Towards Uniform BPEL Engine Management in the Cloud

Simon Harrer, Jorg Lenhard, Guido Wirtz Tammo van Lessen
Distributed Systems Group innoQ Deutschland GmbH
University of Bamberg
An der Weberei 5 Krischerstr. 100
96047 Bamberg 40789 Monheim am Rhein
Germany Germany
firstname.lastname @uni-bamberg.de tammo.van-lessen @innoq.com

Abstract: The Web Services Business Process Execution language (BPEL) is a stan-
dard for modeling and executing automated processes and is tailor-made for service
orchestration. BPEL specifies a serialization format which every BPEL implementation
has to understand, thus allowing for the portability of processes among runtime engines.
Although the modeling and execution of BPEL processes is portable between engines
to a large degree, the lifecycle management of BPEL processes is not standardized and
varies a lot for different engines. This paper presents a first approach for a uniform
and cloud-based lifecycle management of BPEL processes and engines. We infer a
uniform interface for the lifecycle management from the capabilities of current engines
and provide a prototypic implementation of a tool that manages processes and engines
on a TOSCA-compliant infrastructure.

1 Introduction

The Web Services Business Process Execution Language 2.0 (WS-BPEL, or BPEL for
short) [OASO7]] is an OASIS standard specifying a process language with which executable
Web Services-based orchestrations can be modeled. If these orchestrations or processes are
modeled in a standard conformant manner, they can be executed on any standard conformant
BPEL engine, ensuring portability and avoiding vendor lock-in. Similar to Java’s concept of
write once, run anywhere, BPEL was developed with the mantra model once, run anywhere
in mind [KKLO6]. However, the standardization initiative did not take all management
related tasks into account. In terms of the BPM lifecycle [vdAtHWO3|| depicted in|Fig. 1]
the phases of system configuration, process enactment, and diagnosis are not standardized
and differ for every BPEL implementation. As a consequence, the seemingly simple task
of deploying a BPEL process on a BPEL engine requires engine dependent meta data
files, called deployment descriptors, to be present (phase system configuration) and engine
specific deployment methods have to be called (phase process enactment). Also tasks such
as monitoring and log file formats (phase diagnosis) are not standardized. This aggravates
the automation of deploying BPEL processes in a cloud environment, as every user has to
automate these tasks for every engine they use. This situation is typical for these types of

Status Quo Desired Condition

Diagnosis - Process Design Diagnosis - Process Design

1 1l =1 !

Process - System Process - System
Enactment Configuration Enactment Configuration

[Process engine dependent Process engine independent |

Figure 1: The status quo and the desired condition of the BPM lifecycle (adapted from [vdAtHWO3])

systems and no different for the implementations of other process specifications, such as
the Business Process Model and Notation (BPMN) [OMG11]].

Since the finalization of BPEL in 2007, a plethora of open source and proprietary BPEL
engines have emerged. These have a varying degree of standard conformance, as demon-
strated in recent studies [HLW 12, IHLW 13|, which implies a varying degree of portability
for BPEL processes in general. In other words, these studies revealed the strengths as well
as weaknesses of the available BPEL engines and the need to select an engine according to
the BPEL activities used in a BPEL process. For instance, some engines do not support
concurrent execution of activities, which impedes the execution of processes that make
use of concurrency. Because of this, a company may use multiple engines for different
processes depending on their feature requirements, which in turn increases the maintenance
effort, as administrators have to manage multiple engine installations at the same time. We
aim to overcome these issues by providing a uniform BPEL management layer for these
tasks to reduce maintenance costs and to enable the use of BPEL engines in the cloud. It can
be expected that this uniform layer can be applied to engines for other process languages as
well.

