
Control-flow Guided Property Directed Reachability
for Imperative Synchronous Programs

Xian Li

Supervisor: Prof. Dr. Klaus Schneider

Embedded Systems Chair
Department of Computer Science

University of Kaiserslautern,Germany

Synchron 2016 at Bamberg, December 5 – 9, 2016

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Table of Contents

1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs

2 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Outline

1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs

3 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Formal Verification of Synchronous Hardware Circuits

I PDR: a very efficient verification method based on induction

Synchronous Circuits

4 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Formal Verification of Synchronous Programs

I PDR: a very efficient verification method based on induction

Synchronous Circuits

synthesize

Synchronous Programs

synthesize

Synchronous Programs

4 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Imperative Synchronous Programs

Imperative Synchronous Languages: e.g. Quartz

I macro steps: consumption of one logical time unit

I micro steps: no logical time consumption

⇒ synchronous reactive model of computation

Control-flow Information

I not needed for synthesis

I useful for formal verification

5 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Goals

Target: Safety Property Verification of Imperative Synchronous Programs

I PDR: relies on good estimation of the reachable states

Our Heuristic: Improve it by Expoiting Control-flow Information

I modify transition relation to generate less counterexamples to
induction (CTIs) by reachable control-flow states computation

I linear-time static analysis
I symbolic reachability analysis

I indentify CTIs in K
simpler unreachability tests in Kcf

I generalize CTIs to narrow the reachable state approximations
if C is unreachable, then generalize ¬C′ instead of ¬C:
C′ := C|Vcf obtained from omitting the dataflow literals in C

6 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Outline

1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs

7 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Safety Property Verification

Target: Prove Φ is valid w.r.t. K
I a state transition system: K := (V, I, T)
I a safety property: Φ
I Φ holds on all reachable states of K

 holds doesn't hold Reachable States

s0: {}

s6: {run,p1}

s1: {p2}

s2: {p1}

s7: {run,p1,p2}

s3: {p1,p2}s4: {run}

s5: {run,p2}

module CfSeq(){

p1: pause;
p2: pause;

}

V := {run, p1, p2}
I := ¬(run ∨ p1 ∨ p2)
T := next(run)↔ true

∧ (next(p1)↔ ¬run)
∧ (next(p2)↔ p1)

Φ := ¬(p1 ∧ p2)

Φ is inductive w.r.t. K
I induction base: Φ holds in all initial states
I induction step: Φ-states have no successor violating Φ

8 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. K
I a state transition system: K := (V, I, T)
I a safety property: Φ
I Φ holds on all reachable states of K

Φ is inductive w.r.t. K
I induction base: Φ holds in all initial states
I induction step: Φ-states have no successor violating Φ

8 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. K
I a state transition system: K := (V, I, T)
I a safety property: Φ
I Φ holds on all reachable states of K

Φ is inductive w.r.t. K
I induction base: Φ holds in all initial states
I induction step: Φ-states have no successor violating Φ

8 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ0, . . . ,Ψk that
overapproximate the states reachable in 0, . . . , k steps.

I incremental induction: extend the sequence Ψ0, . . . ,Ψk

I unreachability checking: CTI indentification and generalization

 holds doesn't hold Reachable States

s0: {}

s6: {run,p1}

s1: {p2}

s2: {p1}

s7: {run,p1,p2}

s3: {p1,p2}s4: {run}

s5: {run,p2}

9 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ0, . . . ,Ψk that
overapproximate the states reachable in 0, . . . , k steps.

I incremental induction: extend the sequence Ψ0, . . . ,Ψk

I unreachability checking: CTI indentification and generalization

 holds doesn't hold Reachable States

s0: {}

s6: {run,p1}

s1: {p2}

s2: {p1}

s7: {run,p1,p2}

s3: {p1,p2}s4: {run}

s5: {run,p2}

9 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ0, . . . ,Ψk that
overapproximate the states reachable in 0, . . . , k steps.

I incremental induction: extend the sequence Ψ0, . . . ,Ψk

I unreachability checking: CTI indentification and generalization

 holds doesn't hold Reachable States

s0: {}

s6: {run,p1}

s1: {p2}

s2: {p1}

s7: {run,p1,p2}

s3: {p1,p2}s4: {run}

s5: {run,p2}

9 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Outline

1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs

10 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Main Idea I: Modify Transition Relation to generate less CTIs

Original Transition Relation:

 holds doesn't hold Reachable States

s0: {}

s6: {run,p1}

s1: {p2}

s2: {p1}

s7: {run,p1,p2}

s3: {p1,p2}s4: {run}

s5: {run,p2}

s2 has successor s7 violating Φ

Enhanced Transition Relation:

 holds doesn't hold Reachable States

s0: {}

s6: {run,p1}

s1: {p2}

s2: {p1}

s7: {run,p1,p2}

s3: {p1,p2}s4: {run}

s5: {run,p2}

s2 has no successor

⇒ remove transitions from unreachable states by control-flow invariants

11 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of
sequences and conditional statements:

module CfSeq(){

p1: pause;
p2: pause;

}

¬(p1 ∧ p2)

12 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of
sequences and conditional statements:

module Ite(){

mem bool i;

if (i) {

p1: pause;
} else {

q1: pause;
}

}

¬(p1 ∧ q1)

12 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of
sequences and conditional statements:

module CfIte(){

mem bool i;

if (i) {

p1: pause;
p2: pause;

