
Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Runtime Enforcement of Reactive Systems using
Synchronous Enforcers

Srinivas Pinisetty1, Partha Roop3, Steven Smyth4, Stavros Tripakis1,2,

Reinhard von Hanxleden4

Aalto University, Finland

University of California, Berkeley

University of Auckland, New Zealand

Kiel University, Germany

Partha Roop Synchron-2016, Bamberg 7 December 2016 1 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Implantable pacemakers

2 Distributed Control Applications

least six of the 23 recalls of defective devices were related to software errors
[12].

Response-time analysis [14] is crucial for cardiac pacemaker software. Ex-
isting techniques use timed automata (TA) [2] based closed-loop models for
conducting such analysis. However, these models make idealised assumption
regarding the underlying execution platform, which could a↵ect verification
fidelity. In this chapter we propose a model driven design approach starting
with modeling the software using IEC 61499 function blocks. We perform low-
level timing analysis to compute the worst case execution time (WCET) [20]
of the generated C code from these high-level models. The obtained WCET
values are used for the creation of high-fidelity TA models needed for respons-
time analysis. Earlier response-time analysis framework [10, 12] perform anal-
ysis without considering the low-level timing of the underlying architecture.
Unlike these, the proposed approach, for the first time, enables high-fidelity
response-time analysis of implantable devices such as pacemakers.

1.2 The pacing system in a nutshell

For patients who su↵er from bradycardia (lower than normal heart rate), car-
diac pacemakers are implanted to regulate the heart beat. A pacemaker senses
the intrinsic pulses from the heart and decides whether to stimulate the heart
while obeying the underlying timing sequences. In addition, the pacemaker
should not accelerate pacing for patients with tachycardia (higher than normal
heart rate). Figure 1.1 depicts a closed-loop system consisting of the heart and

Pacemaker

H_APulse

H_VPulse

APace

VPace

B
A
T
T
E
R
Y

ATRIAL
SENSING
CIRCUIT

ATRIAL
OUTPUT
CIRCUIT

VENTRICULAR
SENSING
CIRCUIT

VENTRICULAR
OUTPUT
CIRCUIT

PACEMAKER
CONTROLLER

EXTERNAL
TIMERS

Heart

SA node

AV node

Right bundle branch

Left
bundle
branch

RA

RV

FIGURE 1.1
The closed-loop system of the heart and a pacemaker.

a

aZhao and Roop, “Model Driven Design of Cardiac Pacemakers using IEC61499,
CRC Press, 2015”.

Partha Roop Synchron-2016, Bamberg 7 December 2016 2 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Adverse events

[Ref.]: Alemzadeh, H., Iyer, R.K., Kalbarczyk, Z., Raman, J., “Analysis of Safety-Critical Computer
Failures in Medical Devices”, Security and Privacy , IEEE , vol.11, no.4. pp.14,26. July-Aug, 2013.

FDA!recalls!and!adverse!events!!(2006M2011)!

a

aThis figure is reproduced from the reference above.

Partha Roop Synchron-2016, Bamberg 7 December 2016 3 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Approaches to enhance pacemaker software

Two key CS related initiatives: http://cybercardia.cs.stonybrook.edu, and
Marta Kwiatkowska’s group in Oxford.

Model-based approach: Modeling and verification of a dual chamber
implantable pacemaker, Jiang, Pajic, Moarref, Alur, Mangaram. TACAS 2012

Testing: Heart-on-a-chip: A closed-loop testing platform for implantable
pacemakers Jiang, Radhakrishnan, Sampath, Sarode, Mangharam. CyPhy
2013

Requirements-Centric Closed-Loop Validation of Implantable Cardiac Devices.
Weiwei Ai, Nitish Patel and Partha Roop. DATE ’16.

Except the work of Ai et al., others consider a static model of the heart
during closed-loop testing / model checking.

Focus of the current work is on run-time enforcement, where a dynamically
evolving heart model and a pacemaker can be used for run-time verification
and enforcement.

Partha Roop Synchron-2016, Bamberg 7 December 2016 4 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Runtime verification and enforcement

Runtime verification

Verification
Monitorevents verdicts

Property ϕ

? · True · · ·a · b · · ·

Does σ satisfy ϕ ?

