannot be
defended anyway (see [RR98], p. 12).
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2.3. Dialogues for cALC

In order to create cALC-semantics for dialogical games, we have to embed the re-
finement relations somehow. For this, we will follow the tableau calculus presented
in Section 1.2.5. Considering the tableau rules, it seems that there are already some
similarities to the dialogical approach.

For example, if we want to prove an expression C in cALC, we usually turn it into
a negative constraint x : −C and try to close the tableau. There are different rules
for positive and negative constraints, as the proponent and the opponent have slightly
different rules to obey in dialogues. As we will see in this section, rules for positive
constraints are applied by the proponent, while rules for negative constraints are used
by the opponent.

[Bla01] provides an introduction to dialogues for hybrid logic. He shows that rules for
tableau-based algorithms correspond to the players’ moves in hybrid dialogues. We use
this idea to generate our structural rules for cALC-dialogues.

2.3.1. The Language

Our new language LcALC does not differ much from LALC. The only difference is that we
now do not have a focus on individuals, but on entities which might be more abstract
than others. To emphasize this, we use another letter ε for entity instead of i for
individual. The rest stays as before.

So, our dialogically signed expression has the form 〈X, f, e, ε〉 for which we will usually
write X-f -e-ε. Again, X represents the player, f the force symbol and e the expression,
i.e. a concept description.

Note that ⊥ is still written as A u ¬A, while > has to be stated by the expression
¬(Au¬A). The reason is that in cALC we have to obey intuitionist rules and therefore
> must not be written as A t ¬A (see [MS09], p. 211).

For better readability, we will not only use positive integers for representing abstract
entities. Instead, we use an enumeration of the form n.m where n ∈ Z+ and m ∈ N7.

7N is the set of all natural numbers (including 0), i.e. N =df Z+ ∪ {0}.
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The representation ‘1.0’ denotes a general entity. Every refinement of it makes m
increase, so refinements of 1.0 are 1.1, 1.2, 1.3 . . . . The refinements of n.0 (including
n.0 itself) are all members of a set we call the ‘entity group of n’.
When changing the focus to a role-filler, we increase n while m is reset to 0, e.g. a
role-filler of 1.3 could be 2.0. A new entity group is then created.

2.3.2. Rules

Particle Rules

We now have to make some changes in the definitions of our particle rules so that our
players can handle refinements.

Let us again have a look at the tableau rules of Section 1.2.5, especially at those rules
which are applied to negative constraints. In most cases, a new refining entity will be
created when using such a rule. The only cases where no refining entities are generated
are the (→u−)- and the (→t−) rule. This fact is ignored for now.

In ALC-dialogues, introducing new individuals or changing the focus of an individual
was only possible by attacking ∀r or defending ∃r. In cALC, among refining entities,
it seems to be possible to change the focus for (almost) all operations.

Here is a very small example which might help to understand this:

Let us suppose that we want to prove that C v D is valid for two concept descriptions
C and D. So we introduce an abstract entity x and assign the expression to a negative
constraint:

x : −(C v D)

The only possible rule to be applied is (→v−). According to the tableau rules, a refined
entity x′ is generated:

x′ : +C x′ : −D

So, if an asserted expression of the form C v D is attacked, then a new entity has to
be created in certain circumstances. This will be defined in the structural rules.
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These are our new particle rules:

u t ¬
Assert X - ! - C uD - ε X - ! - C tD - ε X - ! - ¬C - ε
Attack Y - ? - L - ε′ Y - ? - R - ε′ Y - ? - t - ε′ Y - ! - C - ε′

Defend X - ! - C - ε′ X - ! - D - ε′ X - ! - C - ε′ X - ! - D - ε′ —

v ∀r ∃r
Assert X - ! - C v D - ε X - ! - ∀r.C - ε X - ! - ∃r.C - ε
Attack Y - ! - C - ε′ Y - ? - ∀r/ε′∗ - ε′ Y - ? - ∃r - ε′

Defend X - ! - D - ε′ X - ! - C - ε′∗ X - ! - C - ε′∗

Table 2.9.: Particle Rules for cALC-Semantics

For the definition, it is important to add that

• ε′ is a refinement of ε, i.e. ε � ε′ and

• ε′∗ is a role-filler of ε′.

So, a player who attacks a rival’s assertion may always select a refining entity for which
he or she states his or her assertion and for which the rival has to defend him- or herself.
That is why the focus is also changed by the attack. As mentioned before, all entities
refine themselves, so it is possible to attack an assertion with ε′ = ε. It is important to
keep this in mind. We call ε′ the “claimed refining entity”.

In order to highlight the refinement relations for attacks, we will use a slightly different
notation: we write ε � ε′ instead of just ε′, e.g.

Y − ? − ∀r/ε′∗ − ε � ε′

For the defence, the defender has to obey the attacker’s wish concerning the refinement
and therefore, ‘ε �’ is omitted.

Let us look at a dialogical example to make the rules clear. It is based on Example 1.2
of page 27.

Assertion P - ! - ∀causes.Trouble - APPLE
Anybody eating any apple will always have trouble.

Attack O - ? - ∀cause/SNOW_WHITE - APPLE � RED_APPLE

Show me that Snow White gets into trouble when eating a red apple!
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Defence P - ! - Trouble - SNOW_WHITE
After eating the red apple, Snow White is in trouble.

With this small dialogue, a structure of three different entities is created. We first have
the abstract entity Apple which is said to cause trouble. Then there is the entity Red
Apple introduced by O, which refines the abstract one. O also introduces Snow White
as entity (in fact she is an individual) and asks P to show that she is a member of the
concept Trouble.

Structural Rules

[Bla01] shows that in hybrid logic, a tableau proof is very close to the corresponding
dialogue where the proponent wants to prove the same thing as in the tableau. So, a
tableau might be translated to a dialogue. It is interesting that rules which are applied
on negated hybrid expressions (e.g. ¬@i¬(A ∧ B)) are played by the opponent, while
rules applied on positive expressions (e.g. @i¬(A∧B)) correspond to moves performed
by the proponent. So, it is obvious that there are some similarities to the tableau rules
for cALC, where we have rules for negative constraints and others for positive ones.
To describe it more generally, this means that negated hybrid expressions of the form
¬@iφ always correspond to assertions stated by the proponent as @iφ, whereas positive
expressions such as @iψ correspond to the opponent’s arguments.

So let us try to convert this idea into dialogues for cALC. Here, we have negative
and positive constraints in our tableau, so let us assume that expressions of negative
constraints correspond to the assertions of the proponent whose aim is to close the
dialogue/tableau.

As the tableau rules show, only the negative rules (such as (→v−) or (→∀−)) generate
new refining entities, positive rules do not. We can formulate this fact in a structural
rule by adjusting SR-ST6ALC:

(SR-ST6cALC) (formal rule for entities): O may introduce a new entity anytime
the other rules let him do so. P cannot introduce a new entity, and his choices when
changing the focus of an entity are restricted to entities which are refinements, direct
role-fillers or role-fillers of refinements of the entity in focus.
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This sounds more complex than it is. In fact, we have already seen in an example what
this means for O. Whenever she attacks an assertion of P, she may introduce a new
refining entity for which she states her expression. For P, this rule means that he is not
allowed to create a new refinement but he may force O to defend herself for an existing
refining entity chosen by P.

An example should make this clear:

Assertion P - ! - (A v B) v (¬A tB) - 1.0

Attack O - ? - A v B - 1.0 � 1.1

Defence P - ! - ¬A tB - 1.1

In this first part, O generates the refinement 1.1 and forces P to answer for this refined
entity. Generally, if P attacks one of O’s assertions, he may also select the refining
entity. The only restriction is that it must have been introduced by O before.

With this rule, we also imply the (→�+)-rule of the tableau system: let us suppose
that O had to assert the prime formula A for the entity 1.2 which is a refinement of
1.1. P may now attack one of O’s earlier assertions (e.g. O’s attack A v B) for entity
1.1 and move the focus from 1.1 to 1.2. Due to the fact that the refinement relation is
transitive and reflexive, he could also stay in 1.1 or move to 1.3 if it had been introduced
for example as a refinement of 1.2.

. . . O - ! - A - 1.2

Attack P - ! - A - 1.1 � 1.2

Defence O - ! - B - 1.2

But we are not finished yet. The rule about prime formulæ must also be altered due to
the fact that if O introduces a prime formula for an entity ε, she automatically states
it for all refinements ε′.

(SR-ST4cALC) (formal use of prime formulæ for cALC): only O may introduce
prime formulæ. P cannot use a prime formula O did not utter first for the same entity
or an entity which is refined by the entity P wants to make an assertion about. O can
introduce a new prime formula anytime he wants, according to the other rules.
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Here is an example:

O P

1 P - ! - A v (B v A) - 1.0

2 ?1 O - ! - A - 1.0 � 1.1 !2 P - ! - B v A - 1.1

3 ?2 O - ! - B - 1.1 � 1.2 !3 P - ! - A - 1.2

Unfortunately we are still not finished, because if we keep the rules as they are now, then
the formula ¬∃r.⊥ would be valid (later, we will consider the corresponding dialogue
in detail). But as we have seen in Section 1.2.3, this must not be possible in cALC.
So, what is the reason for this failure?

For the tableau algorithm, the rule (→∃+) is defined thus:

S = (C,A) →∃+ S ′ = ({xRy, y : +C} ∪ C,A)

if for some x ∈ A, x : +∃R.C is in C, y is a new variable and there is no
R-successor z of x in S such that z : +C is in C.

[Sch]

It is remarkable that after applying this rule, y is not added to the active set A. That
is why formulæ regarding this new role-filling entity may not be touched unless this
entity becomes an element of A. The only way to do so is provided by rule (→R−)

which can only be applied after making use of (→∃−).

The fact that (→∀+) also does not update the active set A is no problem, because its
application requires that the role-filler already exists and therefore it has to be active
anyway. So, we only need a rule which solves the problem with (→∃+).

(SR-ST7cALC) (coupling rule for existential quantifications): If P forces O to
introduce a new role-filler by an attack, then the entity introduced by O’s answer is
protected against further attacks, i.e. no formulæ stated for that entity may be attacked,
unless it would be possible for P to access that entity with a defence.

Let us explain it a little bit more formally. This is the initiated situation:

1. O has stated the following assertion with an arbitrary non-atomic concept de-
scription C, a role r and for an entity ε.

O − ! − ∃r.C − ε
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2. P attacks that assertion for an already introduced entity ε′ such that ε � ε′.

P − ? − ∃r − ε � ε′

3. With her defence, O introduces a role-filling entity ε′∗.

O − ! − C − ε′∗

Now, P is not allowed to attack C if he is not able to access the entity ε′∗ with a defence.
For a defence, an attack must have been stated before. Let D be an arbitrary concept
description and ε# an entity such that ε# � ε′. Then this dialogue might have taken
place:

Assertion P - ! - ∃r.D - ε#

Attack O - ? - ∃r - ε# � ε′

With a defence, P is now able to access a role-filler of ε′, i.e. also ε′∗. But this is
important: it is not relevant if he is actually allowed to do so, e.g. he might be prevented
because of prime-formula-restrictions to perform the defence (rule SR-ST4cALC). So,
he now may attack O’s defending C. Here is a concrete example:

O P

1 P - ! - ∃r.(A uB) v ∃r.A - 1.0

2 ?1 O - ! - ∃r.(A uB) - 1.0 � 1.1 ?2 P - ? - ∃r - 1.1 � 1.1

3 !2 O - ! - A uB - 2.0 ?3 P - ? - L - 2.0 � 2.0

P’s last move is illegal. In row 2, he forces O to introduce entity 2.0. P has no possibility
to access it with a defence and therefore it is protected (indicated by the underline).
O’s defence in row 3 cannot be attacked. By contrast, this way is possible:

O P

1 P - ! - ∃r.(A uB) v ∃r.A - 1.0

2 ?1 O - ! - ∃r.(A uB) - 1.0 � 1.1 !2 P - ! - ∃r.A - 1.1

3 ?2 O - ? - ∃r - 1.1 � 1.2 ?2 P - ? - ∃r - 1.1 � 1.2

4 !3 O - ! - A uB - 2.0 ?4 P - ? - L - 2.0 � 2.0

5 !4 O - ! - A - 2.0 !3 P - ! - A - 2.0
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In row 3, O makes it possible for P to follow a role leading from entity 1.2 as soon as the
time comes. P then forces O to introduce the role-filler 2.0 which is accessible by P due
to O’s previous attack. So, he may attack O’s defence in row 4 as it is not protected.
Now, with P’s defence, he finally sets the focus to 2.0, states A and closes the game.

Still, it is not always necessary for P to access ε′∗ by defending against O’s previous
attack. This is different with regard to the cALC tableau-rules. One might think that
P has to defend himself finally to win the game, because, in the tableau, the role-
filling entity is activated after applying rule (→R−). Yet, if we made this a compulsory
restriction in our dialogues, then we would get into trouble with some theses. We will
see a corresponding example at the end of Section 2.3.5.

2.3.3. Strategies

As for ALC, whenever it is possible, O will generate new role-filling entities, so that
P has to wait for O’s assertion of a prime formula for these before P himself may state
them.

In addition, O may now also ‘run away’ with each attack by generating new refinements
of the entity in focus. P is allowed to ‘move’ expressions from more general entities
to refined ones by attacking them, as well as he may state prime formulæ if they have
been stated by O for the same or a more general entity. But still, he has to defend
himself for the new entity which is claimed by O.

As we know, P is not allowed to introduce new entities. Yet, when he attacks one of
O’s assertions, it is wise to move to the refining entity which has just been created by
O by attacking him. O is then forced to answer for that entity she wanted to flee to.
After that defence, P might finally defend himself against O’s last attack.

In the later examples, we will see these strategies in the players’ moves.

2.3.4. Inference

The four properties validity, subsumption, equivalence and disjointness with respect to
an empty TBox can be checked with dialogues quite easily.
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Validity

To show that a concept description C is valid, we just let P state it as his thesis for a
new entity 1.0.

P − ! − C − 1.0

If he has a winning-strategy, then C is valid w.r.t. the empty TBox. Otherwise, it is
not.

