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Many Bosch products are driven by embedded software

Our domain

We need to advance:
 Analysis
 Architecture
 Implementation
 Verification

 Little progress in:
 methodology and tools

Rapid increase in:
 number of products,
 their functionality,
 complexity 
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 Assembler  C  Simulink, ASCET

Programming Frontend



Runnables: void-void C function

 no inputs, no outputs, operates on global 

variables

Runnables are ordered in sequence to form a task

 Sequence 

 Tasks may be ordered by priority

 Tasks ≈ clock rates (e.g. 1ms, 5ms, 10ms, …)

II. State-of-the-art
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Deployment Backend

f()

f() g() h()T
k() l() m() n() o()T10

f() g() h()T20

a() b() c() d()T40

r() s() t()T1

x() y()T5

 Stack of active tasks 
 A running task may be preempted by tasks with 

higher priority

For more details see: “Real world automotive benchmark for free”  by Simon Kramer, Dirk Ziegenbein and Arne Hamann, WATERS 2015
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Handling concurrency:

 Who is writing what variable and when?

 Ordering of runnables and tasks determined by a separate task list in XML

‒ Implicitly introduces prev and current accesses without ever being documented

 State machine behaviour is either implicit or formulated in a separate monolithic model

Nondeterminism:

 Above ordering has no formal criteria

 Communication between concurrent threads is non-deterministic
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 Adding new software is hard

Most effort is spent in:

 Reverse engineering to find out who is writing what variable and when

 Composition of software components, requiring lots of meta data about side effects, timing constraints, …

 Lack of software qualities such as:

 Determinism & testability

 Readability

 Flexibility (refactoring!)

 Modularity

Effects of deficiencies
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We believe we can benefit greatly from the synchronous programming approach:

 Behaviour over time

 Preemptions and mode switches

 Structured programming of state machines

 Causality of concurrent functions

We hope your research may benefit from industrial challenge

 So where is the challenge?

Why we are here
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Clear focus
 Software ………………………………………… Not hardware
 Embedded ………………………………………… Not “IT”-level software
Reactive ………………………………………… Trigger-response execution
Real-time ………………………………………… Time is functional, not a performance 

measure
Resource-constrained hardware …………… No heap allocation, garbage collection
 Scale to software with millions lines of code …. Not “wrist watch”
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Control intensive systems
 Intertwined functionality
Computations and switching behaviour
 Preemptions
Causality ………………………………… Relaxed notion of causality is sufficient for software 

= concurrent processes + shared variables + barriers!

Synchronous programming = Unique writer and 
write before read between each pair of barriers.

Domain orientation
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 Integration of legacy code
 Integration in legacy code
 Support separate compilation
 Address deployment on multi-core platforms
 Program across threads, cores maintaining 

guarantees such as causality

Compatible with the past and future
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 Efficient code generation ……………………….. No definitive consensus yet?
 Safe code generation ….……………………. Runtime errors shall be impossible on a final 

system
 Integrate synchronous “execution shell” with existing 

real-time OS environments
 Low level mapping to cores and tasks

Deployment
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Developer orientation
Readable programs ..…………….. Programs are mostly read, 

sometimes adapted and 
almost never written from scratch

Crystal clear semantics .……………… Make it hard to write nonsense, 
make it obvious what any piece of code does

 Express stateflow in control flow
 Provide structured data types .………........... These cannot be disintegrated into primitives

(arrays, structs, enums) 
 Enable structuring, information hiding ………........... Structures cannot be just macros that are 

instantiated and inlined
 Provide a safe and modern type system ……. Physical units, sum types
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Testing and verification
 Easy testing ……………… Write tests in the same language and 

compose concurrently with production code
 Integration with existing simulation ……………… E.g.: Simulink, Functional Mockup Interface

frameworks
Generate verification conditions for ……………… Lots of assertions (no 0-division, no out-of-

abstract interpreters bounds access, …) are never specified by the 
programmer but are trivial to generate and 
significantly help to find bugs
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What we do not need
 Hardware related issues
 Single value per tick
 Reordering of commands
 Fine grained causality based on logical constructiveness or dynamic analyses
 Full range of preemption expressions

 And hence no
 Schizophrenia
 Fix point computations
 Intricate surface/depth compilation

By focusing we gain a few degrees of freedom



VI. Outlook
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No off-the-shelf solution available which meets above requirements
 Theoretically most requirements are straight forward
 Some however are not
 True parallelism
 Deployment
 OO, references vs. causality

We have a vision that all requirements together lead to a new language with a new compiler and IDE 
that support (most of) the above

 And we believe this will significantly improve the implementation methodology of embedded systems
 And there is the first practical evidence that a paradigm shift may be of interest to real-life developers

Do we need something new? 
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