Output: stream of verdicts.

Runtime enforcement

Enforcer
events events

Property ϕ

a · a · · · |= ϕa · a · b · · ·

Input: stream of events.

Modified to satisfy the
property.

Output: stream of events.

Partha Roop Synchron-2016, Bamberg 7 December 2016 5 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Runtime enforcement (previous work)

Event
Emitter

Enforcer
Event

Receiver

ϕ

σ ∈ Σ∗ o ∈ ϕ

Enforcer for ϕ operating at runtime

ϕ: any regular property (defined as automaton).

An enforcer behaves as a function E : Σ∗ → Σ∗.

Input (σ ∈ Σ∗): any sequence of events over Σ (Event emitter is a black-box).
Output (o ∈ Σ∗): a sequence of events such that o |= ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 6 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Runtime enforcement (previous work)

Event
Emitter

Enforcer
Event

Receiver

ϕ

σ ∈ Σ∗ o ∈ ϕ

Enforcer for ϕ operating at runtime

ϕ: any regular property (defined as automaton).

An enforcer behaves as a function E : Σ∗ → Σ∗.

Input (σ ∈ Σ∗): any sequence of events over Σ (Event emitter is a black-box).
Output (o ∈ Σ∗): a sequence of events such that o |= ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 6 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Runtime enforcement (previous work)

Event
Emitter

Enforcer
Event

Receiver

ϕ

σ ∈ Σ∗ o ∈ ϕ

Enforcer for ϕ operating at runtime

ϕ: any regular property (defined as automaton).

An enforcer behaves as a function E : Σ∗ → Σ∗.

Input (σ ∈ Σ∗): any sequence of events over Σ (Event emitter is a black-box).

Output (o ∈ Σ∗): a sequence of events such that o |= ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 6 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Runtime enforcement (previous work)

Event
Emitter

Enforcer
Event

Receiver

ϕ

σ ∈ Σ∗ o ∈ ϕ

Enforcer for ϕ operating at runtime

ϕ: any regular property (defined as automaton).

An enforcer behaves as a function E : Σ∗ → Σ∗.

Input (σ ∈ Σ∗): any sequence of events over Σ (Event emitter is a black-box).
Output (o ∈ Σ∗): a sequence of events such that o |= ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 6 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Example: EM

Property ϕ

l0 l1

l2

l3
a|b|c

!

a|b|c

!

Σ

Σ

Σ = {a, b, c , !}

INPUT MEMORY OUTPUT

a 6∈ ϕ a ε

a · b 6∈ ϕ a · b ε

a · b · c 6∈ ϕ a · b · c ε

a · b · c · ! ∈ ϕ ε a · b · c ·!

Remarks
Store events in the memory until observing input sequence that satisfies ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 7 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Example: EM

Property ϕ

l0 l1

l2

l3
a|b|c

!

a|b|c

!

Σ

Σ

Σ = {a, b, c , !}

INPUT MEMORY OUTPUT

a 6∈ ϕ a ε

a · b 6∈ ϕ a · b ε

a · b · c 6∈ ϕ a · b · c ε

a · b · c · ! ∈ ϕ ε a · b · c ·!

Remarks
Store events in the memory until observing input sequence that satisfies ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 7 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Example: EM

Property ϕ

l0 l1

l2

l3
a|b|c

!

a|b|c

!

Σ

Σ

Σ = {a, b, c , !}

INPUT MEMORY OUTPUT

a 6∈ ϕ a ε

a · b 6∈ ϕ a · b ε

a · b · c 6∈ ϕ a · b · c ε

a · b · c · ! ∈ ϕ ε a · b · c ·!

Remarks
Store events in the memory until observing input sequence that satisfies ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 7 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Example: EM

Property ϕ

l0 l1

l2

l3
a|b|c

!

a|b|c

!

Σ

Σ

Σ = {a, b, c , !}

INPUT MEMORY OUTPUT

a 6∈ ϕ a ε

a · b 6∈ ϕ a · b ε

a · b · c 6∈ ϕ a · b · c ε

a · b · c · ! ∈ ϕ ε a · b · c ·!

Remarks
Store events in the memory until observing input sequence that satisfies ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 7 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Example: EM

Property ϕ

l0 l1

l2

l3
a|b|c

!

a|b|c

!