Subsumption

This is quite the same. To check that D is subsumed by C, i.e. C v D is valid, we have
to check the validity of this concept description, so P just states C v D in his thesis
and if he has a winning-strategy, then C is subsumed by D w.r.t. the empty TBox.

P − ! − C v D − 1.0

Equivalence

To check equivalence C ≡ D, we have to test two subsumptions, C v D and D v C.
So, if P has a winning-strategy for both subsumptions, then C and D are equivalent
w.r.t. the empty TBox.

Disjointness

As we have seen before, disjointness of two concepts C and D can be reduced to
subsumption:

C uD v ⊥

But as we have no particle rules for ⊥, we just reformulate P’s thesis to ¬(C u D),
because ¬C = C v ⊥ (see Section 1.2.2).

P − ! − ¬(C uD) − 1.0
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1.0 1.1 1.2 1.3

2.0

r

Figure 2.2.: Relationships of Entities in IK4 (Alternative 1)

2.3.5. More Examples

In Section 1.2.3, we have seen some tautologies for CK. With a translated syntax, some
should also be valid for cALC, others should not. Let us first have a look at IK4.

IK4 for cALC

As before, A and B are atomic concepts.

O P

1 P - ! - ∃r.(A tB) v (∃r.A t ∃r.B) - 1.0

2 ?1 O - ! - ∃r.(A tB) - 1.0 � 1.1 !2 P - ! - ∃r.A t ∃r.B - 1.1

3 ?2 O - ? - t - 1.1 � 1.2 !3 P - ! - ∃r.A - 1.2

4 ?3 O - ? - ∃r - 1.2 � 1.3 ?2 P - ? - ∃r - 1.1 � 1.3

5 !4 O - ! - A tB - 2.0 ?5 P - ? - t - 2.0 � 2.0

6 !5 O - ! - B - 2.0 —

P loses. The relationships between the entities are shown in Figure 2.2. Refinement
relations are illustrated by dotted arrows.

If P would not have defended against O’s attack in row 3, but instead attacked O’s
quantification, he would have lost anyway:

O P

1 P - ! - ∃r.(A tB) v (∃r.A t ∃r.B) - 1.0

2 ?1 O - ! - ∃r.(A tB) - 1.0 � 1.1 !2 P - ! - ∃r.A t ∃r.B - 1.1

3 ?2 O - ? - t - 1.1 � 1.2 ?2 P - ? - ∃r - 1.1 � 1.2

4 !3 O - ! - A tB - 2.0 !3 P - ! - ∃r.A - 1.2

5 ?4 O - ? - ∃r - 1.2 � 1.3 ?5 P - ? - t - 2.0 � 2.0

6 !6 O - ! - A - 2.0 —

In row 5, P may not follow O to the role-filling entity 2.0, because he is in another
refinement where no role exists (see Figure 2.3 which shows the entities’ relation-
ships of this game). Note that P is not allowed to attack O in row 4 due to rule
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1.0 1.1 1.2 1.3
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Figure 2.3.: Relationships of Entities in IK4 (Alternative 2)

SR-ST7cALC. It is also remarkable that it might have been a better strategy for O to
assert B instead of A in row 6. But as P is not able to defend against O’s attack (row
5), it does not matter for her if she defends her disjunction with A or B. She wins
anyway.

However, these are not all possible games. In order to show that the formula is not
valid, we have to test every possible move. Only if P has no strategy (no matter how
O reacts), we definitely know that the thesis is not valid. That is why we will generate
a dialogue tree which illustrates all possible games. Figure 2.4 shows a pruned version.
Only those of P’s attacks, with which he claims the most refining entities he is able to
choose, are displayed. Note that also only those of O’s decisions are displayed which
let her win, because she is allowed to backtrack if she loses. The others are reduced to
dots. Repetitions allowed by SR-ST5I are omitted, too.

The complete tree can be found in a PDF file on the CD attached to this work. See
Section 4.1 for more information.

IK5 for cALC

The expression (∃r.A v ∀r.B) v ∀r.(A v B) is also not valid in cALC. The (pruned)
dialogue tree, with O’s decisions that let her win, is shown in Figure 2.5.

IK3 in cALC

As announced before, we will now show that ¬∃r.⊥ is not valid in cALC, too. For this,
we replace ⊥ by A u ¬A.
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P-!-∃r.(A t B) v (∃r.A t ∃r.B) - 1.0

O-!-∃r.(A t B) - 1.0 � 1.1

P-!-∃r.A t ∃r.B - 1.1

O-?-t - 1.1 � 1.2

P-!-∃r.A - 1.2

O-?-∃r - 1.2 � 1.3

P-?-∃r - 1.1 � 1.3

O-!-A t B - 2.0

P-?-t - 2.0 � 2.0

.

.

.
O-!-B - 2.0

P—

P-!-∃r.B - 1.2

O-?-∃r - 1.2 � 1.3

P-?-∃r - 1.1 � 1.3

O-!-A t B - 2.0

P-?-t - 2.0 � 2.0

O-!-A - 2.0

P—

.

.

.

P-?-∃r - 1.1 � 1.2

O-!-A t B - 2.0

P-!-∃r.A - 1.2

O-?-∃r - 1.2 � 1.3

P—

P-!-∃r.B - 1.2

O-?-∃r - 1.2 � 1.3

P—

P-?-∃r - 1.1 � 1.1

O-!-A t B - 2.0

P-!-∃r.A t ∃r.B - 1.1

O-?-t - 1.1 � 1.2

P-!-∃r.A - 1.2

O-?-∃r - 1.2 � 1.3

P—

P-!-∃r.B - 1.2

O-?-∃r - 1.2 � 1.3

P—

Figure 2.4.: Dialogue Tree for IK4

P-!-(∃r.A v ∀r.B) v ∀r.(A v B) - 1.0

O-!-∃r.A v ∀r.B - 1.0 � 1.1

P-!-∀r.(A v B) - 1.1

O-?-∀r./2.0 - 1.1 � 1.2

P-!-A v B - 2.0

O-!-A - 2.0 � 2.1

P-!-∃r.A - 1.1 � 1.2

O-?-∃r - 1.2 � 1.3

P—

P-!-∃r.A - 1.1 � 1.2

O-?-∃r - 1.2 � 1.3

P-!-A v B - 2.0

O-!-A - 2.0 � 2.1

P—

P-!-∃r.A - 1.1 � 1.1

O-?-∃r - 1.1 � 1.2

P—

Figure 2.5.: Dialogue Tree for IK5
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O P

1 P - ! - ¬∃r.(A u ¬A) - 1.0

2 ?1 O - ! - ∃r.(A u ¬A)) - 1.0 � 1.1 ?2 P - ? - ∃r - 1.1 � 1.1

3 !2 O - ! - A u ¬A - 1.1 —

P has attacked an existential quantification in row 2 but O does not attack an equivalent
existential quantification for the same entity. That is why P is not allowed to attack
O in row 3 (SR-ST7cALC).

Wine and Meat

This example is more practical. It is adapted from [BMPS+91] and [BFFF07]. [MS09]
provide a Hilbert-style proof for cALC (p. 219 ff.). Now we also have two axioms.
Axioms are stated by the opponent at the very beginning of a dialogue, as it is assumed
that they are true anyway (see [Kei09]). Of course, axioms are part of the TBox (see
[MS09], p. 219). We do not assign them to a particular entity as they are true for every
entity.

• Ax1 =df FOOD v ∃goesWith.COLOR

• Ax2 =df COLOR v ∃isColorOf.WINE

We want to prove: FOOD v ∃goesWith.(COLOR u ∃isColorOf.WINE).

Because of a lack of space, we make use of some abbreviations: let us write F for FOOD,
W for WINE, C for COLOR, ico for isColorOf and gw for goesWith.

O P

A1 O - ! - F v ∃gw.C
A2 O - ! - C v ∃ico.W
1 P - ! - F v

∃gw.(C u ∃ico.W) - 1.0

2 ?1 O - ! - F - 1.0 � 1.1 !2 P - ! - ∃gw.(C u ∃ico.W) - 1.1

3 ?2 O - ? - ∃gw - 1.1 � 1.2 ?A1 P - ! - F - 1.0 � 1.2

4 !3 O - ! - ∃gw.C - 1.2 ?4 P - ? - ∃gw - 1.2 � 1.2

5 !4 O - ! - C - 2.0 !3 P - ! - C u ∃ico.W - 2.0

6 ?5 O - ? - L - 2.0 � 2.1 !6 P - ! - C - 2.1
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1.0 1.1 1.2

2.0

gw

2.1 2.2

3.0

ico

Figure 2.6.: Relationships of Entities for Wine and Meat

O P

6’ ?5 O - ? - R - 2.0 � 2.1 !6’ P - ! - ∃ico.W - 2.1

7’ ?6’ O - ? - ∃ico - 2.1 � 2.2 ?A2 P - ! - C - 2.0 � 2.2

8’ !7’ O - ! - ∃ico.W - 2.2 ?8’ P - ? - ∃ico - 2.2 � 2.2

9’ !8’ O - ! - W - 3.0 !7’ P - ! - W - 3.0

The entities’ relationships are illustrated in Figure 2.6. Note that after row 6 O tracks
back because that game is won by P. He may state the prime formula COLOR because
O has stated it for a more general entity of the same entity group. So, for the second
game this row may be ignored.

Accessible Without Accessing

This last example shows that it could be impossible for P to defend himself against one
of O’s attack providing access to a role-filling entity.

O P

A1 O - ! - ∀r.A
A2 O - ! - ∀r.B
1 P - ! - ∃r.(¬(A uB)) v

∃r.foo - 1.0

2 ?1 O - ! - ∃r.(¬(A uB)) - 1.0 � 1.1 !2 P - ! - ∃r.foo - 1.1

3 ?2 O - ? - ∃r - 1.1 � 1.2 ?2 P - ? - ∃r - 1.1 � 1.2

4 !3 O - ! - ¬(A uB) - 2.0 ?4 P - ? - A uB - 2.0 � 2.0

5 ?4 O - ? - L - 2.0 � 2.1 ?A1 P - ? - ∀r/2.0 - 1.0 � 1.2

6 !5 O - ! - A - 2.0 !5 P - ! - A - 2.1

5’ ?4 O - ? - R - 2.0 � 2.1 ?A2 P - ? - ∀r/2.0 - 1.0 � 1.2

6’ !5’ O - ! - B - 2.0 !5’ P - ! - B - 2.1
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As we see, P has never defended against O’s attack that she performed in row 3. In fact,
he is not able, as foo is considered to be a prime formula that has not been stated by O.
However, P wins. The reason is quite simple. In the tableau, we would apply (→R−) to
activate entity 2.0, because there, we do not have the restriction about prime formulæ.
By contrast, for the games we have it and therefore the feature of P’s accessibility w.r.t
rule SR-ST7cALC is enough for us.

2.4. Conclusion and Miscellaneous

We have seen an alternative reasoning method for cALC. It is constructed by extending
the structural rules and altering the particle rules of ALC-dialogues. In fact, if O was
not allowed to create refining entities with her attacks and if we removed rule SR-
ST7cALC, we would have ALC-dialogues again.

It is also interesting that [RR98] can alter their modal logic system by exchanging one
single rule to deal with other modal frames. It is then possible to deal with reflex-
ive, symmetric or transitive transition systems. For our Description Logic this means
that it is also possible to construct dialogue systems supporting transitive, reflexive or
symmetric roles by altering or replacing rule SR-ST6(c)ALC.

In fact, dialogue-based proofs for cALC have some advantages but also disadvantages
to tableau-based proofs. Those are discussed in Chapter 4.





3
Design and

Implementation of a
Dialogue-Based Prover

for cALC

It is now time to build a dialogue-based prover for cALC. It should be able to per-
form user-guided and automated reasoning the way it has been shown in the previous
chapter. With it, automated validation of concept descriptions can be performed. It is
also important that we formalize the fuzzy structural rules with the implementation.
Eventually, we have a tool that illustrates dialogues to achieve a better understanding
of the proof method.

First, we take a look at the tools we use to implement the prover and choose a program-
ming language which shall satisfy our needs. Afterwards, we will design the required
data structures and then we will have a closer look at the implementation of the particle
and structural rules that are the most complex part of the program. At the end, we
will see the completed program in action.
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3.1. Tools for the Implementation

3.1.1. A Functional Programming Language

Functional programming languages provide a high level of abstraction what makes it
often possible to write powerful functions in a short way (see [RL99], p. ix). Usually, no
global variables are permitted and therefore the results of a function depend only on the
given input parameters and whenever the function is called with the same parameters,
the function’s result will be the same, too. This fact leads to a higher level of security
and makes it easier to test our functions (see [OGS09], p. xxiv).

We use Haskell as our programming language. It is a pure functional language applying
lazy evaluation by default, so terms are evaluated when it is really necessary, i.e. after
nothing else is possible. It is a statically typed language and supports pattern matching
which contributes to the simplicity of creating functions quickly and easily (see [OGS09],
p. xxiv-xxvii, 50–55).

We use the Glasgow Haskell Compiler (GHC for short)1 in version 6.12.1 that also
comes with a Haskell interpreter. There are other interpreters, for example Hugs,
but according to [OGS09], “GHC is much more suited to ‘real work’: it compiles to
native code, supports parallel execution, and provides useful performance analysis and
debugging tools” (p. 1). Further, GHC is supported by our development environment
Leksah.

3.1.2. Development Environment

Leksah2 is an integrated development environment (IDE) written in Haskell and espe-
cially for Haskell projects. It helps to maintain an overview of the different modules
and functions and provides debug mechanisms. We will use it for the development of
our project.

1http://www.haskell.org/ghc/
2http://www.leksah.org/

http://www.haskell.org/ghc/
http://www.leksah.org/
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Expression part of Assertion

Annotation

part of Game

has

Entity

part of Dialogue

assigned to Step has

refers to

Moveused byParticle Rule

Figure 3.1.: Overview of Data Types

3.1.3. Creating Graphs

For the visualization of dialogue trees, we will make use of the free software GraphViz 3.
Our program will generate DOT source code which is then translated by a program
(that is also called DOT and that is part of the GraphViz package) to a graph-structure
which is then written to a PDF file.4

3.2. Architecture

Let us now look at the different data structures we are going to use and how they are
interacting. First, we consider the interaction of the most important structures and
then discuss them in detail.

