Symbolic Computation of Latency for Dataflow Graphs

Adnan Bouakaz Pascal Fradet Alain Girault

SYNCHRON International Workshop, Bamberg

December 7th, 2016

Introduction

Outline

- Introduction
 - Application model
 - Scheduling policy
 - Symbolic analysis
- 2 Preliminary results
- 3 Graph $A \xrightarrow{p q} B$
- 4 Generalization to chains and acyclic graphs
- Experiments

Conclusion

Data-flow models of computation

Stream-processing applications are found in many embedded systems

- video codecs, software defined radio, ...
- computationally intensive
- strict quality-of-service requirements
- low energy consumption
- more and more these applications run on many-core platforms

Data-flow models of computation are good at:

- Expressing task-level parallelism
- Achieving efficient implementation
- Guaranteeing performances at compile time:
 - throughput: stream oriented applications
 - latency: automatic control oriented applications
 - buffer sizes: all embedded applications

Introduction

Application model

Acyclic Synchronous Data-FLow (SDF) graphs

[Lee and Messerschmitt, Proc. 1987]

Introduction

Application model

Acyclic Synchronous Data-FLow (SDF) graphs

[Lee and Messerschmitt, Proc. 1987]

System of Balance Equations

- Consistent SDF graph G: this system has a non-null solution
- Repetition vector of G: $\vec{z} = [A^2, B^3, C^1]$
- **Iteration** = firing sequence that returns G to its initial state

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{A^2} \begin{bmatrix} 6 \\ 0 \end{bmatrix} \xrightarrow{B^3} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \xrightarrow{C^1} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Introduction Scheduling policy

Scheduling policy

- As Soon As Possible (ASAP) [Sriram and Bhattacharyya 2000]
- No auto-concurrency

Introduction Scheduling policy

Scheduling policy

- As Soon As Possible (ASAP) [Sriram and Bhattacharyya 2000]
- No auto-concurrency

Bouakaz, Fradet and Girault

Symbolic Computation of Latency

Scheduling policy

Definition: Multi-iteration latency of graph G:

 $\mathcal{L}_G(n)$ = the finish time of the n^{th} iteration.

Scheduling policy

Definition: Input-output latency of graph G:

 $\ell_G(n)$ = the duration between the start and ending of the n^{th} iteration.

Introduction Sc

Scheduling policy

Scheduling policy

Definition: Period of graph G:

 $\mathcal{P}_G =$ the average length of an iteration $= \lim_{n \to \infty} \frac{\mathcal{L}}{\mathcal{L}}$

$\int_{\infty}^{\infty} \frac{\mathcal{L}_G(n)}{n}$

Definition: Throughput of graph G:

$$\mathcal{T}_G = \frac{1}{\mathcal{P}_G}$$

Introduction

Symbolic analysis

Introduction

Symbolic analysis

Outline

3 Graph $A \xrightarrow{p q} B$

4 Generalization to chains and acyclic graphs

5 Experiments

Duality theorem

Definition: The dual of an SDF graph G:

 G^{-1} is obtained by reversing all edges of G.

Duality theorem:

Let G be any (cyclic or not) live graph and G^{-1} be its dual, then $\mathcal{T}_G = \mathcal{T}_{G^{-1}}$ and $\forall i. \ \mathcal{L}_G(i) = \mathcal{L}_{G^{-1}}(i).$

Duality theorem

Definition: The dual of an SDF graph G:

 G^{-1} is obtained by reversing all edges of G.

Duality theorem:

Let G be any (cyclic or not) live graph and G^{-1} be its dual, then $\mathcal{T}_G = \mathcal{T}_{G^{-1}}$ and $\forall i. \ \mathcal{L}_G(i) = \mathcal{L}_{G^{-1}}(i).$

• **Proof:** Using SDF-to-HSDF transformation + unfolding:

Bouakaz, Fradet and Girault

Outline

- Enabling patterns
- Minimum latency

Preliminaries about graph $A \xrightarrow{p-q} B$

- Four parameters: $p, q \in \mathbb{N}^+$ and $t_A, t_B \in \mathbb{R}^+$.
- Repetition vector: $\left[z_A = \frac{q}{\gcd(p,q)}, z_B = \frac{p}{\gcd(p,q)}\right]$

Graph A

• ASAP period: $\mathcal{P}_G = \max(z_A t_A, z_B t_B)$.

