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Abstract—Over the last years, the utilization of cloud re-
sources has been steadily rising and an increasing number of
enterprises are moving applications to the cloud. A leading
trend is the adoption of Platform as a Service to support rapid
application deployment. By providing a managed environment,
cloud platforms take away a lot of complex configuration effort
required to build scalable applications. However, application
migrations to and between clouds cost development effort and
open up new risks of vendor lock-in. This is problematic because
frequent migrations may be necessary in the dynamic and fast
changing cloud market. So far, the effort of application migration
in PaaS environments and typical issues experienced in this task
are hardly understood. To improve this situation, we present
a cloud-to-cloud migration of a real-world application to seven
representative cloud platforms. In this case study, we analyze
the feasibility of the migrations in terms of portability and the
effort of the migrations. We present a Docker-based deployment
system that provides the ability of isolated and reproducible
measurements of deployments to platform vendors, thus enabling
the comparison of platforms for a particular application. Using
this system, the study identifies key problems during migrations
and quantifies these differences by distinctive metrics.

Keywords—Cloud Computing, Platform as a Service, Migration,
Case Study, Portability, Metrics

I. INTRODUCTION

Throughout the last years, cloud computing is making its
way to mainstream adoption. After the rise of Infrastructure as
a Service (IaaS), also the higher-level cloud model Platform as
a Service (PaaS) is finding its way into enterprise systems [1],
[2]. PaaS systems provide a managed application platform,
taking away most configuration effort required to build scalable
applications. Due to the dynamic and fast changing market,
new challenges of application portability between cloud plat-
forms emerge. This is problematic because migrations to and
between clouds require development effort. The higher level of
abstraction in PaaS, including diverse software stacks, services,
and platform features, also opens up new risks of vendor lock-
in [3]. Even with the emergence of cloud platforms based on
an orchestration of open technologies, application portability is
still an issue that cannot be neglected and remains a drawback
often mentioned in literature [4]–[8].

So far, the effort of application migration in PaaS en-
vironments and typical issues experienced in this task are
hardly understood. Whereas the migration from on-premises
applications to the cloud is frequently considered in current
research, less work is available for migrations between clouds.

To improve this situation, we present a cloud-to-cloud migra-
tion of a cloud-native application between seven public cloud
platforms. In contrast to an on-premises application, this kind
of application is already built to run in the cloud1. Therefore,
we primarily observe application portability between cloud
vendors, rather than changes that are caused by adjusting an
application to the cloud paradigm. Considering the portabil-
ity promises of open cloud platforms, consequences of this
migration type are less obvious.

Application portability between clouds not only includes
the functional portability of applications, but ideally also
the usage of the same service management interfaces among
vendors [4], [9]. This means that migration effort is not limited
to code changes, which we also consider here, but includes
effort for performing application deployment. Therefore, we
put a special focus on effort caused by the deployment of the
application in this study. We derive our main research questions
from the preliminary results of previous work [10]:

RQ 1: Is it possible to move a real-world application
between different cloud platforms?

RQ 2: What is the development effort involved in porting
a cloud-native application between cloud platforms?

The use case application, Blinkist, is a Ruby on Rails
web application developed by Blinks Labs GmbH. The set
of selected PaaS vendors includes IBM Bluemix, cloudCon-
trol, AWS Elastic Beanstalk, EngineYard, Heroku, OpenShift,
and Pivotal Web Services. We analyze the feasibility of the
migration in terms of portability and the effort for this task.
Besides, we present a Docker-based deployment system that
provides the ability of isolated and reproducible measurements
of deployments to platform vendors, thus enabling the com-
parison of platforms for a particular application. Using this
system, the study identifies key problems during migrations
and quantifies these differences by distinctive metrics. In this
study, we target implementation portability [3], [10] of the
migration execution, i.e., the application transformation and
the deployment. We focus on functional portability of the
application. Data portability must be investigated separately,
especially since popular NoSQL technologies impose sub-
stantial lock-in problems. With our results, we are able to
compare migration effort between different cloud platforms
and to identify existing portability problems.

The remainder of the paper is structured as follows. In
Section II, we describe our research methodology including

1See the twelve-factor methodology at http://12factor.net.
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Fig. 1: Migration Evaluation Process [11]

details of the used application, vendor selection, deployment
automation, and the measurement of deployment effort. Sec-
tion III presents the results of our measurements and describes
problems that occurred during migrations. In Section IV, we
review related work. Section V discusses limitations and future
work that can be derived from the results. Finally, Section VI
summarizes the contributions of the paper.

