SunDAE: How to Schedule Multimode DAE Systems?

Albert Benveniste, Benoît Caillaud, Khalil Ghorbal, Marc Pouzet

5 December 2016

From DAEs to mDAES

Structural Analysis of DAE Systems

Strucutral Differentiation Index

Decomposition into Block Triangular Form (BTF)
mDAEs Example: A Simple Clutch

Adapting BTF Decomposition to mDAEs

Conclusion

Compositionality and reuse: Simulink \rightarrow Modelica

Simulink has become a central tool in systems design: Block Diagram

Compositionality and reuse: Simulink \rightarrow Modelica

From Block Diagram to Component Diagram

Component diagrams generalize Block diagrams
=> The next generation of simulation tools

Compositionality and reuse: ODE \rightarrow DAE

Compositionality and reuse: ODE \rightarrow DAE

- Modeling tools supporting DAE
- Proprietary languages: Mathworks/Simscape, LMS/AmeSim (bond graphs)
- Modelica is a public standard https://www.modelica.org/;
- EDA dedicated languages: VHDL AMS

A sketch of Modelica and its semantics [Fritzson]

A sketch of Modelica and its semantics [Fritzson]

- Modelica Reference v3.3:
"The semantics of the Modelica language is specified by means of a set of rules for translating any class described in the Modelica language to a flat Modelica structure"
- the good:
- Semantics of continuous-time 1-mode Modelica models: Cauchy problem on the DAE resulting from the inlining of all components
- Modelica supports multi-mode systems

$$
\begin{aligned}
& 1=i f \mathrm{~g} \text { then } \mathrm{x} * \mathrm{x}+\mathrm{y} * \mathrm{y} \text { else } \mathrm{y} \text {; } \\
& \text { der }(\mathrm{x})+\mathrm{x}+\mathrm{y}=0 ; \\
& \text { when } \mathrm{x}<=0 \text { do reinit }(\mathrm{x}, 1) \text {; end; } \\
& \text { when } \mathrm{y}<=0 \text { do reinit }(\mathrm{y}, \mathrm{x}) \text {; end; }
\end{aligned}
$$

- the bad: What about the semantics of multi-mode systems?
- and ...: Questionable simulations [Tim Bourke and Marc Pouzet]

From DAEs to mDAES

Structural Analysis of DAE Systems

Strucutral Differentiation Index

Decomposition into Block Triangular Form (BTF)
mDAEs Example: A Simple Clutch

Adapting BTF Decomposition to mDAEs

Conclusion

Structural Analysis of DAE Systems

Aim:

- Determine the latent equations that are required to turn the DAE system into a determined system with ODEs
- Compute a scheduling of minimal blocks of equations

Two steps:

(1) Index reduction: determine differentiation index and latent equations
(2) Compute a scheduling: block triangular form (BTF) decomposition

```
From DAEs to mDAES
Structural Analysis of DAE Systems
Strucutral Differentiation Index
Decomposition into Block Triangular Form (BTF)
mDAEs Example: A Simple Clutch
Adapting BTF Decomposition to mDAEs
Conclusion
```


Structural Differentiation Index

A classics: the pendulum example (T is an algebraic variable):

This is not index 0 since the Jacobian with respect to $\dot{x}, \dot{u}, \dot{y}, \dot{v}, T$ is singular:

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -x \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -y \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Structural Differentiation Index

A classics: the pendulum example (T is an algebraic variable):

$$
\begin{aligned}
& \left\{\begin{array}{l}
\ddot{x}=T x \\
\ddot{y}=T y-g \\
L^{2}=x^{2}+y^{2}
\end{array}\right. \\
& \text { as a 1st order DAE: }\left\{\begin{array}{l}
0=\dot{x}-u \\
0=\dot{u}-T x \\
0=\dot{y}-v \\
0=\dot{v}-T y+g \\
0=-L^{2}+x^{2}+y^{2}
\end{array}\right.
\end{aligned}
$$

Differentiating the third equation twice yields two latent constraints:

$$
\begin{aligned}
& 0=\dot{x}-u \\
& 0=\dot{u}-T x \\
& 0=\dot{y}-v \\
& 0=\dot{v}-T y+g \\
& 0=-L^{2}+x^{2}+y^{2} \\
& 0=\dot{x} x+\dot{y} y \\
& 0=\dot{u} x+\dot{x}^{2}+\dot{y}^{2}+\dot{v} y
\end{aligned}
$$