Problem statement

What is $\theta_{A,B}$ the min. size of channel $A \longrightarrow B$ s.t. the ASAP execution achieves the max. throughput?

Solution

- $p + q \gcd(p, q) < \theta_{A,B} \le 2(p + q \gcd(p, q))$
- **Proof:** 18 cases in total: $p, q \rightarrow 6$ cases; $t_A, t_B \rightarrow 3$ cases

• A time-independent analytic and parametric characterization of the data-dependency $A \rightarrow B$ that covers one iteration.

• Example:

Graph
$$A \xrightarrow{8}{\longrightarrow} B$$
 with $t_A = 20$ and $t_B = 7$

 $A^i \rightsquigarrow B^j \Leftrightarrow i \text{ firings of } A \text{ enables } j \text{ firings of } B.$

Unfolded pattern:

$$A \leadsto B; A \leadsto B^2; A \leadsto B; A \leadsto B^2; A \leadsto B^2$$

• Unfolded pattern:

 $\underbrace{A \leadsto B; A \leadsto B^2}_{}; \underbrace{A \leadsto B; A \leadsto B; A \leadsto B^2}_{}; A \leadsto B$ block block

Enabling patterns

• Unfolded pattern:

$$\underbrace{A \leadsto B; A \leadsto B^2}_{\text{block}}; \underbrace{A \leadsto B; A \leadsto B^2; A \leadsto B^2}_{\text{block}}$$

• Factorized pattern:

$$\left[A \leadsto B; [A \leadsto B^2]^{f_i}\right]^{i=1 \cdots 2} \text{ with } f_1 = 1, f_2 = 2$$

• Unfolded pattern:

$$\underbrace{A \leadsto B; A \leadsto B^2}_{\text{block}}; \underbrace{A \leadsto B; A \leadsto B^2; A \leadsto B^2}_{\text{block}}$$

• Factorized pattern:

$$\left[A \leadsto B; [A \leadsto B^2]^{f_i}\right]^{i=1 \cdots 2} \text{ with } f_1 = 1, f_2 = 2$$

• General case:

$$\begin{bmatrix} A \rightsquigarrow B^k; \begin{bmatrix} A \rightsquigarrow B^{k+1} \end{bmatrix}^{\alpha_j} \end{bmatrix}^{j=1 \cdots \frac{q-r}{\gcd(p,q)}}$$
with $p = kq + r$ and $\alpha_j = \lfloor \frac{jr}{q-r} \rfloor - \lfloor \frac{(j-1)r}{q-r} \rfloor$

Enabling patterns

Case A. $p \ge q$	Case B. $p < q$
Let $p = kq + r$ with $0 \le r < q$	Let $q = kp + r$ with $0 \le r < p$
Case A.1. $r = 0$	Case B.1. $r = 0$
$A \rightsquigarrow B^k$	$A^k \rightsquigarrow B$
Case A.2. $q \leq 2r$	Case B.2. $p \ge 2r$
$\left[A \leadsto B^{k}; \left[A \leadsto B^{k+1}\right]^{\alpha_{j}}\right]^{j=1 \cdots \frac{q-r}{\gcd(p,q)}}$	$\left[A^{k+1} \rightsquigarrow B; \left[A^k \rightsquigarrow B\right]^{\gamma_j}\right]^{j=1 \cdots \frac{r}{\gcd(p,q)}}$
Case A.3. $q > 2r$	Case B.3. $p < 2r$
$\left[\left[A \leadsto B^k\right]^{\beta_j}; A \leadsto B^{k+1}\right]^{j=1 \cdots \frac{r}{\gcd(p,q)}}$	$\left[\left[A^{k+1} \leadsto B\right]^{\lambda_j}; A^k \leadsto B\right]^{j=1 \cdots \frac{p-r}{\gcd(p,q)}}$
$\overline{\alpha_j = \left\lfloor \frac{jr}{q-r} \right\rfloor - \left\lfloor \frac{(j-1)r}{q-r} \right\rfloor} \\ \beta_j = \left\lceil \frac{jq}{r} \right\rceil - \left\lceil \frac{(j-1)q}{r} \right\rceil - 1$	$\gamma_{j} = \left\lfloor \frac{jp}{r} \right\rfloor - \left\lfloor \frac{(j-1)p}{r} \right\rfloor - 1$ $\lambda_{j} = \left\lceil \frac{jr}{p-r} \right\rceil - \left\lceil \frac{(j-1)r}{p-r} \right\rceil$