Σ

Σ

Σ = {a, b, c , !}

INPUT MEMORY OUTPUT

a 6∈ ϕ a ε

a · b 6∈ ϕ a · b ε

a · b · c 6∈ ϕ a · b · c ε

a · b · c · ! ∈ ϕ ε a · b · c ·!

Remarks
Store events in the memory until observing input sequence that satisfies ϕ.

Partha Roop Synchron-2016, Bamberg 7 December 2016 7 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Shield Synthesis1

Designed for reactive systems.

Shield must “act upon erroneous outputs on the fly”, without knowledge of
the future.

Has multiple input streams to deal with.

1Bloem et al., TACAS, 2015
Partha Roop Synchron-2016, Bamberg 7 December 2016 8 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Synchronous Languages

The reactive system operates “infinitely fast” relative to the environment.
This is known as the synchrony hypothesis.

All concurrent components progress in “lock-step” relative to the ticks of a
logical clock.

Concurrency is usually “compiled away” to produce sequential code.

Partha Roop Synchron-2016, Bamberg 7 December 2016 9 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Synchronous observers

1 module BeatObserver:

2 input AS; VS

3 output beatViolation;

4 loop

5 present AS and VS then

6 emit beatViolation;

7 end;

8 pause;

9 end loop

10 end module

Figure: BeatObserver in Esterel

Partha Roop Synchron-2016, Bamberg 7 December 2016 10 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Problem Statement

Observers are usually static entities.

Run-time observers may be considered as run-time verifiers but these are not
enforcers.

Observers are specified by the designers while monitors / enforcers are
automatically synthesized from the specification of properties.

Shield synthesis: this is the closest to our framework. Has two limitations.
First, it performs no enforcement on the environment, which is very
important for reactive systems. Second, it lacks causality and performs
uni-directional enforcement. For synchronous reactive systems, enhanced
bi-directional enforcement is essential.

Partha Roop Synchron-2016, Bamberg 7 December 2016 11 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Runtime enforcement in the synchronous setting

Env. Enforcer Program

ϕInputs

i1

i2

··

Transformed Inputs

i′1

i′2

··

Transformed Outputs

o1

o2
··

Outputs

o′1

o′2
··

Two-way enforcement like MRA with additional capability.

Similar to a shield but supports enforcement of both the environment and the
program. Also, has a notion of causality.

Partha Roop Synchron-2016, Bamberg 7 December 2016 12 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Execution of a synchronous program

Execution of a program P is an infinite sequence of reactions.

During each reaction, the program reacts to a set of inputs received from the
environment to produce a set of outputs.

I ,O denote ordered sets of inputs and outputs respectively.

The input alphabet ΣI = 2I and the output alphabet ΣO = 2O and
Σ = ΣI × ΣO . Each input/output will be denoted as a bit-vector / complete
monomial e.g. Let I = {A,B}. Then, the input {A} ∈ ΣI is denoted as 10,
while {B} ∈ ΣI is denoted as 01 and {A,B} ∈ ΣI is denoted as 11.

A reaction is of the form (xi , yi), where xi ∈ ΣI and yi ∈ ΣO .

A trace is a sequence of reactions of the form
σ = (x0, y0).(x1, y1).(x2, y2)... ∈ Σω.

We use the shorthand σ = r0.r1.r2... ∈ Σω, where ri denotes the i-th reaction.

The behaviour of the program P is exec(P) ⊆ Σω.

L(P)={σ ∈ Σ∗|∃σ′ ∈ exec(P) ∧ σ 4 σ′}.

Partha Roop Synchron-2016, Bamberg 7 December 2016 13 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Properties

A property ϕ defines a set of valid executions, where L(ϕ) ⊆ Σ∗.

We consider prefix-closed properties (all prefixes of all words in L(ϕ) are also
in L(ϕ)).

A property ϕ is defined as a safety automaton Aϕ = (Q, q0, qv ,Σ,→), where
Q is the set of states, called locations, q0 ∈ Q is an unique initial location,
qv ∈ Q is a unique violating (non-accepting) location, Σ is the alphabet, and
−→⊆ Q × Σ× Q is the transition relation. All the locations in Q except qv
(i.e., Q \ {qv}) are accepting locations.