TOSCA [OAS13b] is an emerging OASIS standard for a holistic management of complex
application topologies in cloud environments and therefore a good fit for the task at hand.
It describes the application’s structure using a typed graph: Node Templates represent
the components of the application and relationship templates the relationships between
the components. Each node template has a node type. A node type may offer interfaces
to manage its lifecycle [BBLS12]]. The presented BPEL management layer is a first step
towards a BPEL engine node type allowing a uniform management of BPEL engines by a
TOSCA runtime.

The paper is structured as follows. The next section discusses related work on the automated
deployment and management of applications in cloud environments in general and of BPEL
processes in particular, as well as on the assessment of BPEL portability. [Section 3| presents
the main contribution of the paper: A Web service-based approach to manage BPEL engines,
the deployed processes and their instances using a uniform interface. [Section 4|outlines the

implemented prototype. Finally, concludes the paper and provides an outlook on
future work.

2 Related Work

Related work separates in work on the automated deployment and management of BPEL
processes, the assessment of their portability, the deployment of complex application
topologies using TOSCA and the usage of uniform APIs in cloud computing.

The BPEL engine test system (betsy[ﬂ) [HL12]] consists of a test suite to evaluate the
conformance of BPEL engines to the BPEL specification, as well as a tool to automatically
determine the conformance degrees by running the test suite against multiple BPEL engines.
Hence, betsy implements the logic to manage multiple BPEL engines as part of its test
bed. This includes the (re)installation, startup, shutdown, the deployment of a process,
and the retrieval of the log files of an engine. In [HRW14]], Harrer et al. extended betsy
with the creation of vbetsy, a tool that tests BPEL engines that are being provisioned and
run in dedicated virtual machines in an effort to allow for a more efficient and fast testing
process. As part of this extension, they extracted two interfaces: the EngineLifecycle
interface to install, start, and stop the engine, and the EngineActions interface to deploy
a process and retrieve the log files of the engine. The methods of the EngineActions
interface are accessible via the network by exchanging Java objects over TCP, while the
EngineLifecycle methods are only accessible locally. In our approach, we reuse these
existing methods and integrate them into a holistic approach for uniform BPEL management.
Moreover, instead of accessing these methods locally or via exchanging Java objects over
TCP, we provide portable and platform-independent WSDL-based Web services for all
engine capabilities. Similar to this, [vVLLM™08]] describes a management framework for
BPEL engines. However, this framework is more of a suggestion for engine vendors how
such a management framework should look like and is not aiming at the unification of
proprietary management APIs. Here, we do not propose a framework to be implemented
by engine vendors, but build a unified framework on top existing proprietary management
APIs, without requiring these to be adapted.

In [HLW 12, HLW13]] betsy is used to evaluate the conformance of five open source and
three proprietary engines by means of the test suite described in the previous paragraph.
These results have been used in [LW13]] to compute the degree of portability of a BPEL
process using software metrics and to evaluate the quality of four mappings from several
modeling languages to BPEL [LW13]]. This computation is done automatically by the bp]ﬂ
tool. This tool is a static analyzer that parses BPEL processes and detects portability issues
in them. As part of this work, we extended and integrated the tool to support the automatic
selection of a suitable BPEL engine for a specific BPEL process by rejecting the engines
that do not support the BPEL features used in the process. A similar, policy-based selection
approach is described in [MvLWT09]. However, it is focused on the automatic routing

The tool is open source and publicly available at https://github.com/uniba-dsg/betsyl
2Bpp stands for BPEL Portability Profile. The tool is open source and publicly available at https://
github.com/uniba-dsg/bpp.

https://github.com/uniba-dsg/betsy
https://github.com/uniba-dsg/bpp
https://github.com/uniba-dsg/bpp

of requests to the best suited service implementation and not on finding a suitable BPEL
engine for a certain process.

Lego4TOSCA [HLNW 14] presents a generic architecture for the implementation of TOSCA
node types. Concrete node type implementations are called implementation artifacts, and
are designed to work together to realize management functionality. For instance, the Apache
Tomcat implementation artifact uses the Windows and the Ubuntu implementation artifact
to execute operations on the respective virtual machine.