II. METHODOLOGY

The goal of this study is to analyze cloud-based application
migration with respect to the effort from the point of view of
a developer/operator. To achieve this, we follow the process
defined in Figure 1. The first step is migration planning,
which includes the analysis of application requirements and
the selection of cloud providers. Next comes the migration
execution for all providers, including code changes and appli-
cation deployment. After manually migrating the application
to the providers, these steps and modifications are automated
to enable a reproducible and comparable deployment among
them. To be able to compare the main effort drivers of the
execution phase, i.e., code changes and application deploy-
ment, we define several metrics that allow a measurement
of the tasks in the migration execution. As discussed before,
application portability between clouds not only includes the
functional portability of applications, but also the portability of
service management interfaces between vendors [4], [9]. In our
case, due to the use of open technologies and a cloud-native
application, this effort is mainly associated with application
deployment. Hence, in this study, we put a special focus on
the effort caused by the deployment of the application, next
to application code changes. In times of agile and iterative
development paradigms, this implies that also the effort of
redeployment must be considered. Therefore, our deployment
workflow includes a redeployment of a newer version of the
study’s application. To validate that the application is operating
as expected in the platform environment, we can draw on a
large set of functional and integration tests. As concluding
step, we evaluate our findings in the migration evaluation,
including measured results and a discussion about problems
and differences between providers.

The primary focus of this study is on the steps two and
three, as the initial step can be largely assisted by our cloud
brokering tool from [10] that covers the details of provider
brokering and application requirements matching.

A. Migrated Application

The application Blinkist is built by a Berlin-based mobile
learning company launched in January 2013 and distills key
insights from nonfiction books into fifteen-minute reads and
audio casts. Currently, Blinkist includes summaries of over
650 books in its digital library. Blinkist has a user count
of more than 300 000 registered customers worldwide. The
product is created by a team of 18 full-time employees and
is available for Android, iPhone, iPad, and web. We target
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Fig. 2: Web Application Architecture

the web application2, which is built in Ruby on Rails. The
high-level architecture relevant for this study can be seen in
Figure 2.

The front end is a Rails 4 application with access to busi-
ness logic written in Ruby. The application uses a MongoDB
database for persistence. Moreover, caching is implemented
via Redis and Amazon’s CloudFront content delivery network
(CDN). The web interface is run with at least two application
instances in parallel, hosted by a Puma web server. The
application part totals for about 60 000 Lines of Code (LOC).

B. Vendor Selection

As hosting environment for the application, we aim for a
production-ready, public PaaS that supports horizontal appli-
cation scalability. The application itself depends on support for
Ruby 2.0.0 and Rails 4. The necessary services and data stores
are provided by independent external service vendors and are
configured via environment variables (see Fig. 2).

The decision on possible candidates for the application
can be assisted by the knowledge base and cloud brokering
tool3 presented in [10]. This tool allows us to filter from the
multitude of available platform offerings based on ecosystem
capabilities and requirements. With the help of our tool, we
were able to filter from a total of 75 offerings to a candidate
set of 22 offerings, based on the chosen platform capabilities
and runtime support. This means that 70 % of the vendors
have already been excluded due to ecosystem portability
mismatches, i.e., failing support for specific requirements.
Thereafter, we also filtered out vendors that are based on the
same base platform technology, e.g., Cloud Foundry, except
for one duplicate control pair (Pivotal and Bluemix). The final
selection of the seven vendors, presented in Table I, was based
on a concluding relevance assessment.

For reasons of comparability, we selected equal instance
configurations and geographical locations among the different
vendors, grouped by virtualization technology. This was pos-
sible for all but two vendors, i.e., cloudControl and Bluemix,
which only supported application deployment in Dublin, IE,
and respectively Dallas, US.

As we can see in Table I, there are substantial pricing
differences between the vendors. Pricing is based on equiv-
alent configurations dependent on the technology descriptions
and specifications of the vendors. Nevertheless, first results
reveal performance differences, which are not included in this
consideration. Currently, a price-performance value can hardly
be investigated by a customer upfront. In general, container-
based PaaS are cheaper to start with than VM-based ones. Still,

2The recent application version can be accessed at https://www.blinkist.com.
3The project homepage is https://github.com/stefan-kolb/paas-profiles. An

online version of the web interface can be found at http://PaaSify.it.



