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Compositionality and reuse: Simulink → Modelica
Simulink has become a central tool in systems design: Block Diagram
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Compositionality and reuse: Simulink → Modelica
From Block Diagram to Component Diagram
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Compositionality and reuse: ODE → DAE

from Simulink (ODE):
HS in state space form{

x ′ = f (x , u)
y = g(x , u)

the state space form
depends on the context

reuse is difficult


−→



to Modelica (DAE):
HS as physical balance equations{

0 = f (x ′, x , u)
0 = g(x , u)

Kirchhoff laws, bond graphs,
multi-body mechanical systems
reuse is much easier
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Compositionality and reuse: ODE → DAE

• Modeling tools supporting DAE

• Proprietary languages: Mathworks/Simscape, LMS/AmeSim (bond
graphs)

• Modelica is a public standard https://www.modelica.org/ ;

• EDA dedicated languages: VHDL AMS

5 / 21

https://www.modelica.org/


A sketch of Modelica and its semantics [Fritzson]

17

Sunday, October 12, 
2003

Multi-domain Modeling and Simulation with Modelica 34

Model of Resistor
p.i n.i

p.v n.v

model Resistor
package SIunits = Modelica.SIunits;
package Interfaces = Modelica.Electrical.Analog.Interfaces; 
parameter SIunits.Resistance R = 1 "Resistance";
SIunits.Voltage        v "Spannungsabfall über Element";
Interfaces.PositivePin p;
Interfaces.NegativePin n;

equation
0 = p.i + n.i;
v = p.v - n.v;
v = R*p.i;

end Resistor;

Sunday, October 12, 
2003

Multi-domain Modeling and Simulation with Modelica 35

Summary
model SimpleDrive

..Rotational.Inertia   Inertia1  (J=0.002);

..Rotational.IdealGear IdealGear1(ratio=100)

..Basic.Resistor       Resistor1 (R=0.2)
...

equation
connect(Inertia1.flange_b, IdealGear1.flange_a);
connect(Resistor1.n, Inductor1.p);

...
end SimpleDrive;

model Resistor
package SIunits = Modelica.SIunits; 
parameter SIunits.Resistance R = 1;
SIunits.Voltage v;
..Interfaces.PositivePin p;
..Interfaces.NegativePin n;

equation
0 = p.i + n.i;
v = p.v - n.v;
v = R*p.i;

end Resistor;

connector PositivePin
package SIunits = Modelica.SIunits;
SIunits.Voltage      v;
flow SIunits.Current i;

end PositivePin;

type Voltage = 
Real(quantity="Voltage",

unit    ="V");

6 / 21



A sketch of Modelica and its semantics [Fritzson]

• Modelica Reference v3.3:
“The semantics of the Modelica language is specified by means of
a set of rules for translating any class described in the Modelica
language to a flat Modelica structure”

• the good:
• Semantics of continuous-time 1-mode Modelica models: Cauchy

problem on the DAE resulting from the inlining of all components
• Modelica supports multi-mode systems

1 = if g then x*x + y*y else y;
der(x) + x + y = 0;
when x <= 0 do reinit(x,1); end;
when y <= 0 do reinit(y,x); end;

• the bad: What about the semantics of multi-mode systems?
• and . . . : Questionable simulations [Tim Bourke and Marc Pouzet]
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Structural Analysis of DAE Systems

Aim:

• Determine the latent equations that are required to turn the DAE system
into a determined system with ODEs

• Compute a scheduling of minimal blocks of equations
Two steps:

1 Index reduction: determine differentiation index and latent equations
2 Compute a scheduling: block triangular form (BTF) decomposition
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Structural Differentiation Index
A classics: the pendulum example (T is an algebraic variable):


ẍ = Tx
ÿ = Ty − g
L2 = x2 + y2

as a 1st order DAE:


0 = ẋ − u
0 = u̇ − Tx
0 = ẏ − v
0 = v̇ − Ty + g
0 = −L2 + x2 + y2

This is not index 0 since the Jacobian with respect to ẋ , u̇, ẏ , v̇ ,T is singular:
1 0 0 0 0
0 1 0 0 −x
0 0 1 0 0
0 0 0 1 −y
0 0 0 0 0
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Structural Differentiation Index
A classics: the pendulum example (T is an algebraic variable):