Partha Roop Synchron-2016, Bamberg 7 December 2016 14 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

A property and its input projection

Projection over inputs

Given property ϕ ⊆ Σ∗, defined as automaton Aϕ = (Q, q0, qv ,Σ,→), we define
and use the following: ϕI and AϕI : Input automaton AϕI

= (Q, q0, qv ,ΣI ,→I)
is obtained from Aϕ = (Q, q0, qv ,Σ,→) by ignoring outputs. If (x , y) is in Σ,

then x ∈ ΣI , and every transition q
(x,y)−−−→ q′ in Aϕ is replaced with transition

q
x−→I q

′ in AϕI
.

L(AϕI
) is denoted as ϕI ⊆ Σ∗I .

Example property defined as SA

I = {A,B}, and O = {R,W }.
“B and R cannot happen simultaneously”.

Aϕ:
q0 qv

(−1, 1−)

Σ \ (−1, 1−) Σ

AϕI

q0 qv
−1

ΣI ΣI

Partha Roop Synchron-2016, Bamberg 7 December 2016 15 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Synchronous RE Preliminaries (1)

σI : Given σ = (x1, y1) · (x2, y2) · · · (xn, yn), the projection on inputs is
σI = x1 · x2 · · · xn ∈ ΣI .

σO : Given σ = (x1, y1) · (x2, y2) · · · (xn, yn), the projection on outputs is
σO = y1 · y2 · · · yn ∈ ΣO .

AϕI
: From Aϕ, AϕI

is obtained by ignoring outputs on the transitions.

Partha Roop Synchron-2016, Bamberg 7 December 2016 16 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Synchronous RE Preliminaries (2)

editIϕI
(resp. editOϕ), that the enforcer uses for editing input (resp. output)

event (whenever necessary).

editIϕI
(σI): editIϕI

(σI) = {x ∈ ΣI : σI · x |= ϕI}.
Considering AϕI

= (Q, q0, qv ,ΣI ,→I), and q ∈ Q,

editIAϕI
(q) = {x ∈ ΣI : q

x−→I q
′ ∧ q′ 6= qv}.

editOϕ(σ, x): editOϕ(σ, x) = {y ∈ ΣO : σ · (x , y) |= ϕ}.
Considering Aϕ = (Q, q0, qv ,Σ,→) defining property ϕ, and an input event
x ∈ ΣI , the set of output events y in ΣO that allow to reach a state in
Q \ {qv} from a state q ∈ Q with (x , y) is defined as:

editOAϕ
(q, x) = {y ∈ ΣO : q

(x,y)−−−→ q′ ∧ q′ 6= qv}.

rand–editIϕI
(σI): An element chosen randomly from editIϕI

(σI).

rand–editOϕ(σ, x): An element chosen randomly from editOϕ(σ, x).

Partha Roop Synchron-2016, Bamberg 7 December 2016 17 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Enforcer synthesis problem– Assumptions

We assume that the synchronous program may be invoked as a “black box”
system through a special function call called ptick. This function takes a bit
vector x and returns a bit vector y . Formally, ptick : ΣI → ΣO .

Recall functions editIϕI
and editOϕ that were introduce for editing inputs

(respectively outputs). These are used by the enforcer to edit the
input/output bit vectors.

Partha Roop Synchron-2016, Bamberg 7 December 2016 18 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Enforcer synthesis problem–constraints

Preliminaries (recall)

I: set of inputs, O: set of outputs.

ΣI = 2I , ΣO = 2O , and Σ = ΣI × ΣO .

Event (reaction): (xi , yi) where xi ∈ Σi and yi ∈ ΣO .

Word σ: (x0, y0) · (x1, y1) · · · ∈ Σ∗.

Property ϕ: ϕ ⊆ Σ∗.

Given ϕ, synthesize an enforcer Eϕ : Σ∗ → Σ∗ that satisfies:

Soundness: ∀σ ∈ Σ∗ : Eϕ(σ) |= ϕ.

Monotonicity: ∀σ, σ′ ∈ Σ∗ : σ 4 σ′ ⇒ Eϕ(σ) 4 Eϕ(σ′).

