
Revisiting coverage criteria for Scade models
Jean-Louis Colaço
7 December 2016



Context

I Code coverage is a measure that characterises how much a
given test suite exercises a code,

I lots of criteria exist, avioncs standard (DO-178) requires
MC/DC for the most critical application,

I in DO-178C (2011), suplement DO-331 about Model Based
Design now requires model coverage.

I SCADE proposes model coverage for about 10 years:
I was based on ad’hoc criteria defined by the user per operator,
I recent solution is inspired by work of Parissis et al.

A. Lakehal and I. Parissis,
Structural coverage criteria for LUSTRE/SCADE programs,
in Software Testing, Verification and Reliablity, Wiley Interscience, 2009

J-L. Camus, C. Haudebourg and M. Schlickling
Data Flow Model Coverage Analysis: Principles and Practice
in Embedded Real Time Software and Systems, 2016

2 c© ANSYS, Inc.



Why revisiting?

I current solution is based on Paths in the dataflow: quite
complex objects;

I to study the relationship between model coverage and
generated code coverage: paths are not well suited;

I to overcome some limitation of current implementation.

The idea we had for the rework was actually nicely presented in:
M. Whalen, G. Gay, Y. Dongjiang, M. P.E. Heimdahl and M. Staats
Observable modified condition/decision coverage
in Proceedings of the 35th International Conference on Software Engineering, 2013

present work continues and extends it to full Scade 6 language.

3 c© ANSYS, Inc.



Why revisiting?

I current solution is based on Paths in the dataflow: quite
complex objects;

I to study the relationship between model coverage and
generated code coverage: paths are not well suited;

I to overcome some limitation of current implementation.

The idea we had for the rework was actually nicely presented in:
M. Whalen, G. Gay, Y. Dongjiang, M. P.E. Heimdahl and M. Staats
Observable modified condition/decision coverage
in Proceedings of the 35th International Conference on Software Engineering, 2013

present work continues and extends it to full Scade 6 language.

3 c© ANSYS, Inc.



Why revisiting?

I current solution is based on Paths in the dataflow: quite
complex objects;

I to study the relationship between model coverage and
generated code coverage: paths are not well suited;

I to overcome some limitation of current implementation.

The idea we had for the rework was actually nicely presented in:
M. Whalen, G. Gay, Y. Dongjiang, M. P.E. Heimdahl and M. Staats
Observable modified condition/decision coverage
in Proceedings of the 35th International Conference on Software Engineering, 2013

present work continues and extends it to full Scade 6 language.

3 c© ANSYS, Inc.



Agenda

Intuition

Ideal definition of coverage

Scade tagged semantics

Tag based definition of coverage

Static tag reduction

Conclusion

4 c© ANSYS, Inc.



Intuition

Ideal definition of coverage

Scade tagged semantics

Tag based definition of coverage

Static tag reduction

Conclusion

5 Intuition c© ANSYS, Inc.



Glossary

flow or stream: infinite sequence of values.

model: a Scade program and a root node.

monitor: any construction that allows to observe a flow out of the
model: (root node) outputs, probes, . . .

outcome (of a test) values taken by all the monitors of the model when
running a test.

source designates any construction that introduces flow that that does
not result from the combination of other flows. (root node) inputs,
sensors, literal values, reference to constants.

6 Intuition c© ANSYS, Inc.



The intuition

I Covering a stream occurrence s requires exhibiting a test that
shows its ability to influence a monitor (red bubles);

I Covering a model requires covering all its streams occurrences.

7 Intuition c© ANSYS, Inc.



Criterion 1: Influence

A test T shows the influence of stream x of a model M if:

I T is such that x is in situation to influence an output of M
I i.e. T is such that modifying stream x in the execution of the

test changes the outcome.

A test suite TS covers a model M if for all stream x of M, TS

contains a test T that covers stream x .

