Control-flow Guided Property Directed Reachability for Imperative Synchronous Programs

Xian Li

Supervisor: Prof. Dr. Klaus Schneider

Embedded Systems Chair Department of Computer Science University of Kaiserslautern,Germany

Synchron 2016 at Bamberg, December 5 - 9, 2016

Table of Contents

1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs

Motivation	Property Directed Reachability 00	Control-flow Guided PDR for Imperative Synchronous Programs
Outline		

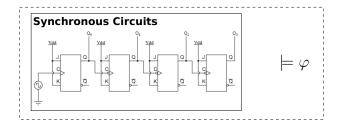
1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs

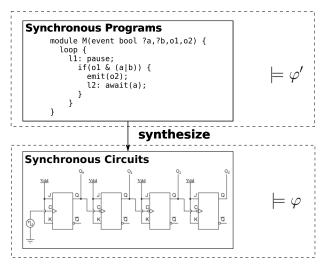
Formal Verification of Synchronous Hardware Circuits

> PDR: a very efficient verification method based on induction



Formal Verification of Synchronous Programs

> PDR: a very efficient verification method based on induction



Imperative Synchronous Programs

Imperative Synchronous Languages: e.g. Quartz

- macro steps: consumption of one logical time unit
- micro steps: no logical time consumption
 - \Rightarrow synchronous reactive model of computation

Control-flow Information

- not needed for synthesis
- useful for formal verification

Goals

Target: Safety Property Verification of Imperative Synchronous Programs

PDR: relies on good estimation of the reachable states

Our Heuristic: Improve it by Expoiting Control-flow Information

- modify transition relation to generate less counterexamples to induction (CTIs) by reachable control-flow states computation
 - linear-time static analysis
 - symbolic reachability analysis
- ► indentify CTIs in K simpler unreachability tests in K^{cf}
- ▶ generalize CTIs to narrow the reachable state approximations if C is unreachable, then generalize ¬C' instead of ¬C:
 C' := C_{|V^{cf}} obtained from omitting the dataflow literals in C

	Property Directed Reachability 00	Control-flow Guided PDR for Imperative Synchronous Programs
Outline		

1. Motivation

2. Property Directed Reachability

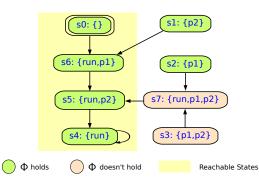
3. Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Guided PDR for Imperative Synchronous Programs

Safety Property Verification

Target: Prove Φ is valid w.r.t. \mathcal{K}

- a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- a safety property: Φ
- Φ holds on all reachable states of $\mathcal K$



module CfSeq(){
 p1: pause;
 p2: pause;
}

 $\Phi := \neg(p1 \wedge p2)$

8 / 22

Safety Property Verification by Induction

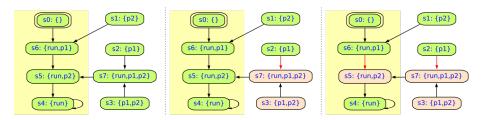
Target: Prove Φ is valid w.r.t. \mathcal{K}

- a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- a safety property: Φ
- \blacktriangleright Φ holds on all reachable states of ${\cal K}$
- Φ is inductive w.r.t. ${\cal K}$
 - induction base: Φ holds in all initial states
 - induction step: Φ-states have no successor violating Φ

Safety Property Verification by Induction

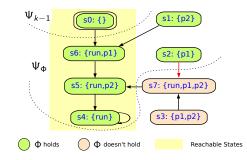
Target: Prove Φ is valid w.r.t. \mathcal{K}

- a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- a safety property: Φ
- \blacktriangleright Φ holds on all reachable states of ${\cal K}$
- Φ is inductive w.r.t. ${\cal K}$
 - induction base: Φ holds in all initial states
 - induction step: Φ-states have no successor violating Φ



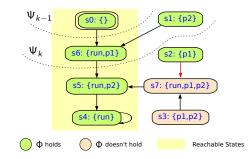
PDR method constructs a sequence of clause sets Ψ_0, \ldots, Ψ_k that overapproximate the states reachable in $0, \ldots, k$ steps.

- incremental induction: extend the sequence Ψ_0, \ldots, Ψ_k
- unreachability checking: CTI indentification and generalization



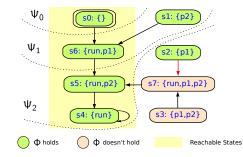
PDR method constructs a sequence of clause sets Ψ_0, \ldots, Ψ_k that overapproximate the states reachable in $0, \ldots, k$ steps.

- incremental induction: extend the sequence Ψ_0, \ldots, Ψ_k
- unreachability checking: CTI indentification and generalization



PDR method constructs a sequence of clause sets Ψ_0, \ldots, Ψ_k that overapproximate the states reachable in $0, \ldots, k$ steps.