Let us begin with a rough overview of the most important data types and their re-
lationships to each other. These are illustrated in an Entity-Relationship-Diagram5

(Figure 3.1). Note that this illustration is not complete but should give an overview.
Nevertheless, it might appear confusing for now. But at the end of this section, the
meanings should be clear.

3http://www.graphviz.org/
4see http://www.graphviz.org/Documentation.php for more details
5The Entity-Relationship Model has originally been introduced by [Che76].

http://www.graphviz.org/
http://www.graphviz.org/Documentation.php


86 3. Design and Implementation of a Dialogue-Based Prover for cALC

As we see, an expression is part of an assertion that is part of a (dialogical) game
which again is part of a dialogue. A step holds one dialogue while there are several
annotations which are assigned to it. A game usually manages some entities, whereas
moves use particle rules and refer to assertions.

We will now regard every single data type in detail. Every type is assigned to a module
i.e. a Haskell source file containing functions and type definitions for a certain subject
(see [OGS09], p. 113 ff.). The module names and dependencies are mentioned at the
beginning of each type description. We begin with the simple type Expression and
move to more complex types afterwards.

3.2.1. Expressions Type Exp
Module Expression

Expressions represent concept descriptions, for example

∃commands.(Janitor tNavigator)

could be such a statement. Information about individuals/entities are not part of it.
We use a recursive definition to define what an expression is:

data Exp = Atom AtomType | −− atomic concept
Not Exp | −− not / negat ion /complement
And Exp Exp | −− and/ i n t e r s e c t i o n
Or Exp Exp | −− or/union
Impl Exp Exp | −− imp l i c a t i on / sub s e t
Al l RType Exp | −− f o r a l l / va lue r e s t r i c t i o n
Some RType Exp −− t h e r e i s / some
deriving (Eq, Read , Show)

In this definition, some types are used which have not been defined yet.

type AtomType = String
type RType = String

Both types AtomType and RType are represented as strings of characters. So, an atomic
concept Janitor is written Atom "Janitor" in our Haskell program. The complement
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Figure 3.2.: Showing Expressions in a Terminal Window

of Janitor can just be written as Not (Atom "Janitor"). The word Exp represents
any concept description, so we can negate every concept description that can be built
with the given constructors.

RType is used to represent roles. With the Some-constructor we can now express the
concept description we have had before:

Some "commands" (Or (Atom "Janitor") (Atom "Navigator"))

The value restriction works in the same way but with the key-word All instead of
Some.

It is notable that prefix-notation is applied. While the constructor Or is used for the
infix-symbol t, we can write And for u and Impl for v.

The concepts > and ⊥ are missing here because we do not need them for our dialogues
(see Section 2.3.1). Whenever they are needed, we can add them easily.

The last line of our description deriving (Eq, Read, Show) states that the equality of two
expressions can be tested (==), an expression can be read from a string and eventually
transformed into a string. Anyway, for better readability, we define our own function
which prints an expression to the terminal. You can test this in the Haskell-interpreter
ghci6 (see Figure 3.2). Note that it looks only this good in shells which are able to
represent UTF-8 symbols. Shells like those from Microsoft® Windows® are not able to
display special characters like u, t, v, ∀, ∃ or � (see Appendix B.2 for more details).

6Type ghci in the command shell window to start it. Type :q to quit.
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3.2.2. Assertions Type Assertion
Module Assertion

An assertion can be either a player’s move (attack or defence) or a thesis which is
stated by the proponent. But before we look at the type-definition of assertions we
have to understand some simpler types.

Player

This is a very simple type. In Chapter 2 we have used the letter P for proponent and
O for opponent. Now, we do the same:

data Player = P | O
deriving (Eq, Show)

As before, players can be displayed (as the letters P and O) and tested for equality.

Rows and References

In Chapter 2, we have used the term row for a row of the dialogue table. Now we use
row as an identifier for an arbitrary assertion. The thesis usually has the row number
0, the first move has number 1 and so on. So, rows are represented by integers (Int in
Haskell).

We use the type reference for referring earlier rows (usually identifying the rival’s as-
sertions). This data type is not really necessary because we could also use Row for
this. Nevertheless, in order to distinguish between the identifier of the assertion we are
talking about and an assertion we refer to, we use both types.

type Row = Int
type Reference = Row
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Entity IDs

Every assertion refers to a certain (abstract) entity for which it is stated. We use a pair
of integers to identify such an entity. The first number represents the entity group, the
second one the refinement with 0 being the most general entity of an entity group.

type EntityID = ( Int , Int )

Attacks, Defences and the Thesis

We define assertions thus:

data Asse r t i on = Attack Row Player Reference AttackType |
−− ?/! ( a l l k inds o f a t t a c k s )

Defence Row EntityID Player Reference Exp |
−− ! ( de f ences )

Thes is Row EntityID Player Exp
−− ! ( t h e s i s )

deriving (Eq, Show)

The thesis is explained easily. It has just a row (usually 0), it refers to an entity, usually
1.0 and a player (in our case always P) and it always holds an expression stated by P.
That is the initial assertion of a game or dialogue. For example, the thesis

0. P − ! − ∃r.(A tB) v (∃r.A t ∃r.B) − 1.0

in row 0 can be written thus:

Thesis 0 (1,0) P (Impl (Some "r" (Or (Atom "A") (Atom "B")))

(Or (Some "r" (Atom "A")) (Some "r" (Atom "B")))) .

Although it is not really necessary to include the player information in the thesis, we
still do it to make the system more flexible for further development. In fact, it is claimed
by one of the structural rules that P is the first player so this is defined somewhere
else.
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For the attack and the defence, a player is required. Additionally, a reference is needed
that indicates which of the rival’s assertion is attacked or defended against.

Further, regarding the attack, we have to care about an attack type. We have to
introduce this because an attack can have two forms.

• If we attack u, t, ∃r or ∀r, then an attacking label is stated as assertion (L, R,
t, ∃r or ∀r).

• If we attack ¬ or v then we attack with a formula/expression.

To distinguish between these two types of attacks, we introduce the AttackType:

data AttackType = Label AttackLabel | −− ( l a b e l )
Assert Exp EntityID EntityID −− ( e xpre s s i on )
deriving (Eq, Show)

Let us first look at the second case indicated by the constructor Assert. The expression
with which the player wants to attack has to be stated followed by two entities. The
first is the entity of the assertion which is going to be attacked, while the second one is
the refining entity for which the attack is taking place and for which the rival (i.e. the
other player) is forced to defend him- or herself (if he/she chooses to defend).

For a label-attack, we need one more data type. It defines the labels which are avail-
able:

data AttackLabel = LaL EntityID EntityID |
LaR EntityID EntityID |
LaOr EntityID EntityID |
LaAll RType EntityID EntityID EntityID |
LaSome RType EntityID EntityID
deriving (Eq, Show)

The constructors LaL, LaR, and LaOr are used for the labels L, R, and t. The required
entity IDs have the same meanings as for attacks with expressions: the first is the entity
of the attacked assertion and the second is the refining one.

The constructors LaAll and LaSome which are used for ∀r and ∃r require a role type r
in order to define which role is attacked. LaAll has a third entity ID. It represents the
role-filler the attacking player forces his rival to access.
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Figure 3.3.: Showing Assertions in a Terminal Window

Now, as the explanation of the attack is complete, let us look at an example. The thesis
stated at the beginning can be attacked by O with the assertion

1. O − ! − ∃r.(A tB) − 1.0 � 1.1

in row 1. This is an attack with an expression. For our program, we write it thus:

Attack 1 O 0 (Assert (Some "r" (Impl (Atom "A") (Atom "B"))) (1,0) (1,1)) .

Now the defence. The entity ID represents the entity for which the defence takes place.
The expression at the end is the formula with which the player defends himself against
the attack.

This is P’s defence against O’s attack in row 2:

2. P − ! − ∃r.A t ∃r.B − 1.1

To make our program understand this, we type:

Defence 2 (1,1) P 1 (Or (Some "r" (Atom "A")) (Some "r" (Atom "B"))) .

In order to print an assertion to the terminal, we can make use of the function
printAssertion which works the same way as printExp works for expressions. In Figure
3.3, we see the outcome of calling that function. The first line shows the row number
followed by the force-symbol (! for defences and ? for attacks) and the row of the
referred assertion (attack in this case). The second line shows the dialogically signed
expression as we know it from Section 2.3.1.
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3.2.3. Entities Type Entity
Module Entity

We now use an entity structure in order to record the atomic formulæ which have been
stated by the players. This helps us to check quickly if a game or dialogue is closed or
if O has stated an atomic formula for a certain entity so that P may state it, too (see
rule ST-SR4cALC). Note that this structure is based on the data type World which
has originally been used in a tableau-based reasoner for cALC for a similar purpose.
We reuse it here in order to have access to the functions of the world-module without
needing to implement them once more. For a better understanding, we rewrite the type
definition here for entities:

type Entity = ( EntityID , [ Exp ] , [ Exp ] , [RExp ] )
−− ID , O−atoms , P−atoms , r−minus ( unused )

The first element is an entity ID which we already know from the assertions. It makes
it possible to retrieve entity information by searching for that ID.

The second element of the tuple is a list of atomic expressions stated by O while the
third one contains atoms states by P.

We do not need the r-minus list for our purposes. It is just a relict of the world-
structure, so we do not care about it. Whenever we use the entity-structure we let the
last element be an empty list ([]).

Note that the entity-type is used for recording atomic expressions only but could also
be used to record any expressions.

3.2.4. Games Type Game
Module Game

Now, let us turn to a game branch. As we know from Chapter 2, a game is a linear
sequence of assertions. It begins with the thesis which is followed by the players’ moves
(see rule SR-ST0). So far, we do not consider branches which might occur if a player
makes a decision about what move to perform next.

type Game = ( [ Asse r t i on ] , [ Ent ity ] , [ Rel ] , [ Ref ] , [ EntityID ] )
−− a s s e r t i on s , e n t i t i e s , ro l e s , re f inements , a l l e n t i t i e s
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As we see, a game is defined as a tuple of five different lists.

The first list contains all assertions of a game. The second one lists entities which
contain atomic formulæ. Only those entities are listed for which atomic expressions
have been stated.

Now we have two new types. The first describes role relationships between two en-
tities (Rel stands for relation), while the second one does the same for refinement-
relationships. As roles are described by a role-type and two entities, we need a triple
to define them. For refinement relations, a pair is enough.

type Rel = (RType , EntityID , EntityID ) −− ro l e−name , source , d e s t i n a t i o n
type Ref = ( EntityID , EntityID ) −− source , d e s t i n a t i o n

As we know, refinement-relations are transitive. However, not all combinations are
elements of this list (that would be too much). Only immediate links are recorded
here. The others can be derived from them.

The last list contains the IDs of all entities which appear in the dialogical game.

3.2.5. Dialogues Type Dialogue
Module Dialogue

As explained before, a dialogue consists of several games. We have seen such dialogue
trees in Section 2.3.5. Whenever a player makes a decision, new branches are gener-
ated. Rule SR-ST3 gives O the right to backtrack if she loses a game. If she she has a
choice, two branches appear. By contrast, P might have more possibilities, so it might
be necessary to generate more than two branches for him (but, of course, branches
for P are only created if he is also allowed to backtrack). Anyway, we use just one
multi-branching tree for both players and their decisions.

data Dialogue = St ra i gh t Game |
Branch Row Player [ Dialogue ]
deriving Show

Let us suppose that we have a dialogue without any decisions. Then we just have a
straight game. For this, we use the constructor Straight.
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row = 4 player = P

row = 6 player = P

row = 7 player = O

game1 game2

game3 game4

row = 6 player = P

game5 game6

Figure 3.4.: A Redundant Dialogue Structure

Now, if we examine different runs through the dialogue, we make use of the Branch-
constructor followed by the row -number indicating where the branching takes place, the
player whose decision causes the split of the dialogue and a list of dialogues containing
the different possibilities of the player’s moves (the node’s children). An instantiated
dialogue tree as we have just defined it here, might look like the one illustrated in
Figure 3.4.

The leafs game1 to game6 represent games of the structure we have defined in Section
3.2.4. All nodes which are no leafs only contain information about a player and a row
number. Games are only recorded in the leafs of the tree and all these games begin
with the same row 0 (the thesis), i.e. there is a redundancy in each leaf. That is why, in
our example tree, the first four assertions (rows 0 to 3) are the same for all game-leafs,
while even the first seven assertions (rows 0 to 6) of the leafs game1 and game2 are
identical.

Of course, this redundancy means that more space is needed when coping with a di-
alogue structure. But the advantage is that we need less time when performing a
back-track because the next possible game is available in the next branch where we can
access it directly without merging games. It is also reasonable because the branched
games might have different role- or refinement-relationships or even different annota-
tions (see Section 3.2.7).

Like [PR05], we call those nodes indicating a decision made by P, P-nodes, while nodes
indicating a decision made by O are named O-nodes.
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Translating the dialogue of Figure 3.4 to our Haskell-structure looks thus:

Branch 4 P

[ (Branch 6 P

[ (Branch 7 O [(Straight game1), (Straight game2)]),

(Straight game3),

(Straight game4)

] )

(Branch 6 P [(Straight game5), (Straight game6)]) ]

Note that the constants game1 to game6 must have been defined before defining this
dialogue.

Navigation

In order to navigate to a certain game of a dialogue, we construct a data type that we
call GameNav (for game navigation). It is represented by an integer greater or equal to
zero indicating a branch to select (0 refers to the first ‘leftmost’ branch).

type GameNav = Int

To access a certain game, we need a list of GameNav -integers representing the search-
path. For example, the path [0,0,1] applied on the dialogue of Figure 3.4 leads to
game2. In order to retrieve a game from a straight dialogue, we use an empty list [] as
navigation path.