Jacobians show that $\dot{x}, \dot{u}, \dot{y}, \dot{v}, T$ are uniquely determined: the index is 2 .
Algorithms: Diff. index, consistent initialization [Pantelides 88], Σ-method (linear programming) [Pryce 01], dummy derivatives [Matsson et al. 93]

From DAEs to mDAES

Structural Analysis of DAE Systems

Strucutral Differentiation Index

Decomposition into Block Triangular Form (BTF)
mDAEs Example: A Simple Clutch

Adapting BTF Decomposition to mDAEs

Conclusion

Decomposition into Block Triangular Form (BTF)

- Bipartite graph: incidence relation ρ between $E=\left\{e_{1}, \ldots e_{n}\right\}$ and $X=\left\{x_{1}, \ldots x_{m}\right\}$
- BTF = decomposition into minimal structurally invertible blocks \& partial order between blocks
- Essential step in Modelica compilers
- Modelica models are structurally determined: $n=m$

$$
\left[\begin{array}{llllll}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
e_{1} & & X & X & X & \\
e_{2} & X & X & X & & \\
e_{3} & & & & X & X \\
e_{4} & & & & X & X \\
e_{5} & X & & & & X
\end{array}\right]
$$

Decomposition into Block Triangular Form (BTF)

- $\mathrm{BTF}=$ decomposition into minimal structurally invertible blocks \& partial order between blocks
- BTF is unique
- Classic method for sparse matrices [Duff et al. 1986]

$$
\left[\begin{array}{llllll}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
e_{1} & & X & X & X & \\
e_{2} & X & X & X & & \\
e_{3} & & & & X & X \\
e_{4} & & & & X & X \\
e_{5} & X & & & & X
\end{array}\right] \quad\left[\begin{array}{cccccc}
& x_{4} & x_{5} & x_{1} & x_{2} & x_{3} \\
e_{3} & X & X & & & \\
e_{4} & X & X & & & \\
e_{5} & & X & X & & \\
e_{1} & X & & & X & X \\
e_{2} & & & X & X & X
\end{array}\right]
$$

Decomposition into Block Triangular Form (BTF)

- $\mathrm{BTF}=$ decomposition into minimal structurally invertible blocks \& partial order between blocks
- BTF is unique
- Classic method for sparse matrices [Duff et al. 1986]

$$
\left[\begin{array}{llllll}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
e_{1} & & X & X & X & \\
e_{2} & X & X & X & & \\
e_{3} & & & & X & X \\
e_{4} & & & & X & X \\
e_{5} & X & & & & X
\end{array}\right] \quad\left[\begin{array}{cccccc}
& x_{4} & x_{5} & x_{1} & x_{2} & x_{3} \\
e_{3} & X & X & & & \\
e_{4} & X & X & & & \\
e_{5} & & X & X & & \\
e_{1} & X & & & X & X \\
e_{2} & & & X & X & X
\end{array}\right]
$$

Scheduling: solve e_{3}, e_{4} for x_{4}, x_{5}; solve e_{5} for x_{1}; solve e_{1}, e_{2} for x_{2}, x_{3}

Reduction to Block Triangular Form (BTF)

Two steps:

(1) Compute a transversal: minimal vertex cover, defining a bijection between E and X. Depth-first search algorithm [Duff, Gustavson 72-81]. Complexity $O(n|\rho|)$
(2) Compute an orientation of the bipartite graph, based on the transversal. Defines a BTF decomposition (blocks are the strongly connected components) [Sargent, Westerberg 64] [Tarjan72]. Complexity $O(|\rho|)$

$$
\left[\begin{array}{llllll}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
e_{1} & & X & X & X & \\
e_{2} & X & X & X & & \\
e_{3} & & & & X & X \\
e_{4} & & & & X & X \\
e_{5} & X & & & & X
\end{array}\right]
$$

Reduction to Block Triangular Form (BTF)

- Two steps:
(1) Compute a transversal: minimal vertex cover, defining a bijection between E and X. Depth-first search algorithm [Duff, Gustavson 72-81]. Complexity $O(n|\rho|)$
(2) Compute an orientation of the bipartite graph, based on the transversal. Defines a BTF decomposition (blocks are the strongly connected components) [Sargent, Westerberg 64] [Tarjan72]

$$
\left[\begin{array}{llllll}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
e_{1} & & X & X & X & \\
e_{2} & X & X & X & & \\
e_{3} & & & & X & X \\
e_{4} & & & & X & X \\
e_{5} & X & & & & X
\end{array}\right] \quad\left[\begin{array}{cccccc}
& x_{3} & x_{2} & x_{4} & x_{5} & x_{1} \\
e_{1} & X & X & X & & \\
e_{2} & X & X & & & X \\
e_{3} & & & X & X & \\
e_{4} & & & X & X & \\
e_{5} & & & & X & X
\end{array}\right]
$$