In cloud computing, the management interfaces of cloud vendors vary greatly despite the
fact that they support a common set of management operations [KW14]. Hence, there
is a trend towards uniform APIs for both the management of Infrastructure as a Service
(TaaS) and Platform as a Service (PaaS) environments to provide a uniform access to
these common operations. For instance, the Open Cloud Computing Interface (OCCI)
[OCC11] provides a uniform API for IaaS, whereas Cloud Application Management for
Platforms (CAMP) [OAS13al] proposes a uniform API for PaaS. Our approach solves a
similar problem regarding BPEL engine vendors and their APIs, i.e., the provisioning,
deployment and monitoring of infrastructure and services. In addition, a uniform API for
BPEL engines in the form in which we propose it, can easily interface with other uniform
APIs and be integrated in cloud provisioning and deployment plans, e.g., using TOSCA.

3 Approach

In this section, we present our idea of a uniform BPEL management layer, called UBML,
for accessing all BPEL-related services. The big picture is depicted in which
outlines the relationship of the management layer to multiple BPEL engines and a typical
usage scenario in the form of a standard conformant BPEL process that should be executed
on a suitable engine. The UBML comprises seven services which abstract the common
callable functionality of the BPEL engines and provides an API to the user which supports
multiple application scenarios. One of these scenarios, which can be seen as fypical usage
scenario is shown by the numbered edges from the standard conformant BPEL process
to the different UBML services in In the first step, we select the best available
engine for this particular process using the Engine Selection service. Next, we install and
start the selected engine via the Engine Provisioning and Engine Lifecycle components,
respectively. The Process Deployment component can then be used to deploy the standard
conformant process onto this running engine. This component takes care of every aspect
of the deployment, including the generation of a valid and engine dependent deployment
descriptor. When the process is now deployed, we can monitor its runtime execution via
the log files (Logfile Access) of the engine, perform the recovery of activities (Process
Management) and access the Audit Trail.

As the uniform BPEL management layer abstracts from all engine specific APIs, we are
able to provide the services of this layer as Web services which can be integrated into
Cloud-based provisioning processes. Moreover, we contribute to the effort of maintaining
the portability advantages of the BPEL specification: model once, run anywhere.

[)

Select Install Start Deploy Monitor the execution of the process by

Typical
“best” selected selected standard accessing log files of the engine, accessing and P
N X . . R . Usage
engine engine engine conformant manipulating the state of the process instances, .
1 2 3 process accessing the audit trail Scenario
4 5* 5* s*l
[2 N v
Engine Engine Engine Process Logfile Process Services
Selection Provisioning Lifecycle Deployment Access Management

Validated with prototype.

Uniform BPEL Management Layer (UBML)

Mappings

! ! ! !

Figure 2: The Uniform BPEL Management Layer (UBML)

This section is organized according to the order in which the services are used in the typical
usage scenario. At first, the Uniform Engine Selection service is detailed in [Section 3.1]
followed by the Uniform Engine Provisioning and the Uniform Engine Lifecycle in
[fion 3.2] and [Section 3.3} respectively. Next, describes the Uniform Process
Deployment whereas the three remaining sections (3.5} [3.6/and [3.7) outline our approach
on uniform monitoring, activity recovery, and troubleshooting.