Bouakaz, Fradet and Girault

Multi-iteration latency: **Case** $z_A t_A \ge z_B t_B$

Graph $A \xrightarrow{p q} B$

- A imposes a higher load than B
- A never gets idle $\Longrightarrow \mathcal{P}_G = z_A t_A$
- $\mathcal{L}_G(n) = n\mathcal{P}_G + \Delta_{A,B} \iff \frac{\mathcal{L}_G(n)}{n} = \frac{n\mathcal{P}_G + \Delta_{A,B}}{n} = \mathcal{P}_G + \frac{\Delta_{A,B}}{n} \ge \mathcal{P}_G$

Minimum latency

- $\Delta_{A,B}$ is the remaining execution time for actor B after actor A has finished its firings of the n^{th} iteration
- $\Delta_{A,B}$ is constant over all iterations so $\lim_{n \to +\infty} \frac{\Delta_{A,B}}{n} = 0$

Multi-iteration latency: **Case** $z_A t_A \ge z_B t_B$

Graph $A \xrightarrow{p q} B$

Case I.

$$\Delta_{A,B} = \left\lceil \frac{p}{q} \right\rceil t_B$$

Minimum latency

Case II.1.

$$\Delta_{A,B} = t_A + \left\lceil \frac{r}{q-r} \right\rceil \left((k+1) t_B - t_A \right)$$

Case II.2.

$$\Delta_{A,B} = t_B + \left\lceil \frac{p-r}{r} \right\rceil (t_B - kt_A)$$

Case III.

...

Multi-iteration latency: **Case** $z_A t_A < z_B t_B$

- B imposes a higher load than A
- B never gets idle in the steady state (untrue in transient)

Graph $A \xrightarrow{p q} B$

• $\Delta_{\!A,B}$ may not constant over all iterations and diverges to infinity if the buffer is unbounded

Minimum latency

 \bullet Better solution: compute $\Delta_{\!A,B}$ with the duality theorem

•
$$\mathcal{L}_G(n) = \mathcal{L}_{G^{-1}}(n) = n\mathcal{P}_{G^{-1}} + \Delta_{B,A}$$

Input-output latency

- Case $z_A t_A \ge z_B t_B$
 - A imposes the highest load $\Longrightarrow \mathcal{P}_G = z_A t_A$
 - $\ell_G(n)$ is equal to the finish time of the n^{th} iteration minus the start time of the first firing of A in the n^{th} iteration

•
$$\ell_G(n) = \mathcal{L}_G(n) - (n-1)z_A t_A = \mathcal{L}_G(n) - (n-1)\mathcal{P}_G = \mathcal{P}_G + \Delta_{A,B}$$

• Hence
$$\ell_G = \mathcal{P}_G + \Delta_{A,B} = \mathcal{L}_G(1)$$

- Case $z_A t_A < z_B t_B$
 - B imposes the highest load
 - Unbounded buffer: $\ell_G(n) = \mathcal{L}_G(n) (n-1)z_A t_A$
 - It diverges with n!
 - Bounded buffer: We compute an over-approximation with a (backward) linearization technique

Outline

- 1 Introduction
- 2 Preliminary results
- $3 \ \mathsf{Graph} \ A \xrightarrow{p \ q} B$
- Generalization to chains and acyclic graphs
 - 5 Experiments

Conclusior

Generalization to chains and acyclic graphs

Multi-iteration latency of chain $A \xrightarrow{p - q} B \xrightarrow{p' - q'} C$

