
SYNCHRON 2016

TOWARDS BETTER EMBEDDED SOFTWARE

JENS BRANDT, FRIEDRICH GRETZ, FRANZ-JOSEF GROSCH



Brandt / Gretz / Grosch | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

2

Agenda

1. Background

2. State-of-the-art

3. Conceptual deficiencies

4. The link to synchronous languages

5. Requirements of embedded systems

6. Outlook: A new language?



I. Background

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3

Many Bosch products are driven by embedded software

Our domain

We need to advance:
 Analysis
 Architecture
 Implementation
 Verification

 Little progress in:
 methodology and tools

Rapid increase in:
 number of products,
 their functionality,
 complexity 



II. State-of-the-art

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

4

 Assembler  C  Simulink, ASCET

Programming Frontend



Runnables: void-void C function

 no inputs, no outputs, operates on global 

variables

Runnables are ordered in sequence to form a task

 Sequence 

 Tasks may be ordered by priority

 Tasks ≈ clock rates (e.g. 1ms, 5ms, 10ms, …)

II. State-of-the-art

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

5

Deployment Backend

f()

f() g() h()T
k() l() m() n() o()T10

f() g() h()T20

a() b() c() d()T40

r() s() t()T1

x() y()T5

 Stack of active tasks 
 A running task may be preempted by tasks with 

higher priority

For more details see: “Real world automotive benchmark for free”  by Simon Kramer, Dirk Ziegenbein and Arne Hamann, WATERS 2015



III. Conceptual deficiencies

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

6

Handling concurrency:

 Who is writing what variable and when?

 Ordering of runnables and tasks determined by a separate task list in XML

‒ Implicitly introduces prev and current accesses without ever being documented

 State machine behaviour is either implicit or formulated in a separate monolithic model

Nondeterminism:

 Above ordering has no formal criteria

 Communication between concurrent threads is non-deterministic



III. Conceptual deficiencies

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

7

 Adding new software is hard

Most effort is spent in:

 Reverse engineering to find out who is writing what variable and when

 Composition of software components, requiring lots of meta data about side effects, timing constraints, …

 Lack of software qualities such as:

 Determinism & testability

 Readability

 Flexibility (refactoring!)

 Modularity

Effects of deficiencies



IV. The link to synchronous languages

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

8

We believe we can benefit greatly from the synchronous programming approach:

 Behaviour over time

 Preemptions and mode switches

 Structured programming of state machines

 Causality of concurrent functions

We hope your research may benefit from industrial challenge

 So where is the challenge?

Why we are here



V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

9

Clear focus
 Software ………………………………………… Not hardware
 Embedded ………………………………………… Not “IT”-level software
Reactive ………………………………………… Trigger-response execution
Real-time ………………………………………… Time is functional, not a performance 

measure
Resource-constrained hardware …………… No heap allocation, garbage collection
 Scale to software with millions lines of code …. Not “wrist watch”



V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

10

Control intensive systems
 Intertwined functionality
Computations and switching behaviour
 Preemptions
Causality ………………………………… Relaxed notion of causality is sufficient for software 

= concurrent processes + shared variables + barriers!

Synchronous programming = Unique writer and 
write before read between each pair of barriers.

Domain orientation



V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

11

 Integration of legacy code
 Integration in legacy code
 Support separate compilation
 Address deployment on multi-core platforms
 Program across threads, cores maintaining 

guarantees such as causality

Compatible with the past and future



V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

12

 Efficient code generation ……………………….. No definitive consensus yet?
 Safe code generation ….……………………. Runtime errors shall be impossible on a final 

system
 Integrate synchronous “execution shell” with existing 

real-time OS environments
 Low level mapping to cores and tasks

Deployment



V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

13

Developer orientation
Readable programs ..…………….. Programs are mostly read, 

sometimes adapted and 
almost never written from scratch

Crystal clear semantics .……………… Make it hard to write nonsense, 
make it obvious what any piece of code does

 Express stateflow in control flow
 Provide structured data types .………........... These cannot be disintegrated into primitives

(arrays, structs, enums) 
 Enable structuring, information hiding ………........... Structures cannot be just macros that are 

instantiated and inlined
 Provide a safe and modern type system ……. Physical units, sum types



V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

14

Testing and verification
 Easy testing ……………… Write tests in the same language and 

compose concurrently with production code
 Integration with existing simulation ……………… E.g.: Simulink, Functional Mockup Interface

frameworks
Generate verification conditions for ……………… Lots of assertions (no 0-division, no out-of-

abstract interpreters bounds access, …) are never specified by the 
programmer but are trivial to generate and 
significantly help to find bugs



V. Not requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

15

What we do not need
 Hardware related issues
 Single value per tick
 Reordering of commands
 Fine grained causality based on logical constructiveness or dynamic analyses
 Full range of preemption expressions

 And hence no
 Schizophrenia
 Fix point computations
 Intricate surface/depth compilation

By focusing we gain a few degrees of freedom



VI. Outlook

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

16

No off-the-shelf solution available which meets above requirements
 Theoretically most requirements are straight forward
 Some however are not
 True parallelism
 Deployment
 OO, references vs. causality

We have a vision that all requirements together lead to a new language with a new compiler and IDE 
that support (most of) the above

 And we believe this will significantly improve the implementation methodology of embedded systems
 And there is the first practical evidence that a paradigm shift may be of interest to real-life developers

Do we need something new? 


	Synchron 2016
	Agenda
	Our domain
	Programming Frontend
	Deployment Backend
	Slide Number 6
	Effects of deficiencies�
	Why we are here
	Clear focus
	Domain orientation
	Compatible with the past and future
	Deployment
	Developer orientation
	Testing and verification
	By focusing we gain a few degrees of freedom
	Do we need something new? �

