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Introduction

Reactive Systems and Synchronous Languages

Reactive systems are expected
To have a short delay of reaction,
and to be correct.

Synchronous programming languages capture this behaviour:
formal operational or denotational models for verification
unambiguous semantics-preserving compilation.
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Introduction

Time matters

Synchronous programs are highly time critical.
This problem is modeled by the Worse-Case Execution Time.
What is the longest reaction time of the system ?
Also known as the Worst Case Reaction Time.

Numerous solutions exist, but those contribution solve the WCET
for platform specific cases.
We miss a generalisation that considers time-abstract executions
and the nuances of the underlying execution platform from the
point of view of WCET.
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Introduction

Our proposition

We propose a time-aware semantics for synchronous programs :
An algebraic approach (min-max-plus)
Based on formal power series
Which combine

linear system theory for timing,
and Gödel-Dummet logic for functional specification,

Compositional: can describe the WCET behaviour of
individual threads, their concurrent and hierarchical
compositions

It can be used to integrate existing WCET analysis tools into
functional compilation, to design new compositional timing analysis
and to interface with temporal-logic based model checking.
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Introduction

Context

SCCharts [vHDM+14]
Precision timed
architectures [EL07]
Thread-interleaved pipelines

Sequencer_signal
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output signal done
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IO-BTCA

De�nition
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IO-BTCA

Parallel composition
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We have a Tick Alignement Problem.

Introduction IO-BTCA Algebra WCET Conclusion 7 / 17



Algebra

semi-ring structure

Our timing analysis will be expressed in the discrete max-plus
structured over natural numbers (N∞,⊕,�, 0, 1) :

N∞ =df N ∪ {−∞, +∞}
⊕ stands for the maximum
� for the addition.
0 =df −∞
1 =df 0,

A commutative and idempotent semi-ring on N∞.

Example

4⊕ (5� 2) = max(4, 5 + 2) = 7
(4⊕ 5)� (4⊕ 2) = max(4, 5) + max(4, 2) = 9
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Algebra

Logical interpretation

The order structure (N∞,≤,−∞, +∞) is a complete lattice.

Max-plus is widely used for discrete event system analysis.
But this lattice structure also supports logical reasoning

We can define a logical interpretation (N∞,∧,∨,⊃,⊥,>)

N∞ measures the presence or absence of a signal
⊥ or 0 = −∞ indicates that a signal is absent,
> or +∞ indicates present eventually,
All other stabilisation values d ∈ N codify bounded presence
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Algebra

Constructive logic

We defined
The semiring structure (N∞,⊕,�, 0, 1),
and the logical interpretation (N∞,∧,∨,⊃,⊥,>)

They are equally important.

The former to calculate WCET timing
and the latter to express signals and reaction behaviour.
Both are overlapping with the identities ⊕ = ∨ and 0 = ⊥.
Every element in N∞ is at the same time a delay value and a
constructive truth value.
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Algebra

Formal Max-Plus Power Series

De�nition (max-plus formal power series)

A (max-plus) formal power series is a (finite or ω-infinite) sequence

A =
⊕
i≥0

aiX i = a0 ⊕ a1 X ⊕ a2 X 2 ⊕ a3 X 3 · · · (1)

with ai ∈ N∞ and where exponentiation is repeated multiplication,
i.e., X 0 = 1 and X k+1 = X X k = X � X k . A formal power series
stores an infinite sequence of numbers a0, a1, a2, a3, . . . as the
scalar coefficients of the base polynomials X i .

Such a power series may model an automaton’s timing behaviour
measuring the time cost to complete each tick or to reach a given
state in given tick. However, A could also be used to model a
signal.
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WCET

De�nition

CD C0 C1

cC
en/1/ 2:b/4/

1:dis/13/ d/3/

Let us now consider the IO-BTCA cC,

wcet(cC) = wcet(CD)⊕ wcet(C0)⊕ wcet(C1).

Here is state CD:

wcet(CD)(0) = 1

wcet(CD)(n + 1) = (¬en(n + 1) ∧ (0� (1 ∧ wcet(CD)(n))))
⊕ (dis(n + 1) ∧ (13� wcet(C0)(n + 1)))
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WCET

The cost series wcet(En) =
⊕

i≥0 wcet(En)(i) X i is the parallel
composition (tick-wise addition) of the constituent automata’s tick
cost series,

wcet(En) = wcet(hC) ‖ wcet(cA) ‖ wcet(cB) ‖ wcet(cC). (2)
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WCET

Approximations

This algebra introduce several approximation opportunities:
Signal Abstraction
Tick Alignement Abstraction
Environment Abstraction
...

We already modeled two WCET computation methods:
Max-Plus Approach (common approximation)
Tick Alignement Sensitive Approach (closed to [WRA13])
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WCET

Iterative feasibility analysis.

We define :

clk(S) = tick(wcet(S)) = X � (1ω ∧ wcet(S))

The clock of S giving full reachability information for a state S
across all ticks and depending on all signals.
Then with our algebra we can intersect two clocks

clk(DisC) ∧ clk(A1)

and find that clk(DisC) ∧ clk(A1) = 0ω, i.e., both clock are
incompatible.

Introduction IO-BTCA Algebra WCET Conclusion 15 / 17



WCET

By applying this result in the approximated model :
...
We then are able to refine the approximation.

wcet(En) ≤ (wcetDisC (hC) ‖ wcetA0(cA)) ‖ wcetabs(cB) ‖ wcetabs(cC))
= 0 : 12 : 26 : 41ω ‖ 0 : 2 : 17ω ‖ 0 : 14 : 14 : 16ω

= 0 : 28 : 57 : 74ω

Tighter than the max-plus result 0 : 28 : 57 : 83ω.

Introduction IO-BTCA Algebra WCET Conclusion 16 / 17



Conclusion

Design of safety-critical systems need both functional and timing
correctness.

We developped a comprehensive semantics of synchronous
languages using min-max-plus Gödel-Dummett algebra.
This models, precisely, the tick-based lock-step execution of
the threads, by formalising the tick alignment problem.
Formalises the modelling of signals and the signal dependency
between the threads.

Future works:
Developement of a timing analysis tools for the SCCharts
Link the semantics to existing approaches
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Questions
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