Instantaneity: ∀σ ∈ Σ∗ : |σ| = |Eϕ(σ)|.
Transparency: ∀σ ∈ Σ∗, ∀x ∈ ΣI , ∀y ∈ ΣO :

Eϕ(σ) · (x , y) |= ϕ =⇒ Eϕ(σ · (x , y)) = Eϕ(σ) · (x , y).

Causality: ∀σ ∈ Σ∗,∀x ∈ ΣI ,∀y ∈ ΣO ,
∃x ′ ∈ editIϕI (Eϕ(σ)I), ∃y ′ ∈ editOϕ(Eϕ(σ), x ′) :

Eϕ(σ · (x , y)) = Eϕ(σ) · (x ′, y ′).

Partha Roop Synchron-2016, Bamberg 7 December 2016 19 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

When input σ satisfies ϕ

Transparency’: ∀σ ∈ Σ∗ : σ ∈ ϕ⇒ Eϕ(σ) = σ

Transparency’ means that when the input sequence σ satisfies ϕ, then σ will be
the output of the enforcer.

Lemma (Transparency =⇒ Transparency ′)

(∀σ ∈ Σ∗,∀x ∈ ΣI ,∀y ∈ ΣO :Eϕ(σ)·(x , y) |= ϕ =⇒ Eϕ(σ·(x , y)) = Eϕ(σ)·(x , y))
=⇒

(∀σ ∈ Σ∗ : σ ∈ ϕ⇒ Eϕ(σ) = σ).

Example (Transparency is stronger)

I = {A,B}, O = {O}, Property ϕ: A and B cannot happen simultaneously.

σ Eϕ(σ) TR TR’

01− 01− 3 3

01− ·11− 01− ·10− 3 3

01− ·11− ·01− 01− ·10− · 10− 7 3

01− ·11− ·01− 01− ·10− · 01− 3 3

Partha Roop Synchron-2016, Bamberg 7 December 2016 20 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Enforceable safety properties

A non-enforceable safety property

q0 q1 qv
Σ Σ

Σ

Enforceability condition

A property ϕ defined as automaton Aϕ = (Q, q0, qv ,Σ,→) is enforceable (i.e., Eϕ

according to our problem def. exists) if

∀q ∈ Q, q 6= qv =⇒ ∃(x , y) ∈ Σ : q
(x,y)−−−→ q′ ∈ δ ∧ q′ 6= qv

Partha Roop Synchron-2016, Bamberg 7 December 2016 21 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Functional Definition (1)

Preliminaries (recall)

I: set of inputs, O: set of outputs.

ΣI = 2I , ΣO = 2O , and Σ = ΣI × ΣO .

Event (reaction): (xi , yi) where xi ∈ Σi and yi ∈ ΣO .

Word σ: (x0, y0) · (x1, y1) · · · (xn, yn) ∈ Σ∗.

- σI : x0 · xi · · · xn ∈ ΣI (projection of x ′i s from σ).

- σO : y0 · yi · · · yn ∈ ΣO (projection of y ′i s from σ).

Property ϕ: ϕ ⊆ Σ∗, Automaton Aϕ.

- Property ϕI , automaton AϕI (from Aϕ considering only x ′i s.)

Eϕ : Σ∗ → Σ∗

Eϕ(σ · (x , y)) = EO(EI (σI · x), σo · y).

σI : projection of x ′i s from σ, σO : projection of y ′i s from σ.

EI : Σ∗I → Σ∗I , EO : Σ∗I × Σ∗O → (ΣI × ΣO)∗.

Definition of EI and EO (next slide).

Partha Roop Synchron-2016, Bamberg 7 December 2016 22 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Functional Definition (2)

Eϕ : Σ∗ → Σ∗

Eϕ(σ · (x , y)) = EO(EI (σI · x), σo · y).

EI : Σ∗I → Σ∗I

EI (σI · x) =

EI (σI) · x if EI (σI) · x |= ϕI ,

EI (σI) · editI (x) otherwise

EO : Σ∗I × Σ∗O → (ΣI × ΣO)∗

EO(σI · x , σO · y) =

EO(σI , σO) · (x , y) if EO(σI , σO) · (x , y) |= ϕ,

EO(σI , σO) · (x , editO(y)) otherwise

editI (), and editO() in next slide.