Reduction to Block Triangular Form (BTF)

- Two steps:
(1) Compute a transversal: minimal vertex cover, defining a bijection between E and X. Depth-first search algorithm [Duff, Gustavson 72-81]. Complexity $O(n|\rho|)$
(2) Compute an orientation of the bipartite graph, based on the transversal. Defines a BTF decomposition (blocks are the strongly connected components) [Sargent, Westerberg 64] [Tarjan72]

$$
\left[\begin{array}{llllll}
& x_{3} & x_{2} & x_{4} & x_{5} & x_{1} \\
e_{1} & X & X & X & & \\
e_{2} & X & X & & & X \\
e_{3} & & & X & X & \\
e_{4} & & & X & X & \\
e_{5} & & & & X & x
\end{array}\right] \quad\left[\begin{array}{cccccc}
& x_{4} & x_{5} & x_{1} & x_{2} & x_{3} \\
e_{3} & X & X & & & \\
e_{4} & X & X & & & \\
e_{5} & & X & X & & \\
e_{1} & X & & & X & X \\
e_{2} & & & X & X & X
\end{array}\right]
$$

Scheduling: solve e_{3}, e_{4} for x_{4}, x_{5}; solve e_{5} for x_{1}; solve e_{1}, e_{2} for x_{2}, x_{3}

From DAEs to mDAES

Structural Analysis of DAE Systems

Strucutral Differentiation Index

Decomposition into Block Triangular Form (BTF)
mDAEs Example: A Simple Clutch

Adapting BTF Decomposition to mDAEs

Conclusion

A Simple Clutch

$$
\left\{\begin{array}{rlll}
& & \omega_{1}^{\prime}=f_{1}\left(\omega_{1}, \tau_{1}\right) & \left(e_{1}\right) \\
& & \omega_{2}^{\prime}=f_{2}\left(\omega_{2}, \tau_{2}\right) & \left(e_{2}\right) \\
\text { if } \gamma & \text { do } & \omega_{1}-\omega_{2}=0 & \left(e_{3}\right) \\
& \text { and } & \tau_{1}+\tau_{2}=0 & \left(e_{4}\right) \\
\text { if not } \gamma & \text { do } & \tau_{1}=0 & \left(e_{5}\right) \\
& \text { and } & \tau_{2}=0 & \left(e_{6}\right)
\end{array}\right.
$$

- ω_{i}, τ_{i} are the two speeds, torques
- Boolean γ is an input representing the engaged/disengaged mode

A Simple Clutch

$$
\left\{\begin{array}{rlll}
& & \omega_{1}^{\prime}=f_{1}\left(\omega_{1}, \tau_{1}\right) & \left(e_{1}\right) \\
& & \omega_{2}^{\prime}=f_{2}\left(\omega_{2}, \tau_{2}\right) & \left(e_{2}\right) \\
\text { if } \gamma & \text { do } & \omega_{1}-\omega_{2}=0 & \left(e_{3}\right) \\
& \text { and } & \tau_{1}+\tau_{2}=0 & \left(e_{4}\right) \\
\text { if not } \gamma & \text { do } & \tau_{1}=0 & \left(e_{5}\right) \\
& \text { and } & \tau_{2}=0 & \left(e_{6}\right)
\end{array}\right.
$$

- Mode not γ : index 0, only ODEs
- Mode γ : index 1 , latent equation $\omega_{1}^{\prime}-\omega_{2}^{\prime}=0$, must be entered with consistent state $\omega_{1}-\omega_{2}=0$
- What happens at mode switchings?
- Albert's talk tomorrow: Structural analysis of mDAE systems