3.1 Uniform Engine Selection

BPEL engines differ in terms of their standard conformance (e.g., the support for the various
BPEL language elements, such as the <validate> activity), their functional capabilities
(e.g., some engines are able to invoke REST services via proprietary extensions or provide
special support for in-memory enactment to improve the performance of process execution)
or their nonfunctional requirements (e.g., support for additional Web Services standards,
such as WS-ReliableMessaging and WS-Security [OAS06]]). To automatically
select the engine which is providing the best service for the given BPEL process, we
take two kinds of data into account: First, we analyze the language elements the process
uses and match it against a standard conformance database, which contains information
about which language element is supported by which engine. The language benchmarks
of are the primary source for this database and a static analyzer tool
proposed and used in performs the analysis of the process. This way, we can
determine which engines are certain to be unable of supporting the process to be deployed
and can restrain from using these engines in the following steps. Moreover, we can rank
engines according to the amount of standard conformance they provide. Second, we use
policy attachments to describe functional or nonfunctional requirements in an abstract
manner. That way, for each engine, its requirements and capabilities are captured using

a policy description language, such as WS-Policy. Furthermore the process models to be
deployed can be enriched with policies describing their requirements on a suitable engine.
Such policies may define alternative sets of requirements of which at least one must be
supported and may be embedded directly into the process via extensions or be attached to it
as a separate file.

Based on the policy descriptions, the deployment component will find and select the best
matching engine (applying a configurable ranking algorithm in case multiple engines match
the requirement) and will compute an effective policy (i.e., the set of common requirements
and capabilities). This effective policy can then be used to generate the vendor specific
deployment descriptor to configure a certain behavior.

3.2 Uniform Engine Provisioning

After a suitable BPEL engine has been selected the engine needs to be provisioned on
an appropriate hardware and operating system. Some engines have preferences on which
hardware or operating system they run in a more optimized manner, which has to be
taken into account for the engine provisioning process. Moreover, at installation time,
configuration options must be possible to set, e.g., the port on which the engine is accessible.
Furthermore, as the engines may require additional software, e.g., databases, container, etc.,
these have to be taken into account as well. In summary, the Engine Provisioning service
takes care of selecting the appropriate server and operating system and is able to install
or uninstall the engine and its dependent components. To achieve this, it needs to know
which steps are needed for a successful (un)installation for each engine and will expose
this functionality through a generic interface.

3.3 Uniform Engine Lifecycle

When BPEL engines are provisioned automatically, it is important to also manage their
lifecycle in a uniform fashion. The Uniform Engine Lifecycle service exposes a generic
interface, which allows for starting and stopping all known engines. That way, the UBML
can automatically manage the resource consumptions of the managed engines and smartly
decide whether an engine can be stopped (i.e., only if there are no processes deployed
anymore).

3.4 Uniform Process Deployment

The deployment of a BPEL process to an engine is nontrivial, as it requires the creation of
an engine specific deployment descriptor and the usage of an engine specific deployment
method. As shown in [HL12, [LHW13], there are major differences in the complexity of
the deployment descriptors. There are engines which do not require additional descriptors,

but also others that require three per process. Regarding the deployment methods, there
are multiple strategies as well, for instance deployment through a command line interface,
through a Web service or manually through the browser. We aim to overcome these
differences by a) generating deployment descriptors automatically based on the information
already present in the BPEL and WSDL files, and b) by providing a uniform Web service
for deploying processes on a total of seven engines in different configurations and versions.

3.5 Uniform Logfile Access

The location of the log files depends heavily on the engine and environment. Although most
engines have a single log file, there typically also are multiple logs for the environment
or container in which the engine is running. As all these files may be scattered into
different places for each engine, there is a need to retrieve the files for troubleshooting and
maintenance in a uniform way. We capture these files using an engine independent Web
service that collects all files and returns them as a collection. That way, the IT support staff
has a single point of access for all troubleshooting information.

3.6 Uniform Process Management

Most BPEL engines provide sophisticated management APIs. These interfaces enable
applications to suspend/resume, debug or recover process instances. In addition, some of
these engines allow for manipulating instance data (i.e., variables and partner links) or to
rewind a process to a specific point in the past and to resume it from this position. Our
management component aims at unifying these APIs in order to provide a single API that
is capable to monitor all supported engines.