3.2.6. Particle Rules Type PRule
Module ParticleRule

Particle rules work syntactically as they specify the local semantics. They depend on
the assertions but not on a complete game or dialogue. However, the definition of
particle rules is more complex than of the structures we have discussed so far, but it
makes it possible to add or remove rules very easily.
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type PRule
= (PRuleName , PRuleAttack , PRuleDefence , PRuleParRequire )

So, a particle rule (PRule) is a tuple of four different ‘values’ or functions. The first is
a name. This can always be extracted so that we can find out which rule we are using
(or which is suggested by the program). The rule-name is defined as a string.

type PRuleName = String

We then have something called PRuleAttack and PRuleDefence. These are functions
that can be extracted from the PRule tuple. One generates an attack and the other
generates a defence. Let us first look at the attack function.

type PRuleAttack = Asse r t i on −> [ PRulePar ] −> Maybe Asse r t i on

An attack function receives an assertion which shall be attacked and some particle
rule parameters (we talk about them in Section 3.3.1). The result of the function is
an attacking assertion, but only if the particle rule is applicable syntactically. This is
indicated by the data type Maybe. If the rule is not applicable then the constructor
Nothing is returned. Otherwise, we receive the constructor Just followed by the at-
tacking assertion. The Maybe-type is defined in Haskell’s prelude. This is a definition
taken from [OGS09] (p.57):

data Maybe a = Just a
| Nothing

Which assertion is returned by our function depends on the input assertion that shall be
attacked and the input parameters. Every rule has its own parameters for attacks and
its own parameters for defences. For example, the attack of C uD has less parameters
than the attack of ∀r.C, which in turn requires more parameters than the defence of
∀r.C.

In order to obtain the defence against an attack, we need more than the attacking as-
sertion and some parameters. Let us suppose that player O attacks P with O−?−L−xy
(we are not interested in the entity). This is obviously an attack, but if we only have
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this attacking assertion, then we do not know how to defend, because we need the
attacked assertion, too, or at least an expression.

type PRuleDefence
= Exp −> Asse r t i on −> [ PRulePar ] −> Maybe Asse r t i on

The first argument is that expression which has been attacked by the rival’s asser-
tion (second argument) and that we are going to defend with rule parameters (third
argument). As before, if no defence is possible then Nothing is returned.

The last element of our PRule-tuple is a function, too. We need it so that we can find
out which parameters are required by the particle rule.

type PRuleParRequire = Action −> [ PRulePar ]

As mentioned before, an attack requires other parameters than a defence. That is why
we need an extra type defining what parameters we wish to get (for an attack or for
a defence). Unfortunately, the constructors Attack and Defence are already taken by
the assertion-type. That is why we use the progressive verb-form instead:

data Action = Attacking | Defending
deriving (Eq, Show)

The function then returns a list of parameters with dummy elements. We are just
interested in the constructors of the parameter types but it is not possible to return
them without values.

The particle rule parameters are not interesting for now. We will talk about them in
Section 3.3.

3.2.7. Annotations Type Annotation
Module Annotation, DialogAnn

In order to obey the structural rules, we have to remember what has already happened
to which assertions and for which entities. For example, we have to remember which
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Annotation IS A

Assertion Annotation

Entity Annotation

Game Annotation
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Assertion

Entity
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Figure 3.5.: The three Types of Annotations

assertions have been attacked so that they are locked for further attacks. To do so, we
make use of so-called annotations.

Annotations are stored in a separate data structure so that we can change the anno-
tation structures, add other annotation values or remove them without touching the
annotated structures.

In order to grant quick access to the annotation of an arbitrary data object, we base
our new data-type on a predefined one: the map. Maps have a better performance than
the usual list. Data can be accessed, stored and deleted using a unique key (e.g. an
integer) that refers to the value that is interesting for us (see [OGS09], p. 301–303).

We have three different data types we want to annotate, so we need three different
kinds of annotations (see Figure 3.5). The most important is the assertion annotation,
but annotations are also important for entities and games.

Assertion Annotations

In order to refer to a certain assertion of a dialogue, we need a navigation information
that identifies the game and a row number. We aggregate both values to a pair and
this is how we obtain a key for assertion annotations.

type Assert ionACol l = AnnoColl Assert ionKey [ AssertionAnn ]
type Assert ionKey = ( [GameNav ] , Row)
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The data-type AnnoColl is used as a synonym for the Map (this has been defined
in the module Annotation) using keys of the type AssertionKey and values of the
type [AssertionAnn]. In other words: an assertion key, consisting of a navigation
information and a row, refers to a list of assertion annotations. This list contains all
annotations that have been assigned to that specific assertion. Let us assume that this
list is unordered and contains every assigned annotation only once, i.e. we consider the
list as a set of annotations.

Let us have a look at the different annotation values.

data AssertionAnn =
IsDe fence |
−− a s s e r t i on i s a de fence ( o therw i s e a t t a c k or t h e s i s )

LeftAttacked |
−− an AND has been a t t a cked c la iming the l e f t s i d e

RightAttacked |
−− an AND has been a t t a cked c la iming the r i g h t s i d e

Locked |
−− a s s e r t i on cannot be a t t a cked any more ( f o r the moment)

AnsweredAttack |
−− a s s e r t i on i s an a t t a c k which has a l r eady been answered

AppliedMoves [ AbstractMove ]
−− moves t ha t have been app l i e d to the a s s e r t i on

deriving (Eq, Read , Show)

The meaning of the annotations are explained in the comments. The last one is the only
annotation type that carries further information: a list of abstract moves that have been
applied to the annotated assertion. We will discuss abstract moves in Section 3.2.8.

Entity Annotations

Constructing a key type for entities is similar to the construction of a type for asser-
tions. Instead of the row number, we now use the entity ID. In order to get along with
the coupling rule (SR-ST7cALC), we need two different annotation values for entities.

type EntityAColl = AnnoColl EntityKey [ EntityAnn ]
type EntityKey = ( [GameNav ] , EntityID )
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data EntityAnn =
Protected |
−− no a t t a c k s can be performed due to SR−ST7cALC

PAccess ib l e
−− P would be a b l e to acces s the e n t i t y wi th a de fence .

deriving (Eq, Show, Read)

Game Annotations

To identify a game in a dialogue, the navigation information provides enough input.
Therefore, our new key’s structure is quite simple. We have only two different types of
game annotations.

type GameAColl = AnnoColl GameKey [GameAnn ]
type GameKey = [GameNav ]
data GameAnn =

GameFinished |
−− Game f i n i s h e d (no more moves p o s s i b l e )

GameClosed
−− Game c l o s ed ( atomic formula s t a t e d by both p l a y e r s )

deriving (Eq, Show, Read)

We will talk about the annotations and their meanings again later when considering
the implementation of the structural rules.

3.2.8. Moves Type Move
Module ParticleRule

A move contains all information needed to create a new assertion for a given game.
This includes

• an action, i.e. the constructor Attacking or Defending (see 3.2.6)

• a particle rule including all its functions

• a list of particle rule parameters

• a reference to the assertion we want to attack or defend against with the move
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We aggregate these data to a tuple:

type Move = ( Action , PRule , [ PRulePar ] , Re ference )

Now we have a small problem: PRule contains functions that cannot be compared to
each other or printed to the console. So, a particle rule cannot be compared to other
particle rules or displayed on the screen either. But we need these features for assertion
annotations (see 3.2.7). So, let us introduce a further type:

type AbstractMove = ( Action , PRuleName , [ PRulePar ] , Re ference )

The abstract move does not contain the complete particle rule with its functions, but
instead it just holds its name which we assume to be a unique name identifying a certain
particle rule. A move can easily be transformed to an abstract one and also vice versa
with some extra information.

There is another difference between abstract moves and moves, but we will talk about
that later, because it concerns one of the structural rules.

3.2.9. Steps Type DialogStep
Module StructuralRule

DialogStep is the data type that combines a dialogue with all its annotations. As most
of the types explained before, it can be understood as a tuple of values:

type DialogStep
= ( Dialogue , GameAColl , EntityAColl , Assert ionACol l , DialogTrace )

The first element represents the dialogue’s complete tree-structure that is followed by
three annotation collections (for games, entities and assertions). The last value is
something we call trace.

The trace is not needed to make our program work. It simply contains information
about what move has been performed last. If we keep all these trace elements in a list
with the initial dialogue (i.e. with the thesis only), we are able to reconstruct the final
one by applying all moves from the traces. Because a move is game-specific rather than
dialogue-specific, the trace information contains also a navigation information.
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data DialogTrace = None |
Trace [GameNav ] AbstractMove
deriving (Read , Show)

As we might want to store steps to files or read them from files, it is necessary to use
the abstract move instead of the usual one. The constructor None is used if no move
has been performed yet (i.e. in the initial state of the dialogue).

3.3. Particle Rules and their Parameters

The data structure of particle rules has already been explained in Section 3.2.6. Let us
now have a closer look at the implementation and especially at the rule parameters.

3.3.1. Parameters

There are six different parameter constructors needed to generate new assertions with
a particle rule. One of them is used as dummy parameter only. We will see soon what
that means.

data PRulePar =
NewRow Row | −− the row o f the new a s s e r t i on
TargetRefEntity EntityID | −− a r e f i n i n g e n t i t y as t a r g e t
Ro l eF i l l e r EntityID | −− a ro l e− f i l l i n g e n t i t y as t a r g e t
Asse r tLe f t | −− Only f o r a t t a c k i n g And and de fend ing Or
AssertRight | −− Only f o r a t t a c k i n g And and de fend ing Or
AssertLeftOrRight −− Dummy parameter f o r And and Or

deriving (Read , Show, Eq)

• NewRow specifies the row number of the new assertion that is created by applying
the particle rule.

• TargetRefEntity is used for attacks only. It specifies the entity for which the
attack will be stated and the attacked rival will be forced to defend himself.
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• RoleFiller is used when attacking value restrictions or defending existential
quantifications. It specifies the role-filler which is going to be accessed.

• AssertLeft and AssertRight are used when attacking a conjunction or defending
a disjunction in order to specify which part of it is attacked or defended (the left
or the right).

• AssertLeftOrRight is a dummy parameter. It cannot be used to generate an
attacking or a defending assertion. It is a wildcard for either AssertLeft or
AssertRight and has to be replaced by one of those so that an assertion can be
derived.

For example, the resulting list of the PRuleParRequire-function of the u-rule (action is
attack) contains the dummy parameter AssertLeftOrRight because the function does
not know what side is going to be attacked. It must be replaced by either AssertLeft
or AssertRight.

Table 3.1 gives an overview of the particle rules and the parameters that are returned by
the PRuleParRequire function for the corresponding action. The variable n represents
a row-number, x′ a refining entity and y a role-filling entity. Note that the function
returns 0 for n and (0,0) for x′ and y.

Particle Rule Attack Defence

andParticleRule (u) NewRow n

TargetRefEntity x’

AssertLeftOrRight

NewRow n

orParticleRule (t) NewRow n

TargetRefEntity x’

NewRow n

AssertLeftOrRight

impParticleRule (v) NewRow n

TargetRefEntity x’

NewRow n

notParticleRule (¬) NewRow n

TargetRefEntity x’

--

allParticleRule (∀r) NewRow n

TargetRefEntity x’

RoleFiller y

NewRow n

someParticleRule (∃r) NewRow n

TargetRefEntity x’

NewRow n

RoleFiller y

Table 3.1.: Particle Rule Parameters
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Together with the correct parameters, the particle rule functions are able to create an
assertion (attack or defence) on a completely syntactical level.

3.3.2. Implementing a Particle Rule

We will now see how to construct a particle rule. We use the ∃r-rule as an example.
The other rules are implemented in a similar way, requiring other input-expressions
and parameters, of course.

First, let us define the rule generally.

somePart ic l eRule : : PRule
somePart ic l eRule = ( " SomePart ic le " , attackSome , defendSome , reqSome )

The constant someParticleRule is of the type PRule, so it consists of a name, an
attacking function, a defending function and a parameter requirement function. The
name has now been defined, the rest has to be constructed now. Let us begin with the
attacking function.

attackSome : : As se r t i on −> [ PRulePar ] −> Maybe Asse r t i on

attackSome ( Thes i s row s r c p laye r (Some rtype e ) )
[ (NewRow nRow) , ( TargetRefEntity r e f ) ]

= Just ( Attack nRow ( changePlayer p laye r ) row
( Label (LaSome rtype s r c r e f ) ) )

attackSome ( Attack row p layer r e f e r e n c e
( Assert (Some rtype e ) _ s r c ) )
[ (NewRow nRow) , ( TargetRefEntity r e f ) ]

= Just ( Attack nRow ( changePlayer p laye r ) row
( Label (LaSome rtype s r c r e f ) ) )

attackSome ( Defence row s r c p laye r r e f e r e n c e (Some rtype e ) )
[ (NewRow nRow) , ( TargetRefEntity r e f ) ]

= Just ( Attack nRow ( changePlayer p laye r ) row
( Label (LaSome rtype s r c r e f ) ) )

attackSome _ _ = Nothing
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We distinguish four cases by using pattern matching7. The first three cases react to
the different types of assertions to be attacked. The first defines an attack against
a thesis, the second one defines a counterattack and the third an attack against a
defence. In each case, the first parameter type has to be a NewRow parameter followed
by a TargetRefEntity information. The new assertion contains an attacking label
LaSome for existing quantifications, wrapped inside Maybe’s Just constructor.

If none of the three patterns fits the given input, e.g. if the assertion that is about
to be attacked does not contain an expression that is an existential quantification or if
the parameter types are not the required ones, then the fourth case is applied (the one
with the wildcards “_ _”). Then Nothing is returned, indicating that the rule cannot
be applied.

The function changePlayer transforms P to O and O to P. This is needed so that the
player does not attack himself with the new assertion, but his rival.

Now let us look at the defending function:

defendSome : : Exp −> Asse r t i on −> [ PRulePar ] −> Maybe Asse r t i on
defendSome

(Some r t e )
( Attack rowA player r e f e r e n c e ( Label (LaSome rtype _ r e f ) ) )
[ (NewRow nRow) , ( Ro l eF i l l e r dst ) ]

| r t == rtype
= Just ( Defence nRow dst ( changePlayer p laye r ) rowA e )

| otherwise = error ( "Wrong i n t en t i on in defendSome . " ++
"Relat ion type o f at tack does not match ! " )

defendSome _ _ _ = Nothing

As we can only defend against an attack with a corresponding label for this particle
rule, we only have to consider two different cases. The second one returns Nothing and
is used if the function receives invalid input values, i.e. if the first pattern does not
fit.