8 Intuition c© ANSYS, Inc.



Criterion 2: OMC/DC

A pair of tests (T1,T2) satisfies OMC/DC criterion for a Boolean
stream b of a model M if T1 and T2 are such that:

I b takes different values in each test case and

I toggling b in both test cases changes the outcome.

A test suite TS covers a model M in the sense of OMC/DC if for
all Boolean stream b of M, TS contains two tests T1 and T2 such
that satisfy the condition above.

9 Intuition c© ANSYS, Inc.



Intuition

Ideal definition of coverage

Scade tagged semantics

Tag based definition of coverage

Static tag reduction

Conclusion

10 Ideal definition of coverage c© ANSYS, Inc.



Notations

I Dn represent the set of stream prefix of size smaller or equal to n.

I If x is a stream prefix, |x | represents its size.

I If x is a stream prefix, (x)i where i ≤ |x | represents ith value.

I Let M be a Scade model and nin its number of inputs.

I A test case T of length n cycle is a tuple of nin components of Dn.

I M(T ) represents the execution of test case T ; the outcome of this
execution is itself a tuple of values in Dn (one per monitor).

I If v is a stream prefix of a Boolean stream, ¬i (v) represents the

prefix with same length built from v by negating its ith value.

I A stream occurrence is represented as beck where k is an integer
and e is a stream expression.

11 Ideal definition of coverage c© ANSYS, Inc.



Occurrences identification

Defined by function Streams (.):

Streams (x1, ..., xn = e;)
def
= Streams (e)

· · · def
= · · ·

Streams (x)
def
=
{
bxck

}
Streams (1)

def
=
{
b1ck

}
Streams (’s;)

def
= {b’sck}

Streams ( last ’s;)
def
= {b last ’sck}

Streams (op(e1, . . . , en))
def
= {bop(e1, . . . , en)ck}

⋃
Streams (e1)

⋃
. . .

· · · def
= · · ·

12 Ideal definition of coverage c© ANSYS, Inc.



Occurrences identification example

Streams (o = x*x + pre (2*x) + 1;) =

bxc1 , bxc2 , bxc3 , b2c4 , b1c5 ,

bbxc1 ∗ bxc2c6 , bb2c4 ∗ bxc3c7 ,
⌊
bpre(b2c4 ∗ bxc3)c7

⌋
8
,⌊

bbxc1 ∗ bxc2c6 +
⌊
(pre bb2c4 ∗ bxc3c7

⌋
8

⌋
9
,⌊⌊

bbxc1 ∗ bxc2c6 +
⌊
(pre bb2c4 ∗ bxc3c7

⌋
8

⌋
9

+ b1c5
⌋

10



13 Ideal definition of coverage c© ANSYS, Inc.



Stream occurrence mutation

Let M be a model where:

I beck one of its stream occurrences: beck ∈ Streams (M),

I v is a finite stream prefixe: v ∈ Dn,

I e and v are of same type,
I e ′ is a stream expression with same clock as e:

e e0 · · · en en+1 en+2 · · ·
v v0 · · · vn

e′ v0 · · · vn en+1 en+2 · · ·

M(vIbeck) represents the model obtained by substituting beck in
M by a e ′; we called it a mutant of M for the occurrence beck.

14 Ideal definition of coverage c© ANSYS, Inc.



Influence ideal definition

Coverage of stream x by T :

Influence(T , x ,M)
def
= ∃n > 0. ∃v ∈ Dn. M(T ) 6=M(vIx)(T )

Coverage of model M by a test suite TS :

∀x ∈ Streams (M) . ∃T ∈ TS . Influence(T , x ,M)

15 Ideal definition of coverage c© ANSYS, Inc.



OMC/DC Ideal definition

Coverage of stream x by (T1,T2):

Omcdc(T1,T2, b,M)
def
=

∃(i , j) ∈ N× N.

 (bT1)i 6= (bT2)j∧
M(T1) 6=M(¬i (bT1

)Ib)(T1)∧
M(T2) 6=M(¬j (bT2

)Ib)(T2)



Coverage of model M by a test suite TS :

∀b ∈ Streams (M) .
∃(T1,T2) ∈ TS × TS .