TABLE I: PaaS Vendors and Selected Configurations4

Heroku cloudControl Pivotal Web Services Bluemix OpenShift Elastic Beanstalk EngineYard

Type Proprietary Proprietary Open Source Open Source Open Source Proprietary Proprietary
Isolation Container Container Container Container Container Virtual Machine Virtual Machine
RAM (instance) 512 MB 512 MB 512 MB 512 MB 512 MB 3.75 GB 3.75 GB
Geo location Virgina, US Dublin, IE Virgina, US Dallas, US Virgina, US Virgina, US Virgina, US
Pricing $ 0.05/h $ 0.04/h $ 0.015/h $ 0.035/h $ 0.025/h $ 0.07/h $ 0.123/h
Σ(2 instances/month) $ 34.50 $ 54.14 $ 21.60 $ 24.15 $ 36 Σ (1 VM/month) $ 50.40 $ 88.56

instance performance is lower with respect to the technology
setup. When looking at instance prices of container-based PaaS
per hour, the most expensive vendor charges over three times
more than the cheapest one. However, it is common among
PaaS vendors that there is a contingent of free instance hours
per month included. Therefore, the total amount of savings is
dependent on the number of running container instances. For
example, the differences between Heroku and cloudControl,
caused by a higher free hour quota of Heroku, will level up
with increasing instance count. Pricing among VM-based
offerings is even more complex with dedicated pricing for
platform components like IP services, bandwidth, or storage,
which makes it difficult for customers to compare the prices
of different vendors.

C. Deployment Automation

In this study, we want to measure the effort of a customer
migrating an application to specific platforms. As discussed,
in our case this effort is mainly associated with application
deployment. To be able to measure and compare this effort,
we automate the deployment workflows by using the provider’s
client tools. This kind of interaction is supported by most
providers and therefore seems appropriate for a comparative
measurement in contrast to other mechanisms like APIs. Al-
though all selected providers offer client tools, not all steps can
be automated for every provider. The amount of manual steps
via other interfaces like a web UI will be denoted explicitly.
The automation of the workflows helps to better understand,
measure, and reproduce the presented results. We implemented
an automatic deployment system, called Yard5, that works
similar for every provider and prevents errors due to repeatable
deployment workflows. This enables a direct comparison of
deployment among providers.

Yard consists of a set of modules which automate the
deployment for specific providers. To abstract from differences
between providers, we define a unified interface paradigm that
each module has to implement. To conform to the interface, ev-
ery module needs to implement one init, deploy, update,
and delete script that encapsulates necessary substeps. This
approach offers a unified and provider-independent way to
conduct deployment. Accordingly, the init script must ex-
ecute all steps that are required to bootstrap the provider
tools for application deployment, e.g., install the client tools.
The deploy script contains the logic for creating a new
application, including application and platform configuration.
Updates to an existing application are performed inside the
update script. Finally, the delete script is responsible for

4Pricing is based on selected RAM usage, resp. instance type. 720 h/month
estimate. No additional bandwidth and support options included. Free quotas
deducted. Currency converted. Date: 04/17/2015.

5See https://github.com/stefan-kolb/paasyard.

deleting any previously created artifacts and authentication
information with the particular provider. Any necessary ad-
ditional artifacts, like deployment manifests or configuration
files, must be kept in a subfolder adjacent to the deployment
scripts. The deployments are automated via Bash scripts. User
input is inserted automatically via Here Documents or Expect
scripts. This guarantees that user input is supplied consistently
for every deployment. As an example, Listing 1 shows the
deploy script for Heroku.

#!/bin/bash
echo "-----> Initializing application space..."
# authentication
heroku login <<END
$HEROKU_USERNAME
$HEROKU_PASSWORD
END
# create app space
heroku create $APPNAME
# environment variables
heroku config:set MONGO_URL=$MONGO_URL

REDIS_URL=$REDIS_URL
ASSET_URL=$ASSET_URL

echo "-----> Deploying application..."
git push heroku master

echo "-----> Checking availability..."
./is_up "https://$APPNAME.herokuapp.com"

Listing 1: Deployment Script for Heroku

Since the system is intended to be used for independent
deployment measurements, we must make sure that we achieve
both local and remote isolation between different deployment
runs. Consequently, the previously described set of scripts
must allow an application installation in a clean platform
environment and reset it to default settings by running the
delete script. The set of scripts must ensure that subsequent
deployments are not influenced by settings made to the remote
environment through previous runs. As the different build
steps and deployment tools will possibly write configuration
files, tokens, or host verifications to the local file system,
we need to enhance our approach with extra local isolation.
Thus, the deployments are run inside Docker containers for
maximum isolation between different deployments. Docker
provides lightweight, isolated containers through an abstraction
layer of operating-system-level virtualization features6.