3.7 Uniform Audit Trail

Audit trails are an important asset when analyzing the execution of processes for a purpose
such as process mining. Several tools such as Prol\/lﬂ or fluxicon’s Discdz_r] support that task
but in some cases the only requirement is to display which parts of the process have been
properly executed already. Most engines are able to provide a detailed audit trail but unfor-
tunately there is no commonly implemented standard for their format. When abstracting
from the concrete engine that is actually executing the given process, there is also the need
to unify the audit trail. In order to achieve this, our monitoring component can translate
engine specific audit data to a generic audit trail data format such as MXML [Don03].

3For more information, visit the project page at http: //www.promtools.org/promé6/
4For more information, visit the project page at http: //www.fluxicon.com/disco/

http://www.promtools.org/prom6/
http://www.fluxicon.com/disco/

-

UnifermEngineSelector I UniformEngineProvisioner I UniformEngineLifecyde

m) getEngine(String) Engineld m) installEngineld) wvoid m) start(Engineld) wvoid
m) getEngines() EngineId[] m) uninstall(Engineld) wvoid m) stop{Engineld) wvoid
m getMatchingEngine(BpelPackage) gineld m! isInstalled(Engineld) boolean m) isRunning{Engineld) boolean
I UniformProcessDeployment I UniformLogfileAccess

m deploy(Engineld, DeployableBpelPackage) ProcessId m retrievelogFiles(Engineld) LogPackage
m' undeploy{ProcessId) void

m' makeDeployable(Engineld, BpelPackage) DeployableBpelPackage

m) getDeployedProcesses(Engineld) ProcessId(]

m) isProcessDeployed(ProcessId) boolean

Figure 3: Class Diagram of the Uniform BPEL Management Layer implemented by the prototype.

4 Prototype

The prototype discussed in this section validates the feasibility of our proposed approach
from As shown in our tool implements the five UBML services:
Engine Selection, Engine Provisioning, Engine Lifecycle, Process Deployment and Logfile
Access. For each of these services, the prototype provides a callable Web service that maps
the uniformly defined actions to engine specific calls. At the moment, UBML supports
seven different open source BPEL engines in different configurations (e.g., in-memory or
persistent execution) and versions. In particular, we support Apache ODE in versions 1.3.5
and 1.3.6 with the in-memory option, bpel-g in version 5.3 with the in-memory option,
ActiveBPEL v5.0.2, Orchestra v4.9, OpenESB in versions 2.2, 2.3 and 2.3.1, Petals ESB
in versions 4.0 and 4.1 and WSO2 Business Process Server versions 2.1.2, 3.0.0, and
3.1.0. The interfaces of the five services can be seen in the class diagram in
The services are published as WSDL 1.1 Web services, and group low-level methods
according to their task. Engines are identified with the string-based EngineId while
deployed BPEL processes are referred to using the QNameﬂ-based ProcessId which
also contains an EngineId. The standard conformant BPEL process and its related files
(e.g. WSDL, XSD or other files) are sent to the interfaces as a BpelPackage without
any engine specific information while the DeployableBpelPackage is an archive that
includes the relevant files and structure to be deployable on a specific engine. Log files are
transferred similarly in the form of packages using the LogPackage class.

The Engine Selector service is implemented as a registry or repository. It either provides a
list of all available engines or the best engine for a specific BPEL process. For determining
the latter, we use an extended version of the bpp tool to which we transfer the path to the
BPEL file within the Bpel1Package. Using the conformance data of the engines, the tool
returns a list of engines that are able to support the process. Moreover, it also provides the
number of supported features per engine, thus, providing the data to create a ranking of the
engines that support the process by their overall support of the specification from which
the topmost is selected. The other four services are implemented by reusing and extend-

SQName stands for qualified name, i.e., an identifier with a namespace [W3C09].

ing the engine specific logic of betsy [HL12]. The UniformEngineProvisioning
component allows installing and uninstalling any supported engine as well as checking
whether it is installed or not. To start, stop, or check the status of an engine, our tool pro-
vides corresponding methods in the UniformEnginelLifecycle service. The largest
service is the UniformProcessDeployment service, which supports the deployment
and undeployment of a standard conformant BPEL process. The deployment, however,
requires a preprocessing step as the BpelPackage has to be made deployable via the
makeDeployable method which returns the desired DeployableBpelPackage
that is required by the deploy method. Whether a process is already deployed can be
checked with the method i sProcessDeployed while a list of all deployed processes of
a single engine can be retrieved via getDeployedProcesses. The smallest component
is the UniformLogfileAccess which simply returns a package with all the log files
for a specific engine.

Listing 1: Composition of UBML Services

1 class CompositeProcessProvisioningService {

2 ProcessId makeProcessAvailable(BpelPackage bpelPackage) {

3 Engineld engineId = UniformEngineSelection.getMachingEngine (
bpelPackage) ;

4 if (!UniformEngineProvisioning.isInstalled(engineId)) {

5 UniformEngineProvisioning.install(engineId);

6

7 if (!UniformEnginelifecycle.isRunning(engineld)) {

8 UniformEngineLifecycle.start(engineld);

9 }

10 DeployableBpelPackage deployableBpelPackage =
UniformProcessDeployment .makeDeployable(engineld,
bpelPackage)

11 return UniformProcessDeployment.deploy(engineld,
deployableBpelPackage);

12 }

13 void makeProcessUnavailable(ProcessId processId) {

14 UniformProcessDeployment .undeploy(processId);

15 EngineId engineld = processId.getEngineId();

16 ProcessId[] processIds = UniformProcessDeployment.
getDeployedProcesses(engineld);

17 if (processIds.length == 0) {

18 UniformEnginelLifecycle.stop(enginelId);

19 UniformEngineProvisioning.uninstall(engineld);

20 }

21

21

Based the lower-level operations depicted in [Figure 3| we can build the functionality
outlined in the typical usage scenario from[Figure 2] and shown in Java-based pseudo code
in[Listing T]as part of the CompositeProcessProvisioningService class. In the
method makeProcessAvailable, we only need to pass in a BpelPackage and get
the ProcessId of the, then running, process back. This operation orchestrates the Engine
Selector component to select an engine that best supports the BPEL features of the provided
process, the Engine Provisioning service to install the selected engine if it is not already
installed, the Engine Lifecycle service to start the selected engine if it is not already started,
and the Process Deployment component to create the DeployableBpelPackage and

|| Engine Control Center =RACE X

[Tue May 13 15:37:16 CEST 2014] STARTED

lode 136 [install I uninstall I isInstalled? I start Il stop I isRunNing? || retrieveLogFies |
* shortend

wso2_v2_1.2 [install][uninstall][isInstalled?][start][stop][isRunning?][retrievelogFies]

ALL [install][uninstall] [startup][shutdown]

Figure 4: The EngineControl GUI for controlling engine related tasks.

deploy it. In contrast, the method makeProcessUnavailable implements the reverse
logic which allows to undeploy a process using the Process Deployment service and freeing
resources. If the engine which previously undeployed the process has no other processes
deployed, we can easily terminate it via the Engine Lifecycle service (i.e., freeing RAM
and CPU power) and uninstall it via the Engine Provisioning service (i.e., freeing disk
space). Furthermore, multiple other additional services and operations can be built, e.g., a
dashboard showing the list of all currently installed and started engines and the deployed
and running processes.

Our prototype is open source, publicly availablg’|and written in Java 8 and Groovy 2.3.
The Web services are exposed using the JAX-WS’|2.0 Java API and can be started using
the ubml . ws.WSMain class, which sets up the Web services using the following pattern
http://localhost:1234/INTERFACE_NAME. These addresses can be integrated
into TOSCA plans to enable the uniform management of BPEL-related tasks. Using the
Gradleﬂ task run, the Web services start automatically. By executing gradlew run,
Java 8 is the only runtime dependency, everything else is installed automatically on demand.
This enables an easy deployment of this tool on any virtual machine to set up BPEL engines
in the cloud.

Furthermore, the tool also contains a simple GUI application which can be started via the
gradlew enginecontrol command on the command line. This GUI can control the
operations of the three services UniformEngineProvisioning, UniformEngineLifecycle, and
UniformLogfileAccess as shown in [Figure 4

Several limitations still remain for this prototype. First, only a single engine can currently
be run on the same machine, because the engines run on their default ports, which can
create conflicts. In the future, we aim to provide configuration options during provisioning
to fix this. Second, the automatic creation of the deployable BPEL package including
the deployment descriptors does only work for BPEL processes from the betsy test suite.
We want to extend this feature to arbitrary BPEL processes in the future, however, this is

6See the project page for more information: https://github.com/uniba-dsg/ubml

TJAX-WS 2.0 is described in the Java Specification Request 224 which is available at ht tps://Jcp.org/
en/jsr/detail?id=224,

8Gradle is a build management tool with which the UBML prototype is built. It is available at http |
//www.gradle.org/,

http://localhost:1234/INTERFACE_NAME
https://github.com/uniba-dsg/ubml
https://jcp.org/en/jsr/detail?id=224
https://jcp.org/en/jsr/detail?id=224
http://www.gradle.org/
http://www.gradle.org/

considered quite time consuming as this requires parsing much information from the BPEL
and WSDL files. Third, both the undeploy and the i sDeployed commands are only
implemented for Apache ODE. We aim to implement the mapping for the other remaining
six open source engines as well. Fourth, the prototype only runs on Windows 7 64bit. As
many virtual machines use a Linux-based operating system, we plan to port the mappings
to run on Linux as well.

5 Conclusion and Future Work

This paper presents a Web Services-based approach to manage BPEL engines and deployed
processes and we provide a prototypic implementation of the approach. The current
limitation is that the logic to manage the BPEL engines has to be installed manually on
the virtual machine where the engine should be deployed on. Our plan is to leverage
virtualization, i.e., port the prototype to the Lego4TOSCA universe. This allows us to
provision arbitrary virtual machines without any user intervention. Moreover, as this
approach only supports open source BPEL engines, we aim to support proprietary BPEL
engines as well. Another subject of future work is the construction of a unified monitoring
API across all vendors. Finally, the presented work focuses on BPEL engines and our next
step is to apply the presented concepts on process engines for BPMN [OMG11]].

Acknowledgment We would like to express our gratitude to Oliver Kopp for fruitful
discussions on this topic.

References

[BBLS12] Tobias Binz, Gerd Breiter, Frank Leymann, and Thomas Spatzier. Portable Cloud
Services Using TOSCA. IEEE Internet Computing, 16(03):80-85, May 2012.

[Don05] B. F. Van Dongen. A Meta Model for Process Mining Data. In In Proceedings of the
CAiSE WORKSHOPS, pages 309-320, Porto, Portugal, 2005.

[HL12] Simon Harrer and Jrg Lenhard. Betsy—A BPEL Engine Test System. Technical
Report 90, Otto-Friedrich Universitt Bamberg, July 2012.

[HLNWI14] Florian Haupt, Frank Leymann, Alexander Nowak, and Sebastian Wagner.
Lego4TOSCA: Composable Building Blocks for Cloud Applications. In Proceed-
ings of the 7" IEEE International Conference on Cloud Computing (CLOUD 2014),
Anchorage, Alaska, USA, 2014. IEEE.

[HLW12] Simon Harrer, Jrg Lenhard, and Guido Wirtz. BPEL Conformance in Open Source
Engines. In Proceedings of the 5th IEEE International Conference on Service-Oriented
Computing and Applications (SOCA’12), Taipei, Taiwan, pages 1-8. IEEE, 17-19
December 2012.

[HLW13] Simon Harrer, Jrg Lenhard, and Guido Wirtz. Open Source versus Proprietary Software
in Service-Orientation: The Case of BPEL Engines. In /ICSOC, volume 8274 of Lecture

[HRW14]

[KKLO6]

[KW14]

[LHW13]

[LW13]

[MVLWT09]

[0AS06]
[0AS07]
[0AS09]
[0AS13a]

[OAS13b]

[OCC11]
[OMG11]
[vdAtHWO3]

[VLLM™08]

[W3C09]

Notes in Computer Science, pages 99—113, Berlin, Germany, 2013. Springer Berlin
Heidelberg.

Simon Harrer, Cedric Rck, and Guido Wirtz. Automated and Isolated Tests for
Complex Middleware Products: The Case of BPEL Engines. In Software Testing,
Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh International
Conference on, pages 390 — 398, Cleveland, Ohio, USA, April 2014. Testing Tools
Track.

R. Khalaf, A. Keller, and F. Leymann. Business processes for Web Services: Principles
and applications. IBM Systems Journal, 45(2):425-446, 2006.

Stefan Kolb and Guido Wirtz. Towards Application Portability in Platform as a Service.
In Proceedings of the 8th IEEE International Symposium on Service-Oriented System
Engineering (SOSE), Oxford, United Kingdom, April 7-10 2014. IEEE.

Jrg Lenhard, Simon Harrer, and Guido Wirtz. Measuring the Installability of Service
Orchestrations Using the SQuaRE Method. In Proceedings of the 6th IEEE Inter-
national Conference on Service-Oriented Computing and Applications (SOCA’13),
Kauai, Hawaii, USA, December 16-18 2013. IEEE.

Jorg Lenhard and Guido Wirtz. Measuring the Portability of Executable Service-
Oriented Processes. In Proceedings of the 17th IEEE International EDOC Conference,
pages 117 — 126, Vancouver, Canada, September 2013. IEEE.

Ralph Mietzner, Tammo van Lessen, Alexander Wiese, Matthias Wieland, Dimka
Karastoyanova, and Frank Leymann. Virtualizing Services and Resources with ProBus:
The WS-Policy-Aware Service and Resource Bus. In Proceedings of the 7th Interna-
tional Conference on Web Services (ICWS) 2009, Los Angeles, CA, USA, July 2009.
IEEE Computer Society.

OASIS. Web Services Security, February 2006. v1.1.
OASIS. Web Services Business Process Execution Language, April 2007. v2.0.
OASIS. Web Services Reliable Messaging, February 2009. v1.2.

OASIS. Cloud Application Management for Platforms, July 2013. Version 1.1 — Draft
03.

OASIS. Topology and Orchestration Specification for Cloud Applications, November
2013. v1.0.

OCCI. Open Cloud Computing Interface - Core. Open Grid Forum, 2011.
OMG. Business Process Model and Notation, January 2011. v2.0.

Wil M. P. van der Aalst, Arthur H.M. ter Hofstede, and Mathias Weske. Business
Process Management: A Survey. In Proceedings of the International Conference on
Business Process Management, Eindhoven, The Netherlands, 2003. Springer Berlin
Heidelberg.

Tammo van Lessen, Frank Leymann, Ralph Mietzner, Jorg Nitzsche, and Daniel
Schleicher. A Management Framework for WS-BPEL. In Proceedings of the 6th
IEEE European Conference on Web Services 2008, pages 187—-196, Dublin, Ireland,
November 2008. IEEE Computer Society.

W3C. Namespaces in XML, December 2009. v1.0.

	Introduction
	Related Work
	Approach
	Uniform Engine Selection
	Uniform Engine Provisioning
	Uniform Engine Lifecycle
	Uniform Process Deployment
	Uniform Logfile Access
	Uniform Process Management
	Uniform Audit Trail

	Prototype
	Conclusion and Future Work