ẍ = Tx
ÿ = Ty − g
L2 = x2 + y2

as a 1st order DAE:


0 = ẋ − u
0 = u̇ − Tx
0 = ẏ − v
0 = v̇ − Ty + g
0 = −L2 + x2 + y2

Differentiating the third equation twice yields two latent constraints:

0 = ẋ − u
0 = u̇ − Tx
0 = ẏ − v
0 = v̇ − Ty + g
0 = −L2 + x2 + y2
0 = ẋ x + ẏ y
0 = u̇x + ẋ2 + ẏ2 + v̇ y

Jacobians show that ẋ , u̇, ẏ , v̇ ,T are uniquely determined: the index is 2.
Algorithms: Diff. index, consistent initialization [Pantelides 88], Σ-method (linear
programming) [Pryce 01], dummy derivatives [Matsson et al. 93] 10 / 21
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Decomposition into Block Triangular Form (BTF)

• Bipartite graph: incidence relation ρ between E = {e1, . . . en} and
X = {x1, . . . xm}

• BTF = decomposition into minimal structurally invertible blocks & partial
order between blocks

• Essential step in Modelica compilers
• Modelica models are structurally determined: n = m


x1 x2 x3 x4 x5

e1 X X X
e2 X X X
e3 X X
e4 X X
e5 X X



12 / 21



Decomposition into Block Triangular Form (BTF)

• BTF = decomposition into minimal structurally invertible blocks & partial
order between blocks

• BTF is unique
• Classic method for sparse matrices [Duff et al. 1986]


x1 x2 x3 x4 x5

e1 X X X
e2 X X X
e3 X X
e4 X X
e5 X X


7→


x4 x5 x1 x2 x3

e3 X X
e4 X X
e5 X X
e1 X X X
e2 X X X
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Decomposition into Block Triangular Form (BTF)

• BTF = decomposition into minimal structurally invertible blocks & partial
order between blocks

• BTF is unique
• Classic method for sparse matrices [Duff et al. 1986]


x1 x2 x3 x4 x5

e1 X X X
e2 X X X
e3 X X
e4 X X
e5 X X


7→


x4 x5 x1 x2 x3

e3 X X
e4 X X
e5 X X
e1 X X X
e2 X X X


Scheduling: solve e3, e4 for x4, x5; solve e5 for x1; solve e1, e2 for x2, x3
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Reduction to Block Triangular Form (BTF)
Two steps:

1 Compute a transversal: minimal vertex cover, defining a bijection between E
and X . Depth-first search algorithm [Duff, Gustavson 72–81]. Complexity
O(n|ρ|)

2 Compute an orientation of the bipartite graph, based on the transversal.
Defines a BTF decomposition (blocks are the strongly connected
components) [Sargent, Westerberg 64] [Tarjan72]. Complexity O(|ρ|)


x1 x2 x3 x4 x5

e1 X X X
e2 X X X
e3 X X
e4 X X
e5 X X
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A Simple Clutch

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

if γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

• ωi , τi are the two speeds, torques
• Boolean γ is an input representing the engaged/disengaged mode
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A Simple Clutch

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

if γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

• Mode not γ: index 0, only ODEs
• Mode γ: index 1, latent equation ω′1 − ω′2 = 0, must be entered with

consistent state ω1 − ω2 = 0
• What happens at mode switchings?
• Albert’s talk tomorrow: Structural analysis of mDAE systems
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A Simple Clutch

ω•1 − ω1 = ∂ · f1(ω1, τ1) (e∂
1 )

ω•2 − ω2 = ∂ · f2(ω2, τ2) (e∂
2 )

when γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

• Nonstandard time domain T = {n∂ | n ∈ ?N}

• Transforms differential equations into infinitesimal difference equations:

x ′ =def
1
∂

(x• − x), where x•(t) =def x(t•)
and t• =def t + ∂

• Maps mDAE systems to discrete-time dynamical systems with algebraic
equations
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A Simple Clutch

ω1, ω2start

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂
1 , e∂

2 , e3,
e4, e5, e6

γ, ω1, ω2,
e5, e6,

e•3 replaces e3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂
1 , e∂

2 , e•3 ,
e4, e5, e6,

e•3 replaces e3

ω1, ω2, ]e3

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂
1 , e∂

2 , e3,
e4, e5, e6

γ, ω1, ω2,
e3, e5, e6,
latent e•3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂
1 , e∂