A Simple Clutch

$$
\left\{\begin{array}{rlll}
& & \omega_{1}^{\bullet}-\omega_{1}=\partial \cdot f_{1}\left(\omega_{1}, \tau_{1}\right) & \left(e_{1}^{\partial}\right) \\
& & \omega_{2}^{\bullet}-\omega_{2}=\partial \cdot f_{2}\left(\omega_{2}, \tau_{2}\right) & \left(e_{2}^{\partial}\right) \\
\text { when } \gamma & \text { do } & \omega_{1}-\omega_{2}=0 & \left(e_{3}\right) \\
& \text { and } & \tau_{1}+\tau_{2}=0 & \left(e_{4}\right) \\
\text { when not } \gamma & \text { do } & \tau_{1}=0 & \left(e_{5}\right) \\
& \text { and } & \tau_{2}=0 & \left(e_{6}\right)
\end{array}\right.
$$

- Nonstandard time domain $\mathbb{T}=\{n \partial \mid n \in \mathbb{N}\}$
- Transforms differential equations into infinitesimal difference equations:

$$
\begin{aligned}
x^{\prime}=\operatorname{def} \frac{1}{\partial}\left(x^{\bullet}-x\right), \quad \text { where } \quad x^{\bullet}(\mathfrak{t}) & =\operatorname{def} \quad x\left(\mathfrak{t}^{\bullet}\right) \\
\text { and } \mathfrak{t}^{\bullet} & =\operatorname{def}^{\mathfrak{t}}+\partial
\end{aligned}
$$

- Maps mDAE systems to discrete-time dynamical systems with algebraic equations

A Simple Clutch

Approach inherited from Synchronous Languages

- The structural analysis consists in searching for
- the mode-dependent latent equations
- a mode-dependent scheduling of blocks of equations, or block triangular form (BTF)
- such that variables can be evaluated by solving blocks
- Adapted from the constructive semantics of synchronous languages [Berry1996, Benveniste et al.2003], which served as a mathematical basis for code generation.
- The structural analysis of multi-mode DAE systems we are proposing derives from the constructive semantics of synchronous languages.
- \Longrightarrow Albert's talk tomorrow (don't miss it !)

From DAEs to mDAES

Structural Analysis of DAE Systems

Strucutral Differentiation Index

Decomposition into Block Triangular Form (BTF)
mDAEs Example: A Simple Clutch

Adapting BTF Decomposition to mDAEs

Conclusion

Adapting BTF Decomposition to mDAEs

- Two types of dependencies: data and control (guarded equations)
- BTF can not be computed in one step
- SunDAE implements a variation of the transversal [Duff, Gustavson 72-81] / BTF [Tarjan72] algorithms:
(1) Transversal is updated as soon as equations are enabled / evaluated
(2) Lazy BTF decomposition: stops as soon as we have computed a minimal block

Adapting BTF Decomposition to mDAEs

- Contrarily to DAEs, mDAEs may lead to over-determined systems of equations ($n>m$, see Albert's talk).
- Transversal is not unique \Rightarrow non-deterministic semantics
- Example:

$$
\left[\begin{array}{cccc}
& x_{1} & x_{2} & x_{3} \\
e_{1} & X & X & \\
e_{2} & X & X & X \\
e_{3} & & & X \\
e_{4} & & X & X
\end{array}\right] \quad\left[\begin{array}{llll}
& x_{3} & x_{1} & x_{3} \\
e_{3} & X & & \\
e_{1} & X & X & X \\
e_{2} & & X & X \\
e_{4} & X & & X
\end{array}\right] \quad\left[\begin{array}{lccc}
& x_{1} & x_{2} & x_{3} \\
e_{1} & X & X & \\
e_{2} & X & X & X \\
e_{4} & & X & X \\
e_{3} & & & X
\end{array}\right]
$$

```
From DAEs to mDAES
Structural Analysis of DAE Systems
Strucutral Differentiation Index
Decomposition into Block Triangular Form (BTF)
mDAEs Example: A Simple Clutch
Adapting BTF Decomposition to mDAEs
```


Conclusion

Conclusion

- Constructive semantics to perform structural analysis of mDAE systems
- Inspired by: Constructive semantics of synchronous programming languages [Berry 1996]
- Main Result: mode-dependent index \& causality analysis, inluding during mode switchings
- SunDAE, prototype implementation supports: Impulsive systems, varying index \& dimension
- BTF decomposition : key to efficient implementation of the constructive semantics
- Transversal / BTF computed incrementally, as soon as equations become enabled
- Open issues: dealing with over-determined systems of enabled equations, unilateral constraints (complementarity conditions), scalability (state-space explosion), symbolic methods, just-in-time structural analysis [Modia], encoding state-machines into nonsmooth dynamical systems