Partha Roop Synchron-2016, Bamberg 7 December 2016 23 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Functional Definition (3): EditI () function

- I: set of inputs, O: set of outputs, ΣI = 2I , ΣO = 2O , and Σ = ΣI × ΣO .

- Event (reaction): (xi , yi) where xi ∈ Σi and yi ∈ ΣO .

- Word σ: (x0, y0) · (x1, y1) · · · (xn, yn) ∈ Σ∗, σI : x0 · xi · · · xn ∈ ΣI , and σO :
y0 · yi · · · yn ∈ ΣO .

- Property ϕ: ϕ ⊆ Σ∗, Automaton Aϕ.

- Property ϕI , automaton AϕI (from Aϕ considering only x ′i s.)

editI
- INPUT:AϕI = (Q, q0, qv ,Σ, δ), q ∈ Q (state reached upon EI (σ)), new input x ∈ ΣI .

- OUTPUT: x ′ ∈ ΣI .

- OK solutions I (AϕI , q, x) = {x ′ ∈ ΣI : q
x′−→ q′ ∈ δ ∧ q′ 6= qv}.

- editI (different possible solutions).

1 editI (AϕI , q, x) = rand(OK solutions I (AϕI , q, x)) “random selection from
OK solutions I ()”.

2 Element from OK solutionsI (AϕI , q, x) that differs MINIMALLY w.r.t the actual input x .

- editI (AϕI , q, x) = mindist(OK solutions I (AϕI , q, x)).

- ”mindist(OK solutions I (AϕI , q, x))”: pick an element from OK solutions I () that has
minimal distance w.r.t x .

3 · · ·
Partha Roop Synchron-2016, Bamberg 7 December 2016 24 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Functional Definition (4): EditO() function

I: set of inputs, O: set of outputs, ΣI = 2I , ΣO = 2O , and Σ = ΣI × ΣO .

Event (reaction): (xi , yi) where xi ∈ ΣI and yi ∈ ΣO .

Word σ: (x0, y0) · (x1, y1) · · · (xn, yn) ∈ Σ∗, σI : x0 · xi · · · xn ∈ ΣI , and σO :
y0 · yi · · · yn ∈ ΣO .

Property ϕ: ϕ ⊆ Σ∗, Automaton Aϕ.

editO
- INPUT: Aϕ = (Q, q0, qv ,Σ, δ), q ∈ Q (state reached upon Eϕ(σ)), new input event (x , y)

where x ∈ ΣI and y ∈ ΣO .

- OUTPUT: y ′ where y ′ ∈ ΣO .

- OK solutions O(Aϕ, q, (x , y)) = {y ′ ∈ ΣO : q
(x,y′)−−−−→ q′ ∈ δ ∧ q′ 6= qv}.

- editO (different possible solutions).

1 editO(Aϕ, q, (x , y)) = rand(OK solutions O(Aϕ, q, (x , y)) “random selection from
OK solutions O()”.

2 Element from OK solutions O(Aϕ, q, (x , y)) that differs MINIMALLY w.r.t y .

- editO(Aϕ, q, (x , y)) = mindist(OK solutions O(Aϕ, q, (x , y))).

- ”mindist(OK solutions O(Aϕ, q, (x , y)))”: pick an element from OK solutions O()
that has minimal distance w.r.t y .

3 · · ·

Partha Roop Synchron-2016, Bamberg 7 December 2016 25 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Functional Definition (5): Example

Automaton Aϕ

q0 qv
[−1, 1−]

Σ \ [−1, 1−] Σ

σI = εi
EI(εI) = εi, qi = qoi
σO = εo
EO(εI , εo) = ε, q = qo

σI = 10
EI(10) = 10, qi = qoi
σO = 11
EO(10,11) = (10,11), q = qo

σI = 10 · 11
EI(10 · 11) = 10 · 11, qi = qoi
σO = 11 · 10
EO(10 · 11, 11 · 10) = (10, 11) · (11, edito(Aϕ, q, (11, 10)))

= (10, 11) · (11,00), q = qo

I = {A,B}, O = {R,W }.
Property: B and R cannot happen simultaneously.