- ▶ incremental induction: extend the sequence Ψ_0, \ldots, Ψ_k
- unreachability checking: CTI indentification and generalization



	Property Directed Reachability 00	Control-flow Guided PDR for Imperative Synchronous Programs
Outline		

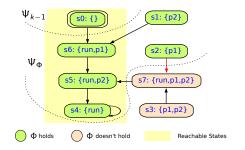
1. Motivation

2. Property Directed Reachability

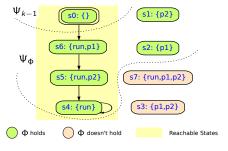
3. Control-flow Guided PDR for Imperative Synchronous Programs

Main Idea I: Modify Transition Relation to generate less CTIs

Original Transition Relation:



Enhanced Transition Relation:



 s_2 has successor s_7 violating Φ

s₂ has no successor

 \Rightarrow remove transitions from unreachable states by **control-flow invariants**

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences and conditional statements:

```
module CfSeq(){
    p1: pause;
    p2: pause;
}
¬(p1 ∧ p2)
```

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences and conditional statements:

```
module Ite(){
    mem bool i;
    if (i) {
        p1: pause;
    } else {
        q1: pause;
    }
}
```

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences and conditional statements:

```
module CfIte(){

mem bool i;

if (i) {

p1: pause;

p2: pause;

} else {

q1: pause;

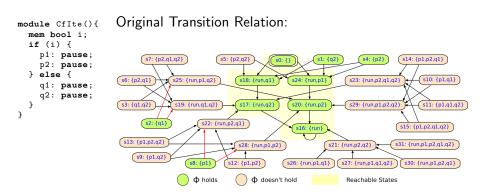
q2: pause;

}

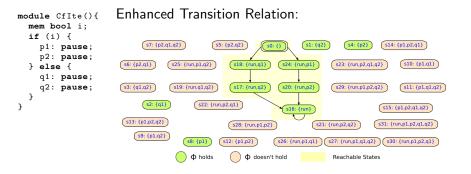
}

\gamma(p1 \land p2) \land \neg(q1 \land q2) \land \neg((p1 \lor p2) \land (q1 \lor q2))
```

Control-flow Invariants by static Analysis

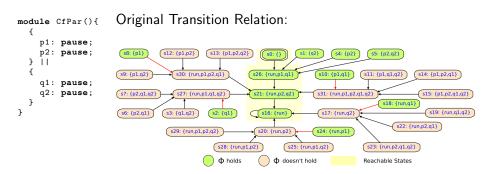


Control-flow Invariants by static Analysis

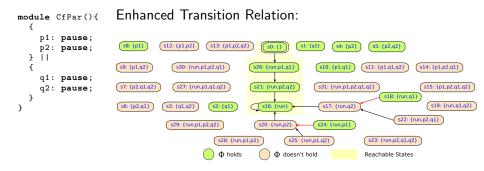


with control-flow invariant by static analysis: $\neg(p1 \land p2) \land \neg(q1 \land q2) \land \neg((p1 \lor p2) \land (q1 \lor q2))$

Control-flow Invariants by symbolic Analysis



Control-flow Invariants by symbolic Analysis



with control-flow invariant by static analysis: $\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2)$

Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

```
module CfPar(){

{

p1: pause;

p2: pause;

} ||

{

q1: pause;

q2: pause;

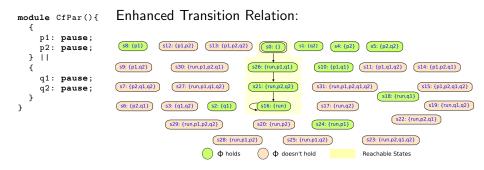
}

}

\neg(p1 \land p2) \land \neg(q1 \land q2) \land \neg((p1 \land q2) \lor (p2 \land q1))
```

Control-flow Guided PDR for Imperative Synchronous Programs $\circ 0 0 0 0 \bullet 0 \circ 0 \circ 0 \circ 0$

Control-flow Invariants by symbolic Analysis



with control-flow invariant by symbolic analysis: $\neg(p1 \land p2) \land \neg(q1 \land q2) \land \neg((p1 \land q2) \lor (p2 \land q1))$

Main Idea II: CTI Indentification and Generalization by Control-flows

- reachability of CTIs in K simpler unreachability tests in K^{cf}
- ▶ generalize CTIs to narrow the reachable state approximations if C is unreachable, then generalize ¬C' instead of ¬C:
 C' := C_{|Vef} obtained from omitting the dataflow literals in C

Control-flow Guided PDR for Imperative Synchronous Programs

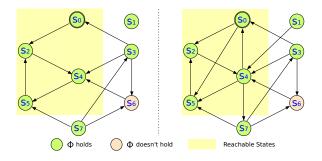
Transition Systems of a Synchronous Program