(
(b : bool) ⇒ Omcdc(T1,T2, b,M)

)

16 Ideal definition of coverage c© ANSYS, Inc.



Limit of the ideal definition

Not really implementable:

I based on the exitence of mutants without giving a way to
build them (it is a guess);

I requires both executions on original model and on the mutant;

I needs one mutant per stream occurrence.

17 Ideal definition of coverage c© ANSYS, Inc.



Intuition

Ideal definition of coverage

Scade tagged semantics

Tag based definition of coverage

Static tag reduction

Conclusion

18 Scade tagged semantics c© ANSYS, Inc.



Tagged semantics

Tagged semantics:

I based on tagged values;

I defines tag propagation rules.

I provides primitives for tag introduction;

19 Scade tagged semantics c© ANSYS, Inc.



Tagged values

The values used in a tagged Scade model M# are in V#
n,m

defined by:

V#
0,m

def
= (bool

⋃
numeric

⋃ {
declared enum values

}
) × P(Tags)

V#
n+1,m

def
= V#

n,m⋃ {
[v#

1 , . . . , v#
p ]

∣∣ 1 ≤ i ≤ p ≤ m, v#
i ∈ V

#
n,m

}
× P(Tags)⋃ {

{l1:v#
1 , . . . , lp:v#

p }
∣∣ 1 ≤ i ≤ p ≤ m, v#

i ∈ V
#
n,m

}
× P(Tags)

where Tags is a finite set of tags

20 Scade tagged semantics c© ANSYS, Inc.



Tag propagation of combinatorial operators

For most operators input tags propagate to the outputs:

op#((v1, τ1), . . . , (vn, τn)) = (op(v1, . . . , vn),
⋃

i∈[1..n] τi )

21 Scade tagged semantics c© ANSYS, Inc.



Tag propagation of temporal operators

Behave as usual but on tagged streams:

(a, τ a) (a0, τ
a
0 ) (a1, τ

a
1 ) (a2, τ

a
2 ) (a3, τ

a
3 ) · · ·

(b, τb) (b0, τ
b
0 ) (b1, τ

b
1 ) (b2, τ

b
2 ) (b3, τ

b
3 ) · · ·

pre# (a, τ a) (nil , ∅) (a0, τ
a
0 ) (a1, τ

a
1 ) (a2, τ

a
2 ) · · ·

(a, τ a) -># (b, τb) (a0, τ
a
0 ) (b1, τ

b
1 ) (b2, τ

b
2 ) (b3, τ

b
3 ) · · ·

22 Scade tagged semantics c© ANSYS, Inc.



Specific propagation rules

and# (also exists for or# ):

a b a and# b

false , τa false , τb false , τa ∩ τb

false , τa true, τb false , τa

true, τa false , τb false , τb

true, τa true, τb true, τa ∪ τb

flow selection:

if # (true, τc) then# (v1, τ1) else# (v2, τ2) =(v1, τc ∪ τ1)

if # ( false , τc ) then# (v1, τ1) else# (v2, τ2)=(v2, τc ∪ τ2)

23 Scade tagged semantics c© ANSYS, Inc.



Tags introduction

I sources are extended with an empty set of tags,

I memories are initialy extended with an empty set of tags,

I new primitives tag(e, t) and bool_tag(e, t1, t2) introduce
tags:

tag((v , τ), t) = (v , {t} ∪ τ)
bool_tag((true, τ), t1, t2) = (true, {t1} ∪ τ)
bool_tag(( false , τ), t1, t2) = ( false , {t2} ∪ τ)

24 Scade tagged semantics c© ANSYS, Inc.



Tagged semantics for coverage purpose

I introduce a tag for each stream occurrence and

I register tags when reaching a monitor.

25 Scade tagged semantics c© ANSYS, Inc.



A simple example of propagation

model

26 Scade tagged semantics c© ANSYS, Inc.



A simple example of propagation

tagged model

26 Scade tagged semantics c© ANSYS, Inc.



A simple example of propagation

first cycle

26 Scade tagged semantics c© ANSYS, Inc.



A simple example of propagation

second cycle

26 Scade tagged semantics c© ANSYS, Inc.



A simple example of propagation

other cycles

26 Scade tagged semantics c© ANSYS, Inc.



Intuition

Ideal definition of coverage

Scade tagged semantics

Tag based definition of coverage

Static tag reduction

Conclusion

27 Tag based definition of coverage c© ANSYS, Inc.



Influence tagged definition

Coverage of stream x by T :

Influence#(T , x ,M)
def
= tx ∈ Otags(M#(T ))

Coverage of model M by TS :

∀x ∈ Streams (M) . ∃T ∈ TS . Influence#(T , x ,M)

28 Tag based definition of coverage c© ANSYS, Inc.



OMC/DC tagged definition

Coverage of stream x by (T1,T2):

Omcdc#(T1,T2, b,M)
def
=

t◦b ∈ Otags(M#
Bool (T1))

∧
t•b ∈ Otags(M#

Bool (T2))

Coverage of model M by TS :

∀b ∈ Streams (M) .

∃(T1,T2) ∈ TS × TS .
(
(b : bool) ⇒ Omcdc#(T1,T2, b,M)

)

29 Tag based definition of coverage c© ANSYS, Inc.



Gap with ideal definition

There are situations where tags are propagated while no
contribution can be observed:

I absorption: x * 0

I unobservable selection: if c then x else x

Gaps exist but it still be a good compromise.

30 Tag based definition of coverage c© ANSYS, Inc.



Gap with ideal definition

There are situations where tags are propagated while no
contribution can be observed:

I absorption: x * 0

I unobservable selection: if c then x else x

Gaps exist but it still be a good compromise.

30 Tag based definition of coverage c© ANSYS, Inc.



Intuition

Ideal definition of coverage

Scade tagged semantics

Tag based definition of coverage

Static tag reduction

Conclusion

31 Static tag reduction c© ANSYS, Inc.



Reduction

I Criteria are based on tags on all the expressions and
sub-expressions ⇒ big number of tags.

I Many tags are related: each time t1 is observed t2 is also
observed.

I Reduction concists in removing tags whose observation can be
deduced from other tags observation.

I Reduction is used in the model instrumentation phase.

32 Static tag reduction c© ANSYS, Inc.



Example

node N(a, b : bool ; i : i n t 1 6 )

r e t u r n s (o : i n t 1 6 )

var m : i n t 1 6 ;

l e t
m = pre o;

o = 0 -> ( i f a and b then 2 * i e l s e i)

+ ( i f a or b then m / 4 e l s e m);

t e l

33 Static tag reduction c© ANSYS, Inc.



Example: initial tagging

27 tags

34 Static tag reduction c© ANSYS, Inc.



Example: initial tagging

27 tags

34 Static tag reduction c© ANSYS, Inc.



Example: simple tag reduction

15 tags

35 Static tag reduction c© ANSYS, Inc.



Example: simple tag reduction

15 tags

35 Static tag reduction c© ANSYS, Inc.



Example: + Boolean reduction

11 tags

36 Static tag reduction c© ANSYS, Inc.



Example: + Boolean reduction

11 tags

36 Static tag reduction c© ANSYS, Inc.



Intuition

Ideal definition of coverage

Scade tagged semantics

Tag based definition of coverage

Static tag reduction

Conclusion

37 Conclusion c© ANSYS, Inc.



Conclusion

I extends to all Scade 6 language, including automata;
I implementation:

I instrumentation of the model (addition of tag(...)) and
I code generation for the tagged semantics;

I static reduction is important, divides by 2 to 3 the number of
tags;

I good scale up (tested on big industrial models).

38 Conclusion c© ANSYS, Inc.


	Intuition
	Ideal definition of coverage
	Scade tagged semantics
	Tag based definition of coverage
	Static tag reduction
	Conclusion