Initially σ = ε, σI = εi , σo = εo .

q : state in Aϕ upon Eϕ(σ), qi : state in AϕI
upon EI (σI).

OK solutions O(Aϕ, q0, (11, 10)) = {00, 01}.
mindist(OK Solutions O(Aϕ, q0, (11, 10))) = 00.

Partha Roop Synchron-2016, Bamberg 7 December 2016 26 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Enforcement algorithm (1)

Input: Aϕ = (Q, q0, qv ,Σ,→).
AϕI = (QI , q0I

, qvI ,ΣI ,→I) (Obtained from Aϕ by ignoring outputs.)

Enforcement algorithm

initialize tick/time, automata current states;
while True do

READ-input-channels;
EDIT-input-if-necessary;
READ-output-channels (after invoking program);
EDIT-output-if-necessary;
UPDATE-automata-current-states;

end

Partha Roop Synchron-2016, Bamberg 7 December 2016 27 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Enforcement algorithm (2)

Enforcer

1: t ← 0
2: (q, qI)← (q0, q0I

)
3: while true do
4: xt ← read in chan()

5: if qI
xt−→I q

′
I ∧ q′I 6= qvI then

6: x ′t ← xt
7: else
8: x ′t ← rand–editIAϕI

(qI)
9: end if

10: ptick(x′t)
11: yt ← read out chan()

12: if q
(x′

t ,yt)−−−−→ q′ ∧ q′ 6= qv then
13: y ′t ← yt
14: else
15: y ′t ← rand–editOAϕ(q, x ′t)
16: end if
17: release((x ′t , y

′
t))

18: q ← q′ where q
(x′t ,y

′
t)

−−−−→ q′

19: qI ← q′I where qI
x′t−→I q

′
I

20: t ← t + 1
21: end while

Partha Roop Synchron-2016, Bamberg 7 December 2016 28 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Enforcement algorithm (3)

Theorem
Given any safety property ϕ that is enforceable, for any t > 0, let
σ = (x1, y1) · · · (xt , yt) ∈ Σ∗ be the input-output word obtained by concatenating
input-output events read by the algorithm. Let the sequence obtained by
concatenating input-output events released as output by the algorithm be
Eϕ(σ) = (x ′1, y

′
1) · · · (x ′t , y ′t) ∈ Σ∗. The enforcement algorithm satisfies the

soundness, transparency, monotonicity, instantainety, and causality constraints.

Partha Roop Synchron-2016, Bamberg 7 December 2016 29 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Application to the SCCharts synchronous language

Example: Property and its enforcer

Partha Roop Synchron-2016, Bamberg 7 December 2016 30 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Results

Examples Tick (LoC) ϕ: in-out Enf. (LoC) Time (ms) Time w/ Enf. (ms) Incr. (%)

Null 0 0-0 0 0.000654 0.000752 14.98

ABRO 23 1-0 21 0.001208 0.001565 29.55

ABO 28 1-0 21 0.000998 0.001368 37.10

Reactor 32 1-1 32 0.001587 0.002137 34.61

Faulty Heart Model 43 1-1 40 0.001346 0.001869 38.85

Simple Heart Model 76 1-1 40 0.002175 0.002825 29.86

Traffic Light 171 0-3 41 0.004039 0.004707 16.53

Pacemaker 271 1-1 35 0.007302 0.008318 13.91

FHM + Pacemaker 314 1-1 35 0.009195 0.010306 12.08

Partha Roop Synchron-2016, Bamberg 7 December 2016 31 / 32

Part-I: Introduction Preliminaries Problem Def. Functional Def. Algorithm Application to SCCharts and Results Conclusions

Conclusions and Future Work

We formulated the problem of run-time enforcement of reactive systems
modelled using the synchronous approach.

We formalise the run-time enforcement problem as a bi-directional
enforcement of prefix-closed safety properties.

The concept of observers in synchronous languages is extended to the concept
of enforcers and this approach has been developed for the SCCharts language.

We have started extending the formulation to the practical setting of
implantable pacemakers, where we have to enforce regular properties.

Partha Roop Synchron-2016, Bamberg 7 December 2016 32 / 32

	Part-I: Introduction
	Preliminaries
	Problem Def.
	Functional Def.
	Algorithm
	Application to SCCharts and Results
	Conclusions