A graphical overview of our deployment system Yard can
be seen in Figure 3. For each container, a base image is used
that only consists of a minimal Ubuntu installation, including
Python and Ruby runtimes. From the base image, a deployment
image is created that bootstraps the necessary provider tool
dependencies. This is achieved by executing the init script
of each provider module inside the base image, which results in

6See https://www.docker.com/whatisdocker for more details.
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a new container image. Additionally, the application code and
the deployment artifacts are directly merged into a common
repository. This is done to avoid additional bootstrapping
before each deployment, which could influence the timing
results of the deployment run. The resulting image can be used
to deploy the code to different providers from every Docker-
compatible environment via a console command.

D. Measurement of Deployment Effort

As discussed before, migration effort in our case translates
into effort for installing the application on a new cloud
platform, i.e., into effort for deploying the application. Hence,
we need metrics that enable us to measure installability or
deployability. In [12], we proposed and validated a measure-
ment framework for evaluating these characteristics for service
orchestrations and orchestration engines, based on the ISO/IEC
SQuaRE quality model [13]. Despite the difference between
service orchestrations and cloud applications, this framework
can be adapted for evaluating the deployability of applications
in PaaS environments by modifying existing metrics and
defining new ones. A major benefit of the chosen code-based
metrics is their reproducibility and objectiveness. Currently,
we do not consider human factors, e.g., man hours. Such
aspects are hardly quantifiable without a larger empirical study
and influenced by a lot of other factors, like the expertise of
involved workers. However, it is possible to introduce human
factors by adding weighting factors to the metrics computation,
as for instance done in [28].

As cloud platforms are preconfigured and managed envi-
ronments, there is no need to consider the installability of the
environment itself, as in [12]. Instead, the focus lies on the de-
ployability of an application to a cloud platform. Figure 4 out-
lines the adapted framework for deployability. We capture this
quality attribute with the direct metrics average deployment
time (ADT), deployment reliability (DR), deployment flexibility
(DF), number of deployment steps (NDS), deployment steps
parameters (DSP), configuration & code changes (CC), and
the effort of package construction (EPC). The last four metrics
are aggregated to an overall effort of deployment steps (EDS)
and deployment effort (DE). All metrics but ADT, DR, and
DF are classic size metrics in the sense of [14]. The following
paragraphs briefly introduce the metrics.

1) Average deployment time (ADT): This metric describes
the average duration between the initiation of a deployment
by the client and its completion, making the application ready
to serve user requests. This can be computed by timing the
duration of the deployment on the client side and repeating this
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Fig. 4: Deployment Metrics Framework

process a suitable number of times. Here, we use the median
as measure of central tendency.

2) Deployment reliability (DR): DR captures the reliability
of an application deployment to a particular vendor. It is
computed by repeating the deployment a suitable amount of
times and dividing the number of successful deployments of
an application a (Na

succ) with the total number of attempted
deployments (Na

total): DR(a) = Na
succ/N

a
total. DR(a) will be

equal to one, if all deployments succeed.

3) Deployment flexibility (DF): [12] defines deployment
flexibility as the amount of alternative ways that exist to
achieve the deployment of an application. In our case, avail-
able deployment techniques are, e.g., CLI-based deployment,
web-based deployment or IDE plug-ins. The more of these
options a platform supports, the more flexible it is. As we are
concentrating on deployment via command line tools in this
study, hereafter, we omit a more detailed consideration of this
metric.

4) Number of deployment steps (NDS): The effort of de-
ploying an application is related to the amount of operations,
or steps, that have to be performed for a deployment. In our
case, deployment is automated, so this effort is encoded in the
deployment scripts (see Sect. II-C). A deployment step refers
to a number of related programmatic operations, excluding
comments or logging. The larger the amount of such steps,
the higher is the effort. Usually, there are different ways to
deploy an application. Here, we tried to find the most concise
way in terms of step count, while favoring command options
over nonportable deployment artifacts that may silently break
the deployment on different vendors. As an example, the value
of NDS for the deployment script in Listing 1 sums up to
NDS(heroku) = 4.