} else {

q1: pause;
q2: pause;

}

}

¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∨ p2) ∧ (q1 ∨ q2))

12 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by static Analysis

module CfIte(){

mem bool i;

if (i) {

p1: pause;
p2: pause;

} else {

q1: pause;
q2: pause;

}

}

Original Transition Relation:

13 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by static Analysis

module CfIte(){

mem bool i;

if (i) {

p1: pause;
p2: pause;

} else {

q1: pause;
q2: pause;

}

}

Enhanced Transition Relation:

with control-flow invariant by static analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∨ p2) ∧ (q1 ∨ q2))

13 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by symbolic Analysis

module CfPar(){

{

p1: pause;
p2: pause;

} ||

{

q1: pause;
q2: pause;

}

}

Original Transition Relation:

14 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by symbolic Analysis

module CfPar(){

{

p1: pause;
p2: pause;

} ||

{

q1: pause;
q2: pause;

}

}

Enhanced Transition Relation:

with control-flow invariant by static analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2)

14 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

module CfPar(){

{

p1: pause;
p2: pause;

} ||

{

q1: pause;
q2: pause;

}

}

¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∧ q2) ∨ (p2 ∧ q1))

15 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Control-flow Invariants by symbolic Analysis

module CfPar(){

{

p1: pause;
p2: pause;

} ||

{

q1: pause;
q2: pause;

}

}

Enhanced Transition Relation:

with control-flow invariant by symbolic analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∧ q2) ∨ (p2 ∧ q1))

16 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Main Idea II: CTI Indentification and Generalization by Control-flows

I reachability of CTIs in K
simpler unreachability tests in Kcf

I generalize CTIs to narrow the reachable state approximations
if C is unreachable, then generalize ¬C′ instead of ¬C:
C′ := C|Vcf obtained from omitting the dataflow literals in C

17 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Transition Systems of a Synchronous Program

Let V := Vcf ∪ Vdf and K := Kcf ×Kdf , with
I K = (V, I, T)
I Kcf = (V, Icf , T cf)
I Kdf = (V, Idf , T df)

unreachability of CTIs in K can be proved by unreachability in Kcf

 holds doesn't hold Reachable States

s2

s0

s4

s5

s7

s3

s6

s1

s2

s0

s4

s5

s7

s3

s6

s1

18 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Transition Systems of a Synchronous Program

Let V := Vcf ∪ Vdf and K := Kcf ×Kdf , with
I K = (V, I, T)
I Kcf = (V, Icf , T cf)
I Kdf = (V, Idf , T df)

unreachability of CTIs in K can be proved by unreachability in Kcf

 holds doesn't hold Reachable States

s2

s0

s4

s5

s7

s3

s6

s1

s2

s0

s4

s5

s7

s3

s6

s1

18 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

CTI Indentification by Control-flows

Let V := Vcf ∪ Vdf and K := Kcf ×Kdf , with

I K = (V, I, T)

I Kcf = (V, Icf , T cf)

I Kdf = (V, Idf , T df)

unreachability of CTIs in K can be proved by unreachability in Kcf

I reachability of CTIs in K
simpler unreachability tests in Kcf

19 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

CTI Generalization by Control-flows

Let V := Vcf ∪ Vdf and K := Kcf ×Kdf , with

I K = (V, I, T)

I Kcf = (V, Icf , T cf)

I Kdf = (V, Idf , T df)

unreachability in Kcf is independent on the dataflows

I generalize CTIs to narrow the reachable state approximations
if C is unreachable, then generalize ¬C′ instead of ¬C:
C′ := C|Vcf obtained from omitting the dataflow literals in C

20 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

CTI Generalization by Control-flows

Let V := Vcf ∪ Vdf and K := Kcf ×Kdf , with

I K = (V, I, T)

I Kcf = (V, Icf , T cf)

I Kdf = (V, Idf , T df)

unreachability in Kcf is independent on the dataflows

I generalize CTIs to narrow the reachable state approximations
if C is unreachable, then generalize ¬C′ instead of ¬C:
C′ := C|Vcf obtained from omitting the dataflow literals in C

20 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Example

module ITELoop () {

[N]bool i;

i[0] = true;
if (!i[0]) {

loop{
p1: pause;
i[0] = false;
p2: pause;

}

}

}

The set of boolean variables of module ITELoop

VN := {i[0], . . . , i[N-1]}︸ ︷︷ ︸
Vdf

∪ {p1, p2, run}︸ ︷︷ ︸
Vcf

⇒ reduce at most 2N+3 to 23 times relative
inductiveness reasoning

21 / 22

Motivation Property Directed Reachability Control-flow Guided PDR for Imperative Synchronous Programs

Summary

Control-flow Guided PDR for Imperative Synchronous Programs

I modify transition relation to generate less CTIs by reachable
control-flow states computation

I linear-time static analysis
I symbolic reachability analysis

I identify CTIs in K
simpler unreachability tests in Kcf

I generalize CTIs to narrow the reachable state approximations
if C is unreachable, then generalize ¬C′ instead of ¬C:
C′ := C|Vcf obtained from omitting the dataflow literals in C

22 / 22

	Motivation
	Property Directed Reachability
	Property Directed Reachability

	Control-flow Guided PDR for Imperative Synchronous Programs
	Main Idea i
	Reachable Control-flow States Computation
	Main Idea ii
	Two Improvements
	Summary