The attacked expression (that is going to be defended) (first input value) must be
an existential quantification, too. Together with the attacking assertion and the rule
parameters, a defence can be created, but of course only if the role of the attack and

7A detailed introduction to pattern matching can be found in [OGS09], p. 50–54.
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the role of the attacked assertion are the same. This is checked by the guards (indicated
by the symbol |)8.

Last but not least, here is the parameter-require function:

reqSome : : Action −> [ PRulePar ]
reqSome Attacking = [ (NewRow 0) , ( TargetRefEntity ( 0 , 0 ) ) ]
reqSome Defending = [ (NewRow 0) , ( Ro l eF i l l e r ( 0 , 0 ) ) ]

This function receives an action (i.e. Attacking or Defending) as input and answers
with a list of parameters carrying dummy values. For the row number, 0 is returned,
while (0, 0) represents a dummy entity. Using this function makes it possible to find
out which rule parameters are required by the other two rule functions.

3.4. Structural Rules

The structural rules are the most complex part of our program. They are implemented
in the module StructuralRule. A central function is

getPoss ib leMoves
: : Dia logStep −> [GameNav ] −> Player −> Action −> [Move ]

As inputs it receives

1. a dialogue with its annotations

2. a navigation information indicating the current game of the dialogue

3. the player whose turn it is next

4. an action (Attacking or Defending)

and generates all possible moves for the player in the game depending on the structural
rules and the action.

However, this function is not able to cover all structural rules, because some are inde-
pendent from moves. Those which are not, might make restrictions on possible particle

8Guards are explained by [OGS09], p. 68, 69.
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rule parameters for the next move or even disallow expressions (independently from
the parameters, e.g. atomic formulæ).

Table 3.2 shows which rule affects which domain and which function covers which
rule.

Rule Function Affects
SR-ST0 (starting rule) getBeginningPlayer Player
SR-ST1 (winning rule) getWinnerOfGame Player
SR-ST2 (round-closing rule) getPossibleMoves Moves, Parameters
SR-ST3 (strategy-branching) No function in module Dialogue
SR-ST4cALC (prime formulæ) getPossibleMoves Moves, Parameters
SR-ST5 (no-delaying tactics) getPossibleMoves Moves
SR-ST6cALC (entities) getPossibleMoves Moves, Parameters
SR-ST7cALC (coupling-rule) getPossibleMoves Moves

Table 3.2.: Domains Affected by Structural Rules

Because the strategy branching rule depends on the interaction mode, we cover it at
the end. The dialogues may run user-controlled or automatically and we do not need
any branching if the dialogue is completely controlled by the user.

3.4.1. Rules Affecting the Player

The first function is very simple, as it just returns the first player, i.e. P.

getBeg inn ingPlayer : : Player
getBeg inn ingPlayer = P

The winner of a game is obtained thus:

getWinnerOfGame : : Dia logStep −> [GameNav ] −> Maybe Player
getWinnerOfGame ( dia logue , gCol l , eCol l , aCol l , t r a c e ) nav
| not ( isEmpty ( getAl lPoss ib l eMoves s tep nav nextPlayer ) ) = Nothing
−− more moves p o s s i b l e

| nextPlayer == P = Just O −− P can ’ t move , O wins
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| gameClosed gCol l nav = Just P −− O can ’ t move and game i s c l o s ed
| otherwise = Nothing −− O can ’ t move but game i s s t i l l open
where s tep = ( dia logue , gCol l , eCol l , aCol l , t r a c e )

game = getGame d ia l ogue nav
l a s tA s s e r t = ge tLas tAs s e r t i on game
nextPlayer = changePlayer ( getPlayerFromAssert ion l a s tA s s e r t )
winner = getPlayerFromAssert ion l a s tA s s e r t

Note that the function getAllPossibleMoves calls getPossibleMoves twice: once to
obtain attacking moves and once for defending moves. Both results are combined to
one, sorted depending on the player’s strategy (see Section 3.4.5), and returned.

If the game is not finished (i.e. the next player is able to move) then we have no winner
and Nothing is returned. Otherwise, if the last player who has performed a move is
the opponent, she wins. If the last player is the proponent, the game must also be
closed (checked with function gameClosed) in order for him to win. Last possibility:
if O cannot move and the game is not closed, we have a state that is not defined by
SR-ST1. We believe that this never happens (it is not proved and therefore still an
open problem). Nevertheless, if it does, then Nothing is returned.

3.4.2. Rules Affecting Moves

Let us now have a look at the move-creating function getPossibleMoves.

getPoss ib leMoves
: : Dia logStep −> [GameNav ] −> Player −> Action −> [Move ]

getPoss ib leMoves ( d ia logue , gameA , entityA , assA , _)
nav p laye r ac t i on

| a c t i on == Attacking = at tackResu l t s
| otherwise = de f enceResu l t s
. . .

This is just an abstract declaration. If the action is Attacking then attacking moves
are returned, otherwise defending moves are obtained which we examine first:
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Defending Moves Generally

. . .
where
−− genera l cons tan t s
r i v a l = changePlayer p laye r
game = getGame d ia l ogue nav
a l lRu l e s = ge tA l lPa r t i c l eRu l e s −− a l l p a r t i c l e r u l e s
−− Defending aga in s t an unanswered a t t a c k
−− a l l unanswered a t t a c k s o f r i v a l ( rows )

defendableRows = getDefendableAttacks game r i v a l nav assA
de f endab l eAs se r t s = retr ieveSortedAssert ionsFromGame game

defendableRows
de fenceRules = map fromJust

(map ( ge tSu i tab l eRu l e a l lRu l e s game Defending )
de f endab l eAs se r t s )

. . .

So far, we get the defendable assertions by obtaining the row numbers of unlocked
attacks stated by the rival, followed by retrieving the corresponding assertions which
might be attackable independently from the parameters. These assertions are our basis.
Let us consider the function getDefendableAttacks later. In the next steps we will
filter out those that are disallowed by certain structural rules.

The value defenceRules contains a list of suitable particle rules. For each attack, we
get exactly one particle rule that is able to create a defence.

−− e n t i t y f o r which the de fence s h a l l t ake p l ace
de fenceEnt i tyIDs

= map fromJust (map getRefDstFromAttack de f endab l eAs se r t s )
−− r t ype o f de fence ( i f necessary )
defenceRTypes

= map getRTypeFromAttack de f endab l eAs se r t s
−− p a r t i c l e r u l e parameters ( i f p o s s i b l e )
defenceParams

= mappedPartic leParameters game nav assA p layer Defending
de fenceEnt i tyIDs defendableRows defenceRTypes de fenceRules

−− the de fence ru l e ( i f t h e r e i s any ) wi th i t s params and rows
defenceWithAction

= map (\ ( x , y , z ) −> (Defending , x , y , z ) ) defenceParams



110 3. Design and Implementation of a Dialogue-Based Prover for cALC

After obtaining the required entities and role-types (needed when defending against a
∀r or ∃r) for the defences, we can generate possible rule parameters. For this, we use
the function mappedParticleParameters. Depending on the player, existing role- and
refinement-relations are used or new entities are created. This is quite a complex proce-
dure and we discuss it at the end of this section. However, this function returns particle
rules with different possible parameter bindings. The value DefenceWithAction con-
tains the resulting moves.

. . .
−− remove a l l moves which do not genera te new p o s s i b i l i t i e s .
defenceNoRepeat = removeRepet i t ions defenceWithAction nav assA
−− remove a l l moves which cause atomic problems ( on ly f o r proponent )
defenceWithoutAtom

= i f ( p laye r == P) then
( f i l t e r (\x −> (not ( causeAtomProblem x game ) ) ) defenceNoRepeat )
else defenceNoRepeat

−− remove a l l t r i p l e s where no parameters are g iven
de f enceResu l t s

= f i l t e r (\ ( a , x , y , z ) −> (not ( isEmpty y ) ) ) defenceWithoutAtom
. . .

Now the last steps: we remove the moves that have already been applied to the attacks.
In other words: The same particle rule with the same parameters (with the exception of
the NewRow-parameter) is not allowed to be applied twice on the same assertion. This
reduces the amount of possibilities after repetitions are allowed due to rule SR-ST5I.

According to rule SR-ST4cALC, P must not state an atomic formula if it has not
been stated by O for the same or a more general entity before. So, if it is P’s turn to
move, we have to check the situation. The function causeAtomProblem does this for
us. Only those moves will remain which do not cause such an atom problem.

Finally, we remove those moves that do not contain any rule parameters. This is just
a security measure. Because all particle rules need at least one parameter so that they
can do something, a move without parameters does not make any sense.
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Attacking Moves Generally

Let us now look at the second part of our move generator, the attacking part.

. . .
−− f i l t e r e d unat tacked a s s e r t i o n s o f r i v a l ( row )
−− ( on ly those , the p l aye r can a t t a c k )
attackableRows = getAt tackab l eAs s e r t i on s game r i v a l nav

(gameA , entityA , assA )
−− f i l t e r e d unat tacked a s s e r t i o n s o f r i v a l ( a s s e r t i o n s )
a t t a ckab l eAs s e r t s = retr ieveSortedAssert ionsFromGame game attackableRows
−− e n t i t i e s o f the a s s e r t i o n s to be a t t a cked
attackSrcEnt i tyIDs = map getEntityFromAssert ion a t t a ckab l eAs s e r t s
−− e xp r e s s i on s which are going to be a t t a cked
expsToBeAttacked = map fromJust (map assert ionToExp a t t a ckab l eAs s e r t s )
−− r t ype o f a t t a c k s ( i f necessary ) as maybes
attackRTypes = map getRTypeFromExp expsToBeAttacked
−− a t t a c k i n g p a r t i c l e r u l e s
attackRules = map fromJust

(map ( ge tSu i tab l eRu l e a l lRu l e s game Attacking )
a t t a ckab l eAs s e r t s )

−− r u l e s wi th parameters and r e f e r enc e s
attackParameters

= mappedPartic leParameters game nav assA p layer Attacking
attackSrcEnt i tyIDs attackableRows attackRTypes attackRules

−− the a t t a c k r u l e s ( i f t h e r e are any ) wi th t h e i r parameters and rows
attacksWithAction

= map (\ ( x , y , z ) −> ( Attacking , x , y , z ) ) attackParameters
−− remove a l l moves which do not genera te new p o s s i b i l i t i e s .
attacksNoRepeat = removeRepet i t ions attacksWithAction nav assA
−− remove a l l moves which cause atomic problems ( on ly f o r proponent )
attacksWithoutAtom

= i f ( p laye r == P) then
( f i l t e r (\x −> (not ( causeAtomProblem x game ) ) ) attacksNoRepeat )
else attacksNoRepeat

−− remove a l l t u p l e s where no parameters are g iven
at tackResu l t s

= f i l t e r (\ ( a , x , y , z ) −> (not ( isEmpty y ) ) ) attacksWithoutAtom
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As we see, it is a similar approach with respect to the defending part of the func-
tion. The main differences are that we call getAttackableAssertions instead of
getDefenadableAttacks and that the parameter creation which is achieved by the
already used function mappedParticleParameters now involves the action Attacking

instead of Defending. The rest should now be self-explanatory.

Defences in Focus

There are still two functions we have to consider in detail to understand how defending
moves are constructed.

getDefendableAttacks
: : Game −> Player −> [GameNav ] −> Assert ionACol l −> [ Reference ]

−− Game, r i v a l , nav iga t ion , Co l l e c t i on , de f endab l e a t t a c k s
getDefendableAttacks game r i v a l nav aCol l

| isEmpty unanswAttacksRival = [ ] −− no a t t a c k l e f t to be defended !
| otherwise = defendab leRowsPart i c l e −− Everyth ing t ha t may be defended .

where
−− de fend ing p l aye r
de fender = changePlayer r i v a l
−− a l l unanswered a t t a c k s o f r i v a l ( rows )
unanswAttacksRival = getUnansweredAttacks game r i v a l nav aCol l
−− l a s t unanswered a t t a c k o f r i v a l ( row )
lastUnanswRivalRow = last unanswAttacksRival
−− l a s t unanswered a t t a c k o f r i v a l ( a s s e r t i on )
lastUnanswRivalAss = retrieveAssertionFromGame game lastUnanswRivalRow

. . .

We first retrieve the rival’s attacks which have not been answered. This is done by
checking the corresponding assertion annotations. If we follow the intuitionistic version
of rule SR-ST2, the player may only defend against the last attack stated by the rival.
We obey and obtain that attacking assertion.

−− de fend ing ru l e ( as Maybe)
defendRulesMaybe

= map ( ge tSu i tab l eRu l e g e tA l lPa r t i c l eRu l e s game Defending )
[ lastUnanswRivalAss ]
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−− r e s u l t ( s )
de fendab leRowsPart i c l e
= f i l t e rL i s tWithMaybe [ lastUnanswRivalRow ] defendRulesMaybe

As the rest should also be applicable if we consider more than one attack (e.g. when
using SR-ST2C), we use the map function9 on the list of attacking assertions. In
our case, we have just one (the last attack). Eventually, only those row numbers
are returned for which a particle rule exists that might be applicable (syntactically).
This is achieved by filtering out those assertions for which getSuitableRule returns
Nothing.

We are now finished with the defending moves except for the creation of rule parameters;
still, let us delay this and look at the getAttackableAssertions first.