2 , e3, e•3 ,
e4, e5, e6,
latent e•3

γ; e3; e4

γ; e5; e6;FS(e3)

e5; e6;
e∂
1 ; e∂

2

Tick

e∂
1 + e∂

2 + e•3 + e4

Tickγ; e3; e4
γ; e5; e6;

PR(e3); LE(e3)

e5; e6; e∂
1 ; e∂

2

Tick

e∂
1 + e∂

2 +
e•3 + e4

Tick

mode ¬γ : index 0
τ1 = 0; τ2 = 0;
ω′1 = a1ω1 + b1τ1;
ω′2 = a2ω2 + b2τ2

start

mode γ : index 1
τ1 = (a2ω2 − a1ω1)/(b1 + b2); τ2 = −τ1;
ω′1 = a1ω1 + b1τ1; ω′2 = a2ω2 + b2τ2;
constraint ω1 − ω2 = 0

when γ do
τ1 = NaN; τ2 = NaN;

ω1 = b2ω−1 + b1ω−2
b1 + b2

;
ω2 = ω1

done

when ¬γ do
τ1 = 0; τ2 = 0;
ω1 = ω−1 ;
ω2 = ω−2

done
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Approach inherited from Synchronous Languages

• The structural analysis consists in searching for
• the mode-dependent latent equations
• a mode-dependent scheduling of blocks of equations, or block

triangular form (BTF)
• such that variables can be evaluated by solving blocks

• Adapted from the constructive semantics
of synchronous languages [Berry1996, Benveniste et al.2003],
which served as a mathematical basis for code generation.

• The structural analysis of multi-mode DAE systems we are proposing derives
from the constructive semantics of synchronous languages.

• =⇒ Albert’s talk tomorrow (don’t miss it !)
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Adapting BTF Decomposition to mDAEs

• Two types of dependencies: data
and control (guarded equations)

• BTF can not be computed in one
step

• SunDAE implements a variation of
the transversal [Duff, Gustavson
72–81] / BTF [Tarjan72]
algorithms:

1 Transversal is updated as
soon as equations are enabled
/ evaluated

2 Lazy BTF decomposition:
stops as soon as we have
computed a minimal block

ω1, ω2start

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂
1 , e∂

2 , e3,
e4, e5, e6

γ, ω1, ω2,
e5, e6,

e•3 replaces e3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂
1 , e∂

2 , e•3 ,
e4, e5, e6,

e•3 replaces e3

ω1, ω2, ]e3

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂
1 , e∂

2 , e3,
e4, e5, e6

γ, ω1, ω2,
e3, e5, e6,
latent e•3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂
1 , e∂

2 , e3, e•3 ,
e4, e5, e6,
latent e•3

γ; e3; e4

γ; e5; e6;FS(e3)

e5; e6;
e∂
1 ; e∂

2

Tick

e∂
1 + e∂

2 + e•3 + e4

Tickγ; e3; e4
γ; e5; e6;

PR(e3); LE(e3)

e5; e6; e∂
1 ; e∂

2

Tick

e∂
1 + e∂

2 +
e•3 + e4

Tick
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Adapting BTF Decomposition to mDAEs

• Contrarily to DAEs, mDAEs may lead to over-determined systems of
equations (n > m, see Albert’s talk).

• Transversal is not unique ⇒ non-deterministic semantics
• Example:


x1 x2 x3

e1 X X
e2 X X X
e3 X
e4 X X




x3 x1 x3
e3 X
e1 X X X
e2 X X
e4 X X




x1 x2 x3
e1 X X
e2 X X X
e4 X X
e3 X
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Conclusion
• Constructive semantics to perform structural analysis of mDAE systems
• Inspired by: Constructive semantics of synchronous programming languages

[Berry 1996]
• Main Result: mode-dependent index & causality analysis, inluding during

mode switchings
• SunDAE, prototype implementation supports: Impulsive systems, varying

index & dimension
• BTF decomposition : key to efficient implementation of the constructive

semantics
• Transversal / BTF computed incrementally, as soon as equations become

enabled
• Open issues: dealing with over-determined systems of enabled equations,

unilateral constraints (complementarity conditions), scalability (state-space
explosion), symbolic methods, just-in-time structural analysis [Modia],
encoding state-machines into nonsmooth dynamical systems
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