- Forward linearization B
- First analyse the graph $A \xrightarrow{p q} B$
- If B does not fire continuously, then build a fictive actor B^u s.t.:

$$\forall i. f_B(i) \le f_{B^u}(i) \quad \land \quad \exists i. f_B(i) = f_{B^u}(i)$$

- Then analyse the graph $B^u \xrightarrow{p' q'} C$
- Finally combine the two schedules

Multi-iteration latency of acyclic graphs

• Acyclic graph G seen as a set of maximal chains $\mathcal{G}(G)$ (chains from a source actor to a sink actor)

• Property:
$$\forall i. \ \mathcal{L}_G(i) = \max_{g \in \mathcal{G}(G)} \{\mathcal{L}_g(i)\}$$

- **Proof:** transform G into HSDF then unfold i times
- Compute the multi-iteration latency of each maximal chain

Generalization to chains and acyclic graphs

Input-output latency for the chain for $A \xrightarrow{p - q} B \xrightarrow{p' - q'} C$

Linearized schedule: (backward linearization)

Conclusion: $\ell_G = 83$ and $\hat{\ell}_G = 89.8$ so we over-approximate by 8.2%

Outline

- 1 Introduction
- 2 Preliminary results
- $3 Graph A \xrightarrow{p q} B$
- 4 Generalization to chains and acyclic graphs

5 Experiments

Conclusion

Experiments

Multi-iteration latency computation for real benchmarks

graph	\mathcal{P}_G	$\mathcal{L}_G(1)$	$\hat{\mathcal{L}}_G(1)/\mathcal{L}_G(1)$	$\hat{\mathcal{L}}_G(2)/\mathcal{L}_G(2)$
modem	32	62	1	1
sample rate	960	1000	1.022	1.011
converter				
H.263 decoder	332046	369508	1	1
FFT	78844	94229	1	1
TDE	17740800	19314069	1	1

Experiments

Multi-iteration latency for randomly generated chains

- Randomly generated chains of 10 actors
- $p, q \in [1, 10]$ and $t_X \in [1, 100]$
- Total number of firings per iteration $< 2 \times 10^3$

• We report
$$rac{\mathcal{L}_{A_1 o A_{10}}}{\mathcal{L}_G(1)} = rac{\mathsf{approximate}}{\mathsf{exact}}$$

Bouakaz, Fradet and Girault Symbolic

Experiments

Input-output latency for randomly generated chains

- Randomly generated chains of 9 actors
- $p, q \in [1, 10]$ and $t_X \in [1, 100]$
- $\bullet\,$ Total number of firings per iteration $< 2 \times 10^3$
- A₉ imposes the highest load
- Each channel size $A_i \xrightarrow{p-q} A_{i+1}$ is equal to $2(p+q-\gcd(p,q))$

Outline

- Introduction
- 2 Preliminary results
- $3 \text{ Graph } A \xrightarrow{p \ q} B$
- 4 Generalization to chains and acyclic graphs
- 5 Experiments

Conclusion

Related work

• [Geilen 2011] and [Skelin et al. 2014]: $(\max,+)$ algebra to compute the token timestamp vector with the eigenvalue of the transition matrix

 \implies Requires the ceiling operator to be simplified

• [Ghamarian et al. 2008]: parametric throughput analysis for SDF graphs with bounded parametric execution times of actors *but constant rates*

 \implies Parameter space divided into a set of convex polyhedra (throughput regions), each with a throughput expression

- [Damavandpeyma et al. 2012]: Extension to scenario-aware dataflow (SADF)
- [Bodin et al. 2013]: lower bounds of the maximum throughput to compute strictly periodic schedules instead of ASAP schedules

 \Longrightarrow Can handle some cyclic graphs, but usually our linearization methods provide better results

Conclusion

- We presented:
 - An exact analytic solution for the $A \xrightarrow{p-q} B$ SDF graph using enabling patterns
 - A safe generalization to acyclic graphs using forward and backward linearization
- Still to solve:

Symbolic analysis of cyclic dataflow graphs