Attacks in Focus

This function is close to getDefendableAttacks, but of course other annotations are
relevant.

ge tAt tackab l eAs s e r t i on s
: : Game −> Player −> [GameNav ] −> AnnoDiaGroup −> [ Reference ]

−− Game, r i v a l , nav iga t ion , c o l l e c t i o n s , a t t a c k a b l e a s s e r t i o n s
ge tAt tackab l eAs s e r t i on s game r i v a l nav ( gColl , eCol l , aCol l )
= attackab l eRowsPart i c l e −− Everyth ing which i s not l o cked

where
a t tacke r = changePlayer r i v a l −− a t t a c k i n g p l aye r
−− r i v a l ’ s a s s e r t i o n s which are not l o cked ( rows )
unlockedAndUnprotectedRows

= getUnlockedAndUnprotectedAssert ions game r i v a l nav
( gColl , eCol l , aCol l )

−− r i v a l ’ s a s s e r t i o n s which are not l o cked ( a s s e r t i o n s )
unlockedAndUnproAssertions

= retr ieveSortedAssert ionsFromGame game unlockedAndUnprotectedRows
−− Find out which o f the remaining rows can be a t t a cked depending on
−− the p a r t i c l e r u l e s ; maybes are re turned
attackRules = map ( ge tSu i tab l eRu l e g e tA l lPa r t i c l eRu l e s game Attacking )

unlockedAndUnproAssertions

9explained in [OGS09], p. 88–90
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−− f i l t e r unat tacked and unpro tec ted a s s e r t i o n s o f r i v a l ( row )
at tackab l eRowsPart i c l e
= f i l t e rL i s tWithMaybe unlockedAndUnprotectedRows attackRules

Note that the type AnnoDiaGroup is a tuple holding the three annotation collections:
annotations for games, for entities and for assertions.

The function unlockedAndUnprotectedRows returns those rows of assertions which are
not locked for attacks (i.e. having no Locked -annotation) and which are not stated for
a protected entity. The rest is similar to the procedure applied for defences.

Creating Particle Rule Parameters

The parameter creation functions obey the rule SR-ST6cALC. If it is O’s turn and
she wants to attack, there is no need to do much. We just create a new refining entity
and if we attack a ∀r then we additionally generate a new role-filler. If O defends
against P’s attack of an ∃r, she will generate a new role-filler as well.

However, for P we have bigger problems. As he is not allowed to generate new entities,
he has to use already defined ones. With an attack, he may change to an arbitrary
refining entity including the entity for which O has stated her assertion that is now
attacked. The only restriction: if P attacks a ∀r, he has to tell O which role-filler
he wishes her to access. Then of course, this role-filler must exist, i.e. it must have
been introduced by O before, but this is not the only problem. The role-filler must
be accessible from the refining entity, he claims with his attack. In this case, his
possibilities are restricted, of course.

There are some functions that cover these cases. It would go beyond the scope of
this work to explain them in detail. The function getPRuleParameters, which is used
by the already mentioned mappedParticleParameters, does exactly this. It returns
a list of parameter lists that are applicable for a particle rule in a given game by a
certain player. We then have to combine all parameter possibilities with all particle
rule possibilities and then we have our moves.
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3.4.3. Updating Annotations

So far, we have made use of assertion and entity annotations. Let us now see when it
is time to add or remove annotations. Whenever an assertion is appended to a game,
the annotations have to be updated.

Assertion Annotations

Whenever an assertion stated by player Y is attacked by playerX then Y ’s assertion will
be locked, i.e. it receives a Locked annotation. The only exception arises, if P attacks
a conjunctive formula stated by O, because he may then attack once the left and once
the right side and only if both sides have been attacked then the formula is locked.
However, if O is the attacker, it is enough to attack one side, as he may perform a
back-track according to rule SR-ST3. This asymmetry is not mentioned explicitly in
the structural rules, but it appears reasonable if we consider the tableau-rules and the
translation performed by [Bla01].

So, let us use the annotation values LeftAttacked and RightAttacked. If P is attack-
ing the left side of a conjunction, then the attacked assertion receives the LeftAttacked-
annotation and RightAttacked when attacking the right side. As soon as both sides
have been attacked, the assertion will eventually be locked.

getNewAttackAnnotations
: : As se r t i on −> [GameNav ] −> Row −> Assert ionACol l −> [ AssertionAnn ]

−− a t t a c k i n g as s e r t i on , nav , row o f a t t a cked as se r t , c o l l e c t i o n , new ann
getNewAttackAnnotations
( Attack _ player _ ( Label (LaL _ _) ) ) nav row aCol l −− Attack AND ( l e f t )

| p l aye r == O = LeftAttacked : [ Locked ] −− l o c ked immediate ly
| otherwise = LeftAttacked : isLockedP −− l o c ked a f t e r both a t t a c k s
where isLockedP = i f ( a s se r t i onAttackedRight aCol l nav row )

then [ Locked ] else [ ]
getNewAttackAnnotations
( Attack _ player _ ( Label (LaR _ _) ) ) nav row aCol l −− Attack AND ( r i g h t )

| p l aye r == O = RightAttacked : [ Locked ]
| otherwise = RightAttacked : isLockedP
where isLockedP = i f ( a s se r t i onAttackedRight aCol l nav row )

then [ Locked ] else [ ]
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getNewAttackAnnotations ( Attack _ _ _ _) nav row aCol l = [ Locked ] −−Other

The first pattern handles attacks with L-labels, the second one attacks with the R-label
and the final one handles all other attacks which will always cause locks.

Note that attacking assertions which are labels are always locked because they are not
attackable.

Now, in order to realise the no-delaying tactic rule (SR-ST5), the Locks have to vanish
again if O states an atomic formula, but of course, the locked attacking labels must
stay locked.

unlockAttackedAsser t ions
: : Game −> Assert ionACol l −> [GameNav ] −> Player −> Assert ionACol l

−− game , a s s e r t i on annotat ions , nav iga t ion , p layer , new annota t ions
unlockAttackedAsser t ions game aCol l nav p laye r
= fo ld l (\ c o l l row −> removeAnnotations ( nav , row )

[ Locked , LeftAttacked , RightAttacked ] c o l l )
aCol l noLabelRows

where
a s s e r t i o n s = ge tA l lA s s e r t i on s game p layer
noLabe lAsserts = f i l t e r (\ a s s e r t i o n −> not ( hasLabel a s s e r t i o n ) )

a s s e r t i o n s −− no l a b e l
noLabelRows = map getRowFromAssertion noLabe lAsserts

With foldl10, the function removeAnnotation is applied to all relevant rows using
the result as the next input each time, i.e. all assertions that do not have any attack-
ing labels. For each remaining assertion, the annotations Locked, LeftAttacked and
RightAttacked are removed (if they are available).

As this function is triggered as soon as O states a prime formula, rule SR-ST5 is
covered, so let us move to the next annotation types.

Every defending assertion that is added to a game immediately receives an IsDefence-
annotation, while the corresponding attack the player defends against, receives an
AnsweredAttack-annotation so that it is not possible to answer it again. This con-
cerns especially rule SR-ST2I.

10folding is explained by [OGS09], p. 93–97.
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The last annotation AppliedMoves holds a list of abstract moves. The annotation
is added as soon as the first move is applied on the corresponding assertion. After
performing other moves on the same assertion, the list of abstract moves is extended
accordingly. With these annotations, we prevent the player from repeating a move with
the same parameters (excluding the NewRow-parameter) on the same assertion after it
has been unlocked.

Entity Annotations

Whenever P might be able to access a role-filling entity by performing a defence, the
entity receives a PAccessible-annotation. The problem is that P might be prohibited
to access the entity because of other rules. However, it is important that P would be
allowed to do so with a defence sooner or later (SR-ST7cALC).

The following function defines if a role-filling entity is accessible by a player:

ch e c kEn t i t yAc c e s s i b i l i t y
: : EntityID −> Player −> DialogStep −> [GameNav ] −> Bool

−− e n t i t y to check , p layer ,
−− s t ep wi th updated a s s e r t i on annota t ions and games , nav
ch e c kEn t i t yAc c e s s i b i l i t y

d e s t i n a t i on p laye r ( d ia logue , gCol l , eCol l , aCol l , t r a c e ) nav
= not

( isEmpty ( f i l t e r ( containsParam ( Ro l eF i l l e r ( 0 , 0 ) ) ) pRuleParameters ) )
−− only i f a t l e a s t one ro l e− f i l l e r might be accessed wi th a de fence
−− t h a t t rue i s re turned
where
s tep = ( dia logue , gCol l , eCol l , aCol l , t r a c e )
game = getGame d ia l ogue nav
−− a l l r o l e s t ha t have ’ en t i t y ’ as ro l e− f i l l e r
r e l evan tRo l e s = f i l t e r (\ r o l e −> ( getRelDst r o l e ) == de s t i n a t i on )

( getAl lRelat ionsInGame game)
−− a l l o f O’ s unanswered a t t a c k s
unansweredAttackRows

= getUnansweredAttacks game ( changePlayer p laye r ) nav aCol l
unansweredAttacks

= retr ieveSortedAssert ionsFromGame game unansweredAttackRows
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−− a l l a t t a c k s t ha t c laim an e n t i t y which i s member o f ’ ro l eSources ’
r e l evantAttacks = f i l t e r

(\ a −> ex i s t s Su i t a b l eDe s t i n a t i o n a r e l evan tRo l e s ) unansweredAttacks
−− a l l p a r t i c l e r u l e s t h a t may be app l i e d to the r e l e v an t a t t a c k s
defendingPRules

= catMaybes
(map ( ge tSu i tab l eRu l e g e tA l lPa r t i c l eRu l e s game Defending )

r e l evantAttacks )
−− r u l e parameters f o r the de f ences aga in s t the r e l e v an t a t t a c k s
pRuleParameters

= map (\x −> ( pRuleGetParRequire x ) Defending ) defendingPRules

We first obtain those entities for which our query entity is a role-filler. In this way, we
get our relevant roles. Next, we retrieve all of the rival’s attacks that have not been
answered yet. These are our unanswered attacks.

We keep those attacks that have a suitable destination, i.e. the claimed refining entity
must have the queried entity as role-filler. Now an artful trick: we find out which parti-
cle rule can be used to defend these remaining attacks and then we request the parame-
ters that are required to perform these defences. If there is at least one parameter-group
that contains a RoleFiller parameter then the queried role-filling entity is accessible
by the player.

To explain it again in a more formal way: let us suppose that we want to check if
an entity ε∗ is accessible by player X. Then we first get Y ’s unanswered attacks A
(denoted by unavailable AnsweredAttack annotations). Every attack a ∈ A claims
a refining entity ε′ for which X is compelled to defend himself. We check only these
attacks of A for which there is a role-relation from ε′ to ε∗. Then we look if, according
to the particle rules, defences are possible for these remaining attacks and obtain the
required particle rule parameters. If there is at least one RoleFiller parameter, we
can be sure that with a defence, X would be able to access ε∗.

So, after solving this problem let us move to the next one. As explained before, an entity
ε∗ is protected with respect to rule SR-ST7cALC if and only if it is not accessible by
P with respect to SR-ST7cALC and O has been forced to generate ε∗ with a defence.
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causeEnt i tyProtected
: : As se r t i on −> Game −> [GameNav ] −> EntityAColl −> [ EntityID ] −> Bool

−− added as s e r t i on , game , nav . ,
−− annota t ions wi th updated PAccess ib l e annotat ions , new e n t i t i e s
causeEnt i tyProtected ( Defence row ent i tyID O r e f e r e n c e exp)

game nav eCo l l newEnt i t i e s
| en t i t yPAcce s s i b l e eCo l l nav ent i tyID = False −− a c c e s s i b l e by P
| otherwise = member ent i tyID newEnt i t i e s

causeEnt i tyProtected _ _ _ _ _ = False

This is quite easy as this function receives the assertion that has just been added to
the game and also the new entities (i.e. those which have not been part of the game
before appending the last assertion) as inputs. An entity may only be protected with
a defending move performed by O. This is covered by the first pattern. In any other
case, False is returned (second pattern).

We first check if there is a PAccessible annotation for the entity entityID used by
O’s defending assertion. In this case, the entity cannot be protected. If there is no such
annotation for entityID then we have to find out if it is new. This means that it has
not existed in the game before the move. Additionally, entityID must be a role-filler,
but we do not test this, because every entity introduced by O with a defence must be
a role-filler. All other entities O uses in defences are claimed by P in his attacks and
therefore must already exist.

So, if the entity ε∗ that is used by O’s new assertion is not accessible by P and is also
new then it is protected.

Game Annotations

Let us keep that matter short. First of all, if a player states a prime formula, then it is
added to the game’s entity information. As we have one list for atoms stated by O and
one for atoms stated by P we are then able to check quite easily if the intersection of
both lists is empty or if it is not. But obviously, we also have to consider the more
general entities.
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But it is even easier because of rule SR-ST4cALC. So, if P states an atomic formula,
it must have been stated by O for the same or a more general entity before and therefore
the game is closed anyway. It then receives a GameClosed-annotation.

A game is finished if and only if the player whose turn it is next cannot move anymore,
i.e. our function getAllPossibleMoves returns an empty list. The game then receives
a GameFinished-annotation.

With both annotations we can find out easily who is the winner of a game (SR-ST1).
We have talked about that earlier.

3.4.4. Backtrack

Let us finally consider rule SR-ST3. It says that O may perform a backtrack to any
position she has had a choice, if she loses a game. However, this is not enough for us
because we also have to enable P to do the same (see Section 2.3.5).

Whenever a player has more than one choice, the corresponding game is removed from
the tree and copied as much times as we have choices for the player. To each copy,
one possible move/assertion is appended. We then add a node to the dialogue at the
position where the game has been, indicating the row number where the choice has
been made and the player who has made the choice. Afterwards, all new games are
attached to that node. This procedure is illustrated in Figure 3.6. Here, game1.1 is
copied and extended with two of O’s possible moves (in row 5) and afterwards replaced
by a new node referring to both copies.

Of course, the annotations for the original game have to be copied, too. Further, the
keys containing the navigation path to indicate the game have to be shifted so that we
can find our new games afterwards.

Now, backtracking is performed quite easily. The losing player just moves upwards to
the node that is labelled by his/her name and enters the next possibility. For example,
(regarding the situation illustrated in Figure 3.6) if P loses game1.1.1 then he will move
upwards through the tree, looking for a node marked with “ player = P ”. If he does
not find such a node, he has lost definitely. But in our example, he finds one and goes
directly to game1.2. In this way, we perform a Depth-First Search.



3.4. Structural Rules 121

row = 2 player = P

row = 4 player = P

game1.1 game1.2

game2

row = 2 player = P

row = 4 player = P

row = 5 player = O

game1.1.1 game1.1.2

game1.2

game2

Figure 3.6.: Adding two Possible Moves to a Dialogue at the same Time

3.4.5. Strategies

As explained before, the function getAllPossibleMoves obtains both the attacking
and defending moves that are possible to be performed by a given player. Now, we
have seen in Section 2.3.3 that it is wise for O to create new entities whenever possible.
This is already implemented, but in addition, it seems to be clever for P to follow the
most refining entity if he attacks one of O’s assertions. Further, while O seems to have
better chances to move P in a worse position if she attacks instead of defending, P has
better chances when preferring defences (especially because of rule SR-ST2I).

Note that if we request attacking moves for P with getPossibleMoves and one attack
is possible for different refining entities, because P may move the focus to an arbitrary
refining entity, then at the beginning of the returned list, we have those attacks that
claim the more general entities (e.g. 1.0), followed by the same attacks for more refining
entities (e.g. 1.1, 1.2, . . . )

So, as this is not relevant for O, in her case, our strategy function only collects the
attacking moves and appends the defending ones. For P, we do the same but addition-
ally we reverse the resulting list. Now the defences are at the beginning and for the
attacks which are the same but claim different refining entities, those which claim more
refining ones appear before those which claim less refining entities.
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Figure 3.7.: Selecting the Level of Interaction

getAl lPoss ib l eMoves : : Dia logStep −> [GameNav ] −> Player −> [Move ]
getAl lPoss ib l eMoves s tep nav p laye r
| p laye r == P = defendingMoves ++ ( reverse attackingMoves )
| otherwise = attackingMoves ++ defendingMoves

where attackingMoves = getPoss ib leMoves s tep nav p laye r Attacking
defendingMoves = getPoss ib leMoves s tep nav p laye r Defending

With these strategies, as the players react in a more clever way, it is likely that they
do not have to backtrack if they have made the correct choice in the first place. The
dialogue tree might then be shorter.

3.5. A Simple User-Interface

Finally, let us have a look at a terminal-based user-interface. It is also implemented
in Haskell using monads11. It is started in ghci by typing menu Nothing after loading
the module DialogInterface. Alternatively, you can call the executable binary of the
bin-folder.

Starting a new dialogue leads us to a screen where we are asked to enter the thesis.
It can be written as explained in Section 3.2.2. After that, we choose the level of
interaction by typing the corresponding number (Figure 3.7). The first option will start
a dialogue which is completely controlled by the user, i.e. the user selects the moves
for both players, so no branches are recorded. By contrast, for the second option,
11We use I/O monads which are explained by [OGS09], p. 183–188; the I/O system in general on p.

165 ff.
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O is controlled by the program. Whenever she loses against the user, she will perform a
backtrack. Therefore, all of O’s decisions are recorded in the dialogue structure. P must
not backtrack.

The last option tests all possible moves until the loser of a game is not able to backtrack,
because he/she has no other decision nodes in the dialogue structure that have not been
fully exploited. Then it is clear who is the winner.

After selecting the level of interaction, the option menu appears (Figure 3.8). Here, we
can save a current dialogue to a file, export the tree-structure to a PDF-file or set the
bound.

The bound indicates the maximal length of a game, i.e. the maximum number of
assertions assigned to it. If this limit is exceeded, the corresponding branch of the
dialogue tree is pruned and P will backtrack if running in fully automated mode. A
message is also displayed on the screen noting that this has happened.

We type c in order to start the dialogue. If we have selected the fully automated mode
before, we just have to wait until the program has found the solution. The program
then returns to the option menu. In the interactive modes, the current game is shown
on the screen and we may decide for the player, whose turn it is next, which move we
want him/her to perform.

Figure 3.9 explains how to read the output of the program. It shows a game after some
moves have been performed and all the possible moves for the next player to continue.
We just select the move we want P to perform by typing the number displayed in the
corresponding box. If we type 0, the dialogue will be interrupted and we return to the
option menu. Then, we may select c to continue the game or do something else listed
in the menu.

At the end, the winner will is displayed.
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Figure 3.8.: The Option Menu

Figure 3.9.: The User is Asked to Select a Move For Player P



4
Evaluation and Further

Steps
In this last chapter, we compare the tableau calculus by [Sch] and our dialogue system
for cALC. We also make some suggestions on how to improve the rules and how to
show its soundness.

After that, we discuss the implementation concerning the used programming language,
problems that have occurred and possible improvements.

4.1. Testing

Right now, we have no proof showing that the dialogue rules are adequate, i.e. that our
‘algorithm’ is sound and complete. We have performed tests on some simple formulæ.
Later, in Section 4.2.4, we make some suggestions on how one might be able to prove
soundness and completeness for the dialogues. As we will see, there are some prob-
lems showing validity or invalidity of some formulæ, because of resource restrictions
concerning our program.

For every formula that is presented here, one can find a dialogue file on the CD that
is attached to this work. The files always contain only the initial dialogues with P’s
theses. For the dialogues that can be finished, an illustration of the corresponding
tree can be found on the CD, too. Whenever we refer to a file, we use the symbol
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� followed by the file name of the folder dialogues. The corresponding PDF files
have the same prefix name (pdf as suffix) and can be found in the same directory.

4.1.1. Some Basic Intuitionist Features

In classical Description Logic, the formula

(C v D) v (¬D v ¬C)

is valid and also in intuitionistic logic (� in01.dlg ). We can test the validity for
cALC with the tableau calculus with an initial constraint system, e.g. S0 = (C0,A0)

such that
C0 = {x : +(C v D), x : −(¬D v ¬C)} A0 = {x}

In addition, as C and D may be arbitrary concepts, we can replace them by more
complex descriptions, e.g.

(∀r.C v ∃t.D) v (¬∃t.D v ¬∀r.C)

(� in02.dlg ). For a dialogue with this expression stated as thesis, the branching is now
much more dramatic. This is because P has different choices for the claimed refining
entity he may choose for his attacks. Allowing him to repeat attacks after O has stated
a prime formula (SR-ST5I) even increases the number of possibilities for moves.

As we see in this example, it is not always the best choice for P to follow the most
refining entity with his attacks. Let us consider this dialogical game:

O P

1 P - ! - (∀r.C v ∃t.D) v
(¬∃t.D v ¬∀r.C) - 1.0

2 ?1 O - ! - ∀r.C v ∃t.D - 1.0 � 1.1 !2 P - ! - ¬∃r.D v ¬∀r.C - 1.1

3 ?2 O - ! - ¬∃t.D - 1.1 � 1.2 !3 P - ! - ¬∀r.C - 1.2

4 ?3 O - ! - ∀r.C - 1.2 � 1.3 ?3 P - ! - ∃t.D - 1.2 � 1.3

5 ?4 O - ? - ∃t - 1.3 � 1.4 ?2 P - ! - ∀r.C - 1.1 � 1.4

6 ?5 O - ? - ∀r/2.0 - 1.4 � 1.5 ?4 P - ? - ∀r/2.0 - 1.3 � 1.5

7 !6 O - ! - C - 2.0 !6 P - ! - C - 2.0

8 !5 O - ! - ∃t.D - 1.4 ?8 P - ? - ∃t - 1.4 � 1.4

9 !8 O - ! - D - 3.0 !5 P - ! - D - 3.0

Table 4.1.: Sometimes it is Better not to Choose the most Refining Entity
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In row 8, P claims 1.4 as refining entity (underlined). For him, this is clever, because in
row 5, O has already claimed 1.4 so he has to defend with a t-role-filler that is reachable
from 1.4. The only way to get it is to make O create it.

According to our implemented strategy, P claims the most refining entities with his
attacks. However, O has introduced 1.5 in row 6, so let us look at what would have
happened if P had claimed this.

O P
...

...
...

...
...

8 !5 O - ! - ∃t.D - 1.4 ?8 P - ? - ∃t - 1.4 � 1.5

9 !8 O - ! - D - 3.0 ?8 P - ? - ∃t - 1.4 � 1.4

10 !9 O - ! - D - 4.0 !5 O - ! - D - 4.0

In row 9, P may not defend himself against O’s attack of row 5, because the t-role-filler’s
source is entity 1.4. Fortunately, he may repeat his attack, claiming entity 1.4 instead
of 1.5 (rule SR-ST5I allows him to do so) but with this we have some further steps
(and much more branches). To sum up, it is not always the best choice to claim the
most refining entity when attacking.

Now let us consider the formula of the beginning the other way round (� in03.dlg ):

(¬D v ¬C) v (C v D)

For classical logic, this is correct, but for cALC it is not. Unfortunately, there are so
many possibilities for P of how to react in later steps that it is almost impossible to
write all games down. Additionally, the games are getting too long so that our imple-
mentation prunes the corresponding branches in the dialogue tree after fifty assertions.
Using a higher bound causes us waiting even longer and the memory runs out.

As we know that the expression is not valid for cALC, all possibilities have to be
checked to show the invalidity in the dialogue. So here, our procedure is not able to
handle that formula in a reasonable way, although it is a quite simple one.
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Peirce’s Law

Peirce’s Law is not valid in intuitionist logic, but in classical logic (see [RK05], p. 373).
A ‘descriptive version’ looks thus (� peirce.dlg ):

((C v D) v C) v C

Unfortunately, there is a cycle in this case. The problem is the no delaying tactic rule
(SR-ST5I) which allows repetitions for P after O has stated a prime formula. The
dialogue looks thus:

O P

1 P - ! - ((C v D) v C) v C - 1.0

2 ?1 O - ! - (C v D) v C - 1.0 � 1.1 ?2 P - ! - C v D - 1.1 � 1.1

3 ?2 O - ! - C - 1.1 � 1.2 ?3 P - ! - C v D - 1.1 � 1.2

4 ?3 O - ! - C - 1.2 � 1.3 ?4 P - ! - C v D - 1.1 � 1.3
...

...
...

...
...

Table 4.2.: Peirce’s Law Causes Cycles

As O creates new refining entities with her attacks, P may follow her because with her
attack, O also states a prime formula each time, so that is why the cycle starts.

It is interesting that Peirce’s Law terminates in the tableau of [Sch], while other for-
mulæ do not. We talk about cycles in Section 4.2.3 again.

4.1.2. IK1 to IK5

Let us now try the descriptive versions of the intuitionistic axioms IK1 to IK5 (see
Section 1.2.3). We will also check FS11, FS22, FS4*3 and FS6.

1The > in FS1 has been replaced by ¬(Au¬A) so that we have no problems with our particle rules.
2We split FS2 into two single expressions and try to show both.
3We only show (∃r.A t ∃r.B) v ∃r.(A tB) because the other way round is already covered by IK4.
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These are our formulæ4 with the corresponding file names:

IK1 ∀r.(A v B) v (∀r.A v ∀r.B) � ik1.dlg

IK2 ∀r.(A v B) v (∃r.A v ∃r.B) � ik2.dlg

IK3 ¬∃r.(A u ¬A) � ik3.dlg

IK4 ∃r.(A tB) v (∃r.A t ∃r.B) � ik4.dlg

IK5 (∃r.A v ∀r.B) v ∀r.(A v B) � ik5.dlg

FS1 ∀r.(¬(A u ¬A)) � fs1.dlg

FS2 ∀r.(A uB) v (∀r.A u ∀r.B) � fs2a.dlg

(∀r.A u ∀r.B) v ∀r.(A uB) � fs2b.dlg

FS4* (∃r.A t ∃r.B) v ∃r.(A tB) � fs4b.dlg

FS6 ∃r.(A v B) v (∀r.A v ∃r.B) � fs6.dlg

We have already seen some of these dialogues in Section 2.3.5. Fortunately, for all dia-
logues, our program terminates and correct results are returned. You find the dialogue
trees on the CD. Again, the high branching factor in some examples is striking. This
is especially the case for dialogues for which P loses.

4.1.3. Other Formulæ

Let us try some other formulæ. As we can see easily, the expression

((A u C) t (A uB)) v (A uB)

is not valid (even not for classical ALC). So, P has to lose the dialogue
(� misc01.dlg ) if our system is correct. Indeed, he does, but when starting the pro-
gram, we see that hundreds of possibilities are generated. But finally, the correct result
is returned (O wins). Unfortunately, the tree is so large that GraphViz is not able to
create a PDF file. This is the reason why it is not on the CD.

Other valid formulæ such as

((A u C) t (A uB)) v A

4The ⊥ in IK3 has been replaced by A u ¬A so that we have no problems with our particle rules.
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(� misc02.dlg ) or a more complex variant like

((∀r.A t ∀t.C) t (∀r.A u ∀e.B)) v ∀r.A

(� misc03.dlg ) are no big problem. The expression

((C v D) u C) v D

(� misc04.dlg ; adapted from [RR98], p. 5) is also valid and does not cause trouble.
By contrast, a more complex version like

((∀r.C v ∃v.D) u ∀r.C) v ∃v.D

(� misc05.dlg ) does, because of the immense amount of possibilities for P. Note that
here, we have this problem the first time for a valid formula. However, the dialogue
can be written down quite easily. The problem is that our program does not perform a
good strategy for P. A tree showing the validity by omitting P’s ‘wrong’ decisions can
be found on the CD (� misc05O.pdf ).

4.1.4. Conclusion

Our tests provide some limited confidence that our procedure works correctly but there
are often problems concerning the amount of possibilities of moves that can be per-
formed by P, especially if the thesis is not valid. One reason is that P may repeat
his attacks whenever O states a prime formula. Another problem concerns cycles that
might occur because of rule SR-ST5I.

4.2. Dialogues in Scope

We now consider some advantages and disadvantages to tableau-based reasoning as it
has been shown in Section 1.2.5. Afterwards, we propose some suggestions on how
to improve dialogue-based reasoning and also on how one could prove soundness and
completeness.
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4.2.1. Advantages Compared to the Tableau-Based Algorithm

First of all, the tableau algorithm comes with three rules that we do not cover in the
dialogues. These are (→R−) that is covered by SR-ST7cALC, (→�+) that is covered
by P’s attacking particle rules and (→R⊥+) that might be needed to close the tableau
but as we do not cope with > and ⊥ in the dialogues directly, we do not need it
here. Further, we also do not need the active set because it is also implied by rule
SR-ST7cALC and its protected entities (though we do not have a proof for this).