Let
$$\mathcal{V}:=\mathcal{V}^{cf}\cup\mathcal{V}^{df}$$
 and $\mathcal{K}:=\mathcal{K}^{cf}\times\mathcal{K}^{df},$ with

$$\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$$

$$\mathcal{K}^{cf} = (\mathcal{V}, \mathcal{I}^{cf}, \mathcal{T}^{cf})$$

$$\mathcal{K}^{df} = (\mathcal{V}, \mathcal{I}^{df}, \mathcal{T}^{df})$$



Control-flow Guided PDR for Imperative Synchronous Programs

Transition Systems of a Synchronous Program

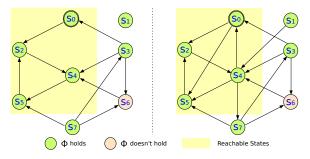
Let $\mathcal{V}:=\mathcal{V}^{\mathsf{cf}}\cup\mathcal{V}^{\mathsf{df}}$ and $\mathcal{K}:=\mathcal{K}^{\mathsf{cf}}\times\mathcal{K}^{\mathsf{df}}$, with

$$\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$$

$$\mathcal{K}^{cf} = (\mathcal{V}, \mathcal{I}^{cf}, \mathcal{T}^{cf})$$

$$\mathcal{K}^{df} = (\mathcal{V}, \mathcal{I}^{df}, \mathcal{T}^{df})$$

unreachability of CTIs in \mathcal{K} can be proved by unreachability in \mathcal{K}^{cf}



CTI Indentification by Control-flows

Let $\mathcal{V}:=\mathcal{V}^{\mathsf{cf}}\cup\mathcal{V}^{\mathsf{df}}$ and $\mathcal{K}:=\mathcal{K}^{\mathsf{cf}}\times\mathcal{K}^{\mathsf{df}}$, with

 $\blacktriangleright \ \mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$

$$\blacktriangleright \ \mathcal{K}^{\mathsf{cf}} = (\mathcal{V}, \mathcal{I}^{\mathsf{cf}}, \mathcal{T}^{\mathsf{cf}})$$

 $\blacktriangleright \ \mathcal{K}^{df} = (\mathcal{V}, \mathcal{I}^{df}, \mathcal{T}^{df})$

unreachability of CTIs in ${\mathcal K}$ can be proved by unreachability in ${\mathcal K}^{\mathsf{cf}}$

 reachability of CTIs in *K* simpler unreachability tests in *K*^{cf}

CTI Generalization by Control-flows

Let
$$\mathcal{V}:=\mathcal{V}^{\mathsf{cf}}\cup\mathcal{V}^{\mathsf{df}}$$
 and $\mathcal{K}:=\mathcal{K}^{\mathsf{cf}}\times\mathcal{K}^{\mathsf{df}}$, with

$$\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$$

$$\mathcal{K}^{cf} = (\mathcal{V}, \mathcal{I}^{cf}, \mathcal{T}^{cf})$$

$$\mathcal{K}^{df} = (\mathcal{V}, \mathcal{I}^{df}, \mathcal{T}^{df})$$

unreachability in \mathcal{K}^{cf} is independent on the dataflows

CTI Generalization by Control-flows

Let
$$\mathcal{V}:=\mathcal{V}^{\mathsf{cf}}\cup\mathcal{V}^{\mathsf{df}}$$
 and $\mathcal{K}:=\mathcal{K}^{\mathsf{cf}}\times\mathcal{K}^{\mathsf{df}}$, with

- $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$ $\mathcal{K}^{cf} = (\mathcal{V}, \mathcal{I}^{cf}, \mathcal{T}^{cf})$
- $\blacktriangleright \ \mathcal{K}^{df} = (\mathcal{V}, \mathcal{I}^{df}, \mathcal{T}^{df})$

unreachability in \mathcal{K}^{cf} is independent on the dataflows

generalize CTIs to narrow the reachable state approximations if C is unreachable, then generalize ¬C' instead of ¬C:
 C' := C_{|V^{cf}} obtained from omitting the dataflow literals in C

Motivation	Property I	
	00	

Example

```
module ITELoop() {
    [N]bool i;
    i[0] = true;
    if (!i[0]) {
        loop{
            p1: pause;
            i[0] = false;
            p2: pause;
        }
    }
}
```

The set of boolean variables of module ITELoop $\mathcal{V}_{\mathbb{N}} := \underbrace{\{i [0], \dots, i [\mathbb{N}-1]\}}_{\mathcal{V}^{df}} \cup \underbrace{\{p1, p2, run\}}_{\mathcal{V}^{cf}}$ $\Rightarrow \text{ reduce at most } 2^{\mathbb{N}+3} \text{ to } 2^3 \text{ times relative inductiveness reasoning}$

	Property Directed Reachability 00	Control-flow Guided PDR for Imperative Synchronous Programs
Summary		

- modify transition relation to generate less CTIs by reachable control-flow states computation
 - linear-time static analysis
 - symbolic reachability analysis
- ► identify CTIs in K simpler unreachability tests in K^{cf}
- ▶ generalize CTIs to narrow the reachable state approximations if C is unreachable, then generalize ¬C' instead of ¬C:
 C' := C_{|V^{cf}} obtained from omitting the dataflow literals in C