1) Authentication: heroku login
2) Create application space: heroku create
3) Set environment variables: heroku config:set
4) Deploy code: git push heroku master

5) Deployment steps parameters (DSP): Deployment steps
often require user input (variables in scripts) or custom param-
eter configuration that need to be set, thereby causing effort.
We consider this effort with the metric deployment steps pa-
rameters, which counts all user input and command parameters
that are necessary for deployment. The deployment script in
Listing 1 uses six different variables and requires no additional
command line parameters, resulting in DSP (heroku) = 6.

6) Effort of deployment steps (EDS): The two direct met-
rics NDS and DSP count the effort for achieving a deployment.



Since they are closely related, we aggregate the two to the
indirect metric EDS by summing them up. Given an applica-
tion a: EDS(a) = NDS(a)+DSP (a). For our example, this
amounts to EDS(heroku) = 10.

7) Configuration & code changes (CC): The deployment
of an application to a particular vendor may require the
construction of different vendor-specific configuration artifacts.
This includes platform configuration files and files that adjust
the execution of the application, e.g., a Procfile7. Again, the
construction of these files results in effort related to their
size [12]. For all configuration files every nonempty and
noncomment line is typically a key-value pair with a con-
figuration setting, such as an option name and value, needed
for deployment. We consider each such line using a LOC
function. Furthermore, it might be necessary to modify source
files to mitigate incompatibilities between different platforms.
This can be due to unsupported dependencies that must be
adjusted, e.g., native libraries or middleware versions. Any
of those changes will be measured via a LOC difference
function. The sum of the size of all configuration files and
the amount of code changes corresponds to the configuration
& code changes metric. For an application a that consists
of the configuration files filei, ..., fileNconf

and the code
files filej , ..., fileNcode

, along with their platform-adjusted
versions file′j , ..., file

′
Ncode

, CC can be computed as:

CC(a) =

Nconf∑
i=1

LOC(filei) +

Ncode∑
j=1

LOCdiff (filej , file
′
j)

8) Effort of package construction (EPC): Another effort
driver in traditional application deployment is source compila-
tion and the packaging of artifacts into an archive [12]. This is
less of an issue for cloud platforms, where most of this work
can be bypassed with the help of platform automation, e.g.,
Buildpacks8. At best, a direct deployment of the application
artifacts is possible (EPC = 0), shifting the responsibility of
package construction to the platform. For some platforms it is
still necessary, which is why we capture it in the same fashion
as the number of deployment steps.

9) Deployment effort (DE): To provide a comprehensive
indicator for effort associated with deployment, we provide
an aggregated deployment effort, computed as the sum of the
previous metrics: DE(a) = EDS(a) + CC(a) + EPC(a).
It is arguable to weight the severity of different deployment
efforts by introducing a weighting factor in this equation. As
we cannot determine a reasonable factor without a larger study,
they are considered as coequal here.

III. RESULTS

In this section, we first describe the execution of the
measurements, followed by a presentation, discussion, and
interpretation of the results in Section III-B and a summary
in Section III-C.

A. Execution of Measurements

As part of our migration experiment, we need to compute
values for the deployment metrics from the preceding Sec-
tion II-D. The timing for the ADT of an individual deployment

7See https://devcenter.heroku.com/articles/procfile.
8See https://devcenter.heroku.com/articles/buildpacks.

run can be calculated by prefixing the script invocation with
the Unix time command. One distinct test is the execution
of a sequence of an initial deployment, followed by an ap-
plication redeployment, and concluded by the deletion of the
application. Each provider was evaluated via 100 runs of this
test. An exception to this is EngineYard with a total of 50
runs. The reason for this is that the deployment could not
be fully automated and each run involved manual steps. The
measurements were conducted at varying times during work-
days, to simulate a normal deployment cycle inside a company.
To minimize effects of external load-induced influences (e.g.
RubyGems mirror) on the measurement, the deployments were
run in parallel. All deployments were measured with a single
instance deployment at first, i.e., no scaling included. The
values for each metric were evaluated and validated by an
in-group peer review. The gathered metrics can be seen in
Tables II and III.

Even though we could successfully migrate the application
to all but one vendor, a substantial amount of work was
required. Besides the captured effort values, additional impor-
tant obstacles are incomplete documentation of the vendors
and missing direct instance access for debugging, especially
with container-based PaaS. Even with this common kind of
application, getting the application to run was difficult and
compromises with certain technology setups, e.g., web servers,
were needed. Whereas some of these problems are to be
expected and can only be prevented by unified container envi-
ronments, major parts of the interaction with the system should
be homogenized by, e.g., unified management interfaces.

During the case study, a number of bugs had to be
fixed inside the cloud platforms. In total, we discovered
four confirmed bugs on different vendors that prevented the
application from running correctly. The majority was related
to the bootstrapping of the platform environment, e.g., server
startup and environment variable scopes, and could be resolved
in a timely manner. As a downside, one vendor supported
a successful deployment, but did not allow us to run the
application correctly, due to an internal security convention that
prevented the database library from connecting to the database.
These issues show that even with common application setups,
cloud platforms cannot yet be considered fully mature.

B. Effort analysis

The following section describes the results of our case
study in detail. We discuss the metric values and their im-
plications and give insights into the problems that did occur
during the migrations.

Effort of deployment steps (EDS). As a first result, we can
state that although deployment steps are semantically similar
among vendors, they are all carried out by proprietary CLI
tools in no standardized way. This results in recurring effort
for learning to use new tooling for every vendor and to adapt
existing automation. On average, deployment takes an effort of
17 with a maximum spread of 14 and a standard deviation of 5.
Some vendors require more steps, whereas others require less
steps but more parameters. Heroku, cloudControl, Pivotal, and
Bluemix are driven by a similar concise deployment workflow.
In contrast, OpenShift requires a cumbersome configuration of
the initial code repository. Only the deployment for Engine-
Yard could not be automated entirely. The creation of VM



TABLE II: Deployment Efforts

Heroku cloudControl OpenShift Pivotal Bluemix Elastic Beanstalk EngineYard

Effort of deployment steps (EDS) 10 15 24 17 17 12 23

Number of deployment steps (NDS) 4 5 6 6 6 2 8

Automated 4 5 6 6 6 2 4
Manual 0 0 0 0 0 0 4

Deployment steps parameters (DSP) 6 10 18 11 11 10 15

Configuration & code changes (CC) 1 1 0 1 1 40 7

Deployment artifacts 1 1 0 1 1 40 7
Application code 0 0 0 0 0 0 0

Effort of package construction (EPC) 3 3 3 0 0 3 4

Deployment reliability (DR) 0.96 0.72 0.78 1 0.89 0.99 1

Average deployment time (ADT) t̃ 6.75 min 9.13 min 8.42 min 5.83 min 7.03 min 15.94 min 28.44 min

Deployment effort (DE) 14 19 27 18 18 55 34

TABLE III: Redeployment Efforts

Heroku cloudControl OpenShift Pivotal Bluemix Elastic Beanstalk EngineYard

Effort of deployment steps (EDS) 1 2 1 2 2 1 2

Number of deployment steps (NDS) 1 1 1 1 1 1 1
Deployment steps parameters (DSP) 0 1 0 1 1 0 1

Deployment reliability (DR) 0.96 1 0.97 1 0.93 0.98 0.96

Average deployment time (ADT) t̃ 6.69 min 5.71 min 7.41 min 5.73 min 6.61 min 8.71 min 8.25 min

instances must be initiated via a web interface, whereas the
application deployment can be triggered by the client tools. As
instance setup is normally performed once and not repetitively,
this has less influence in practice than other steps would have.
In the case of Elastic Beanstalk, the low EDS value of 12
is contrasted by a large configuration file. The majority of
modern container-based PaaS reduce effort with respect to
the EDS through an intelligent application type detection. In
comparison, this must be explicitly configured up-front with
the VM-based offerings. The EDS for a redeployment are
roughly the same between vendors and only involve pushing
the new code to the platform.

Configuration & code changes (CC). Notably the container-
based platforms can be used with only few deployment arti-
facts. Four out of five vendors support a Procfile-based deploy-
ment for specifying application startup commands (CC = 1).
Whereas this compatibility helps to reproduce the application
and server startup between those vendors, it is a major problem
with the others. Especially custom server configuration inside
the Procfile, i.e., the Puma web server, is a source of portability
problems among platforms. Two platforms only support a
preconfigured native system installation of Puma and one does
not support the web server in conjunction with the necessary
Ruby version at all. Moreover, the native installations can lead
to dependency conflicts, if the provider uses another version
than specified in the application’s dependencies, resulting in
compulsory code modifications. The only two vendors for
which more configuration is needed are both VM-based of-
ferings. In the case of EngineYard, the deployment descriptor
can be kept small in a minimal configuration. Additionally,
in contrast to other vendors, a custom recipe repository must
be cloned to use environment variables and these variables
have to be configured inside a script file. The recipes can be
uploaded and applied to the server environment afterwards.

Elastic Beanstalk proved to be more problematic to achieve
a working platform configuration. We needed a rather large
configuration file that modifies required Linux packages, plat-
form configuration values, and environment variables. Apart
from that, we had to override a set of server-side scripts, to
modify the Bundler dependency scopes and enable dependency
caching.

In general, we tried to avoid the use of configuration
files or proprietary manifests. If options were mandatory to
be configured for a vendor, where possible, this was done
using CLI commands and parameters instead of proprietary
manifests. In either case, the value of EDS and the size of
configuration files is in a close relation with each other.

For the case study’s application, we could achieve porta-
bility without changing application code, solely by adapt-
ing the runtime environment, i.e., deployment configuration,
application and server startup. This is the effect of having
a cloud-native application based on open technologies. If
the application made use of proprietary APIs or unavailable
services, this would have caused a large amount of application
changes. Apart from that, further tests showed that especially
native Gems (code packages) cause portability problems be-
tween PaaS offerings. These Gems may depend on special
system libraries that are not available in every PaaS offering
and cannot always be installed afterwards. Buildpacks can
help to prevent such problems by unifying the environment
bootstrapping, making it easier to support special dependencies
that would otherwise be hard to maintain.

Effort of package construction (EPC). The EPC for deploy-
ment is similar between vendors. As sole packaging require-
ment, most vendors mandate that the source code is organized
in a Git repository, either locally or remotely (EPC = {3, 4}).



Deployment reliability (DR). For some vendors, we expe-
rienced rather frequent deployment failures, resulting in lower
DR values especially during the initial creation of applications.
Often, these failures were provoked by recurring problems,
e.g., permission problems with uploaded SSH keys or other
platform configuration problems. In the case of redeploying
existing applications, on average, we experienced less failures
resulting in higher DR values.

Average deployment time (ADT). The mean of the de-
ployment time is 11.65 min, but it deviates by 7.52 min.
Differences between container-based offerings are small, only
ranging within a deviation of 71 seconds. Container-based
deployments are on average almost 3 times faster than VM-
based platforms. The authors of [15] measured an average
startup time for EC2 VM instances of 96.9 seconds. Tests
with the case study’s instance configurations confirm this
magnitude. This amount of time is contrasted with a duration
of only a few seconds for creating a new container. Even when
deducting this overhead from the measurements, the creation
of the VM-based environments takes considerably longer than
the one of container-based PaaS environments. Measured time
values are also interesting for the case of redeployment. To
that end, we take a newer version from a typical code sprint
of Blinkist’s release cycle. Besides code changes, it includes
new and updated versions of dependencies as well as asset
changes. In general, the redeployment times are less than for
the initial deployment, which can be attributed to dependency
caching. For redeployment, all timings of the vendors are in a
close range. Here, VM-based offerings catch up with container-
based PaaS due to the absence of environmental changes. The
average redeployment time for all offerings is 7.02 min and
only deviates by 65 seconds. Some vendors still benefit from
a better deployment configuration, e.g., parallelized Bundler
runs. Vendors that were fast during the initial deployment
confirm this tendency in the redeployment measurements.

Deployment effort (DE). The values for total deployment
effort are substantially different between the platforms, with
a maximum spread of 41 and a standard deviation of 13.
Most container-based platforms are within a close range to
each other, only deviating by a value of 4, whereas VM-based
platforms require more effort. When comparing both platform
types, the additional effort for VM-based PaaS buys a higher
degree of flexibility with the platform configuration if desired.

C. Summary

With the help of this study, we could answer both of our ini-
tial research questions. To begin with, it is possible to migrate
a real-world application to the majority, although not to all, of
the vendors (RQ 1). Only one vendor could not run our appli-
cation due to a security restriction caused by a software fault,
which cannot be seen as general restriction that prevents the
portability of the application. However, we could not reproduce
the exact application setup on all vendors. We had to make
trade-offs and changes to the technology setup, especially the
server startup. With the automation of the migration, together
with the presented toolkit and deployment metrics, we could
quantify the effort of the migration (RQ 2). Our results show
that there are considerable differences between the vendors,
especially between VM-based and container-based offerings.
Our measurements provide insights into migration effort, both

quantifying the developer effort caused by deployment steps
and code changes, as well as effort created by deployment and
redeployment times of the application.

IV. RELATED WORK

Jamshidi et al. [11] identified that cloud migration research
is still in its early stages and further structured work is
required, especially on cloud migration evaluation with real-
world case studies. Whereas this structured literature review
focuses on legacy-to-cloud migration, our own investigations
reveal even more gaps in the cloud-to-cloud migration field.
Most of the existing work is published on migrations between
on-premises solutions and the cloud, primarily IaaS. Few pa-
pers focus on PaaS and even less on cloud-to-cloud migrations,
despite the fact that portability issues between clouds are often
addressed in literature [4]–[8]. This study is a first step towards
filling the identified gaps.

In [10], we already ported a small application between five
PaaS vendors in a nonstructured way and gathered first insights
into portability problems and migration efforts. These initial
results revealed that more research has to be carried out in a
larger context. The majority of existing cloud migration studies
are confined to feasibility and experience reports [16], [17] and
omit a quantification and comparison of differences between
migrations.

When measuring effort, the focus is often on operational
cost comparisons [18]–[22], e.g., infrastructure costs, support,
and maintenance or migration effort in man hours [23]. Beslic
et al. [24] discuss an approach for an application migration
among PaaS vendors similar to our study. Their migration
scenario includes vendor discovery, application transformation,
and deployment. However, the paper only outlines a high-level
concept of the migration process and no concrete effort data
of the steps. Pahl and Xiong [25] introduce a generic PaaS mi-
gration process for on-premises applications. Their framework
is largely motivated by a view on different organizational and
technological changes between the systems, but not focused
on a detailed case study or measurement.

Miranda et al. [26] conduct a cloud-to-cloud migration
between two IaaS offerings. In contrast to this work, the study
uses software metrics to calculate the estimated migration costs
in man hours rather than making migration efforts explicit.
Tran et al. [27] define a metric, called cloud migration point
(CMP), for effort estimation of cloud migrations derived from
function points. Compared to our metrics, CMP estimates
migration effort in an early phase of the development cycle,
whereas we are evaluating factual changes after the imple-
mentation phase. Finally, another study that estimates effort in
terms of man hours can be found in [28].

V. LIMITATIONS AND FUTURE WORK

As common for a case study, several limitations exist,
which also provide potential areas of future work. First of
all, the presented study was conducted with a particular Ruby
on Rails application. In future work, we want to investigate
the generalizability of the conclusions drawn, i.e., if they also
apply for applications built with other runtime languages. Ini-
tial experiments back up the presented results and indicate that
other languages potentially require an even higher migration



effort. Due to their general applicability, our methodology and
provided tools can be used to obtain results for other migration
scenarios as well. Another main topic for further research,
indicated by this paper, is the unification of management
interfaces for application deployment and management of
cloud platforms. Despite semantically equivalent workflows,
the current solutions are invariably proprietary at the expense
of recurring developer effort when moving between vendors.
As revealed by our study, further work is needed regarding the
unification of runtime environments between cloud vendors
and also on-premises platforms for improved portability of
applications. Buildpacks are a promising step in that direction.
Another need for research is the performance evaluation of
cloud platforms. During our tests, we observed performance
differences between the vendors that are hard to quantify from
the viewpoint of a customer at this time. However, this is
vital for a well-founded cost assessment and, hence, should
be investigated further.

VI. CONCLUSION

In this paper, we carried out and evaluated the migration
process for a real-world application among seven cloud plat-
forms. As a first step, we examined the feasibility of the appli-
cation migration by manually porting the application between
the platforms. We were able to move the application to a major-
ity of vendors, but were forced to make trade-offs and changes
to the technology setup. During this process, we discovered
existing problems regarding the unification of management in-
terfaces and platform environments. To allow for a comparable
measurement of the effort involved in the migration process,
we presented Yard, a Docker-based deployment system that is
able to deploy source code to different platform vendors via
isolated containers. Yard also includes a small abstraction layer
for a unified creation, deployment, and deletion of applications
throughout the vendors. With the help of the tool, we evaluated
the deployment effort in terms of duration and amount of
necessary steps. This includes a comparison of deployment
operations and artifacts between the vendors, aggregated to
different formal effort metrics. The results show that there
are major differences between the vendors and the associated
effort of the migration. In general, VM-based platforms require
more effort than container-based platforms, which is caused to
some extent by the flexibility of the environment configuration.
As part of the study, we identified problems that prevented
the portability of the application among vendors and gave
suggestions how they can be avoided or solved. The results
show that despite trying to design applications as vendor-
neutral as possible, the unification of runtime environments and
management interfaces between cloud vendors is an important
topic.
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