As explained before, the global semantics for the dialogues are kept in the structural
rules, while the local semantics are declared by the particle rules which are symmetric,
i.e. they are the same for P and O. By contrast, the tableau only holds one set of rules,
but it has rules that are applicable either for positive constraints or for negative ones.
The semantics are hidden inside the preconditions and the active set.

Another point is the independence of structural and particle rules in the dialogues. We
can modify them easily and generate new logics by extending or altering them. As
stated in Section 2.4, we could for example introduce transitive or reflexive roles by
replacing a structural rule.

4.2.2. Disadvantages Compared to the Tableau-Based Algorithm

As we have just seen, the dialogue can have an immense branching factor if all of P’s
moving possibilities are considered. This often results in a problem, as memory or time
resources might be exceeded quite quickly. We do not have this problem in the tableau
because it is not important in which order the rules are applied as we always get the
same result (proven by [Sch]).

Another big disadvantage are the formulations of the structural rules. As they are
informal, it is sometimes hard to interpret them. It is possible to misunderstand them
and do the wrong thing. Further, it is harder to check the correctness of informal rules
than it is for formal ones.

We have also seen that cycles might occur for some formulæ (e.g. Peirce’s Law) that
do not cause cycles in the tableau algorithm. This is also a problem that needs to be
fixed.
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4.2.3. Solving Problems

Branching and Cycles

The main reason for the high branching is rule SR-ST5I. The problem is that P may
attack O’s formulæ again and again, whenever she states a prime. Sometimes it even
causes cycles. So, we could adjust the rule so that it makes stricter restrictions on
possibilities for repetitions. However, this is a delicate issue, because after the rule has
been altered we do not know if the system is ‘still’ correct.

We have also seen that it might be helpful to improve P’s strategy concerning the
claimed entities in his attacks. This concerns especially the implementation. Better
strategies for P’s behaviour should reduce the runtime if the thesis is valid.

For the cycle detection, it might be better to introduce one more rule that describes
how cycles can be revealed and that prevents P to perform problematic moves. There
are also formulæ for which the tableau algorithm does not terminate, e.g.

(∃r.(C tD) u ¬∃r.C u ¬∃r.D) v ⊥

(see [MS09], p. 226 ff). [HS99] describe blocking mechanisms for transitive and inverse
roles in tableau algorithms that might be useful for this. A problem is that we do
not have a global view of a dialogue, as we do not have a set representing the ABox
that contains all formulæ. That is why it seems that cycle detection is not so easy for
dialogical games.

Further Possible Improvements

It could be helpful to embed guidelines about how to deal with TBoxes in the structural
rules because that matter is not recorded so far.

Further, whenever we have used > and ⊥, we have always replaced them by ¬(Au¬A)

and A u ¬A. However, for a formula C v ⊥ (with C being an arbitrary concept
description), this method is not recommendable. Just imagine that C is a concept
description containing A as atomic concept. Otherwise, we would still have some extra
moves to dissolve Au¬A. That is why it would be helpful to have particle rules for >
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and ⊥ and (if necessary) also structural rules that handle the corresponding (global)
semantics.

4.2.4. How to Show Soundness and Completeness

As we know from [Sch], the tableau algorithm for cALC is sound and complete. Now,
to prove soundness and completeness for our dialogues, it is enough to show that every
dialogue can be translated to a constraint system and every constraint system can be
translated to a dialogue. Still, this is a complex process because we have to consider
every single rule in detail.

We have seen several times that termination is not guaranteed. As suggested before,
this might be achieved by altering or adding structural rules.

4.3. The Implementation in Scope

Finally, let us have one more look at the implementation. We first discuss the suitability
of Haskell for implementing the dialogue-based reasoner. Afterwards, we give some
suggestions on how the implementation can be improved.

4.3.1. Experiences with Haskell

It is remarkable that you can declare functions and especially data types using the data-
and type-constructs very quickly in Haskell. Simple functions can be created intuitively
making use of pattern matching and guards. Further, mapping- and folding functions in
combination with anonymous functions make it possible to apply functions on a higher
amount of data in a fast and easy way.

Concerning testing, it is quite easy to find errors because of the absence of global
variables. As we know, the functions return the same output whenever we provide the
same input parameters. This makes it easy to find and correct errors.

Now, complex functions could become confusing, e.g. when using long let-constructs
(see for example the function getPossibleMoves from Section 3.4.2).
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Problems occur if we alter a type structure after having implemented some functions
that cope with it. Then we also have to adjust the functions, i.e. input patterns and
output values, and this can take much time, depending on the amount of functions that
are using this type.

Implementing user-interfaces is not so easy as it is with many procedural or object-
oriented languages, especially if we want to build a graphical user-interface (GUI),
because in Haskell, we do not have global variables and therefore we are not able
to store GUI-elements separately. For terminal-based interfaces, we have to deal with
monads. There are other restrictions compared to procedural languages, e.g. we cannot
make use of non-recursive loops.

An interesting issue is that the function getChar that receives a character from the user
and returns it, works perfectly in the Haskell interpreter GHCI, but after compiling,
it leads to the problem that the program continues only after the user has pressed the
return-key. But then, he has already entered the second character that is forwarded
and accepted by the next occurrence of getChar.5

However, in my opinion, Haskell has been a good choice for the implementation es-
pecially because of the possibilities concerning the data structures and mapping- and
folding functions.

4.3.2. Possible Improvements

The implementation can be improved especially by adding new features like a graphical
user-interface that visualizes the dialogues or games in a better way. One could also try
to improve the flexibility e.g. by making it possible to export particle and structural
rules to external configuration files that can be loaded into the program. For example,
such a thing is possible with the reasoner described and implemented by [Ehr96].

Apart from this, it seems to be reasonable to add a strategy-function that might be
based on heuristics and that sorts possible moves depending on the player and the
current game. This would probably improve the performance as it has already been
explained in previous sections.

5See also discussion: http://stackoverflow.com/questions/2706635/
why-isnt-my-io-executed-in-order

http://stackoverflow.com/questions/2706635/why-isnt-my-io-executed-in-order
http://stackoverflow.com/questions/2706635/why-isnt-my-io-executed-in-order
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Further, it might be possible to parallelize the search process. For example, if P has
to make a decision, each new branch of the dialogue tree can be processed by one
thread, as every branch contains the complete game and therefore they can be handled
independently from each other.

4.4. Final Conclusion

We have introduced a dialogue-based proof system for the constructive Description
Logic cALC. It has some disadvantages to the tableau-based algorithm, especially
because of the extreme branching factor. But on the other hand, it emphasizes the
semantics and provides another view of the proofs. For example, with respect to an
auditing process (see [MS08]), one could regard the proponent as the auditee claiming
that everything is all right in his business, while the auditor is represented by the
opponent who wants to check the correctness.

Improving the rules for the dialogues might solve many of the problems we have seen
in this chapter, so there is a motivation for further research on this topic.
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A
Rules

A.1. Particle Rules for cALC

These are the final particle rules for cALC-dialogues which are also used for the imple-
mentation.

u t ¬
Assert X - ! - C uD - ε X - ! - C tD - ε X - ! - ¬C - ε
Attack Y - ? - L - ε′ Y - ? - R - ε′ Y - ? - t - ε′ Y - ! - C - ε′

Defend X - ! - C - ε′ X - ! - D - ε′ X - ! - C - ε′ X - ! - D - ε′ —

v ∀r ∃r
Assert X - ! - C v D - ε X - ! - ∀r.C - ε X - ! - ∃r.C - ε
Attack Y - ! - C - ε′ Y - ? - ∀r/ε′∗ - ε′ † Y - ? - ∃r - ε′

Defend X - ! - D - ε′ X - ! - C - ε′∗ X - ! - C - ε′∗ ‡

Entity description:

• ε′ is a refining entity of ε, i.e. ε � ε′.

• ε′∗ is a r-role-filler of ε′.

†for any r-filling entity ε′∗ of ε′ that Y chooses
‡for any r-filling entity ε′∗ of ε′ that X chooses
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A.2. Structural Rules for cALC

These are the final structural rules for cALC-dialogues that are also used for the im-
plementation.

(SR-ST0) (starting rule): “Expressions are numbered and alternately uttered by
P and O. The thesis is uttered by P. All even numbered expressions including the thesis
are P-labelled, all odd numbered expressions are O moves. Every move below the thesis
is a reaction to an earlier move with another player label and performed according to the
particle and the other structural rules.”

[RK05], p. 372

(SR-ST1) (altered winning rule): A dialogical game is closed if and only if it contains
two copies of the same prime formula, one stated byX and the other one by Y . Otherwise
it is open. A dialogical game is finished if no other move is allowed by the (other)
structural and particle rules of the game. The player who stated the thesis wins the
game if and only if it is closed and finished and the last move of the game has been
performed by this player. The player who started the dialogue as a challenger wins if the
game is finished and if he/she has performed the last move of the game.

(SR-ST2I) (intuitionist ROUND closing rule): “In any move, each player may
attack a (complex) formula asserted by his partner or he may defend himself against the
last not already defended attack. Defences may be postponed as long as attacks can be
performed. Only the latest open attack may be answered: if it is X’s turn at position n
and there are two open attacks m, l such that m < l < n, then X may not at position n
defend himself against m.”

[RK05], p. 372

(SR-ST3) (strategy branching rule): “At every propositional choice (i.e., when O de-
fends a disjunction, reacts to the attack against a conditional or attacks a conjunction),
O will motivate the generation of two [dialogical games] differentiated only by the ex-
pressions produced by the choice. O will move into a second [dialogical game] [if and
only if] he loses the first chosen one. No other move will generate new [games].”

[RK05], p. 372

(SR-ST4cALC) (formal use of prime formulæ for cALC): only O may introduce
prime formulæ. P cannot use a prime formula O did not utter first for the same entity
or an entity which is refined by the entity P wants to make an assertion about. O can
introduce a new prime formula anytime he wants, according to the other rules.
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(SR-ST5I) (intuitionist no delaying tactics rule): “P may perform a repetition of
an attack if and only if O has introduced a new prime formula which can now be used
by P.”

(original rule (SR-ST5) from [RK05], p. 373)

(SR-ST6cALC) (formal rule for entities): O may introduce a new entity anytime
the other rules let him do so. P cannot introduce a new entity, and his choices when
changing the focus of an individual are restricted to individuals which are refinements,
direct role-fillers or role-fillers of refinements of the entity in focus.

(SR-ST7cALC) (coupling rule for existential quantifications): If P forces O to
introduce a new role-filler by an attack, then the entity introduced by O’s answer is
protected against further attacks, i.e. no formulæ stated for that entity may be attacked,
unless it would be possible for P to access that entity with a defence.





B
Notation and

Representation of
Concepts

B.1. Infix Notation for Concept Descriptions

This table provides a list of constructs that are used to declare expressions, i.e. concept
descriptions, in the implemented reasoner.

Description Representation
Atomic Concept A Atom <Atom>

And / Intersection C uD And <Concept> <Concept>

Or / Union C tD Or <Concept> <Concept>

Implication / Subsumption C v D Impl <Concept> <Concept>

Not / Complement ¬C Not <Concept>

Value Restriction ∀r.C All <RType> <Concept>

Existential Quantification ∃r.C Some <RType> <Concept>
Table B.1.: Infix Notation for Concept Descriptions

This is a recursive definition. Any concept decription that can be again constructed
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with the definition, is indicated by the token <Concept>. The token <RType> represents
an arbitrary role-name that is represented by a string of characters (e.g. "navigates").
Atomic concept names are represented by <Atom> what is also represented by a string
(e.g. "Captain").

B.2. Concept-Representation in ASCII-Terminals

There are terminals that are not able to display some Unicode Symbols. This ta-
ble shows how concept descriptions are represented then. They have a modal-logical
style:

Concept Description Representation
A A

C uD C /\ D

C tD C \/ D

C v D C -> D

¬C ~C

∀r.C [r] C

∃r.C <r> C
Table B.2.: Alternative Concept-Representation in ASCII-Terminals

Note that the refinement-symbol � is represented by ‘<’.



C
Content of the CD

C.1. Content

The CD that comes with this work contains the implementation (source-code and bi-
naries) of the dialogue-based reasoner for Microsoft® Windows® and Linux

Further, some files containing initial dialogues that can be loaded into the reasoner are
included together with some representations of the dialogue trees (see Section 4.1 for
more details). Finally, a digital version of this work is also available as a PDF-file.

Table C.1 gives an overview of the content and the location where to find it on the
CD.

Content Location
Binaries for Linux reasoner/linux/bin/

Binaries for Windows® reasoner/win/bin/

Dialogue Files and Trees dialogues/

Installation Instructions doc/readme.txt

Module Documentation doc/modules/

Program Manual doc/manual.txt

Source-Code for Linux reasoner/linux/src/

Source-Code for Windows® reasoner/win/src/

Thesis doc/thesis.pdf
Table C.1.: Content of the CD
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C.2. Module Descriptions

Table C.2 shows the Haskell modules that contain the implementation and explains the
contents. Note that some of them have already been used for a tableau-based prover.

Module Description
Annotation Generic module for annotations; used for tableaux and dia-

logues
Assertion Defines all kinds of assertions, i.e. attacks, defences, theses;

and simple types as Action, Player, Reference and Row
DialogAnn Defines and provides access to annotations for assertions, en-

tities and games
DialogInterface Provides a terminal-based user interface
Dialogue Handles the tree-structure of a dialogue that holds all games
DialogueEngine Provides functions for DialogStep and defines backtracks
DialogueImage Provides functions that transform a dialogue to a string of the

DOT-language and that calls DOT for creating illustrations
of the dialogue tree

Entity This module records atomic formulae in list structures that
are assigned to a certain entity ID

Expression This module handles concept descriptions
Game Manages assertions and relations of a dialogical game
Interface Generic module for user-interfaces handling both interaction

for the tableau-based and dialogue-based proofs
Main Needed to compile the project
ParticleRule Contains definitions for all particle rules
StructuralRule This module defines all structural rules and the data types

DialogStep and Trace

Types Atomic types and other operators
World Originally used for the tableau-based cALC-prover. Collects

expressions according to their enveloping constraints. One list
is used for x : +C-constraints, one for x : −C-constraints and
the last one for x : −RD-constraints.

Table C.2.: Module Descriptions
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