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Abstract. We describe and compare three probabilistic ways to perform
Content Based Image Retrieval (CBIR) in compressed domain using im-
ages in JPEG2000 format. Our main focus are arbitrary non-uniformly
textured color images, as can be found, e.g., in home user image collec-
tions. JPEG2000 offers data that can be easily transferred into features
for image retrieval. Thus, when converting images to JPEG2000, feature
extraction comes at a low cost. For feature creation, wavelet subband
data is used. Color and texture features are modelled independently and
can be weighted by the user in the retrieval process. For texture features
in common databases, we show in which cases modelling wavelet coef-
ficient distributions with Gaussian Mixture Models (GMM) is superior
in to approaches with Generalized Gaussian Densities (GGD). Empirical
tests with data collected by non expert users evaluate the usefulness of
the ideas presented.

1 Introduction

Content Based Image Retrieval (CBIR) has been motivated many times. While
there are currently great advances in semantic features and image annotations,
the proliferation of digital cameras operated by annotation-lazy novices moti-
vates the automatic, feature based CBIR today. JPEG2000 [2] compressed do-
main CBIR draws its interest from the fact that probabilistic texture modelling
techniques have been developed based on wavelets.

In this paper, we show how to compute and compare color and texture fea-
tures based on wavelet subband data provided by JPEG2000. The main focus of
this work is to show how subband data can be modelled accurately in order to
capture the properties of non-uniformly textured images better. Work already
done in this area mainly focuses on uniform texture images [9][16], or homoge-
neous areas in general images [4]. However, especially personal image collections
do not consist of pure texture images, nor are users always interested in only
partial matches. An other way to use JPEG2000 data for image retrieval was de-
scribed by Mandal et al. [12]. They propose two JPEG2000 indexing techniques



based on significant bitmaps and the properties of bitplanes used to encode indi-
vidual code blocks, however using subband data directly offers more information.

The outline of this paper is as follows: Section two deals with color and
texture features derived from subband data of JPEG2000 images. In section
three, evaluation methods are described and results are shown. Section four
concludes this work.

2 Features from JPEG2000 data

Minka and Picard state in [13] that searching for the ultimate feature that repre-
sents an image is usually not successful, instead, it is better to rely on a number
of primitive features and to combine them. We follow this approach. For arbi-
trary image databases of natural scenes, color and texture features are considered
most important. We compute and compare them independently, getting two in-
dividual rankings for the best matches. To get the final result, the scores of each
image in both rankings are combined. The default is to consider color and tex-
ture equally important, but the user has the possibility to emphasize either part
by specifying a weight factor.

2.1 Data for computing features

The JPEG2000 image compression standard is rather complex and consists of
different steps, details can be found, e.g., in [2]. During en-/decoding, there
exists a state where the data is especially suited for computing features for
CBIR. We extract features after the three color layers Y CbCr have been wavelet
transformed (each layer independently). Each color layer is represented by a
number of subbands, depending on the number of wavelet decomposition steps.
Layer Y carries the luminance information of the image. It can be interpreted
as a black and white representation of the original image. Layers Cb and Cr

account for chrominance. A graphical representation of the wavelet coefficients
from a sample layer Y with seven subbands in different orientations is shown in
figure 1.

For computing features, a JPEG2000 image has to be partially decompressed
until it is in the format described above. A more efficient way would be to perform
feature extraction right at compression time.

2.2 Color Features

On the lowest resolution subbands (LL0) of layers Y , Cb and Cr, only low pass
filtering and down sampling was performed during wavelet transform. Hence
we can interpret these three subbands as a down scaled version of the original
image in Y CbCr space. This data can be used to create a color histogram [15] by
assigning the color values to 5x8x8 bins. The Y -component has a coarser binning,
since we want to be robust against small illumination changes. A similar method
for creating color features for JPEG2000 images was proposed by [4], however



Fig. 1. Wavelet coefficients and their distribution for different subbands

they used more and equal sized bins for all color layers. In order to find out the
color similarity of two images I1 and I2, the histograms are compared using the
well-known histogram intersection (HI).

2.3 Texture Features with Generalized Gaussian Densities

The higher order subbands represent horizontally and/or vertically high pass
filtered data and therefore the “details” of the image. As shown in [9], the distri-
bution of wavelet coefficients belonging to different subbands can represent the
texture of images. In figure 1 histograms of subband data of the example image
can be seen. For texture analysis, it is sufficient to consider only subbands of
layer Y , being a black and white version of the image.

Do and Vetterli proposed in [9] to model the distribution of wavelet coeffi-
cients by a Generalized Gaussian Density (GGD):

p(x; α, β) =
β

2αΓ ( 1
β )

e
−(|x|/α)β

(1)

where Γ (.) is the Gamma function: Γ (z) =
∫ ∞

0
e−ttz−1dt, z > 0

Here only two parameters α and β are necessary to describe the distribution.
This is a very compact representation compared to, e.g., the histogram, where a
large number of bins would be necessary to model the distribution satisfyingly.
As described in [9], a way to estimate the parameters α and β in a statistical
framework is by a maximum-likelihood (ML) estimator, which can be computed
efficiently.

The similarity of two GGD can be determined using the Kullback-Leibler
divergence or relative entropy [9]. In general terms, the KLD between two prob-
ability density functions (PDFs) p1(X) and p2(X) is defined as:

KLD[p1(X)||p2(X)] =

∫

p1(x)log
p1(x)

p2(x)
dx (2)

For the KLD on GGDs there exists a closed form expression, where only the
model parameters α and β are involved [9].



KLD[p(X ; α1, β1)||p(X ; α2, β2)] =log

(
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)
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(

α1

α2

)β2 Γ ((β2 + 1)/β1)

Γ (1/β1)

−
1

β1

(3)

Assuming that the wavelet coefficients in different subbands are independent,
we can compute the overall texture similarity by applying the chain rule [9]. This
means, in order to compute the overall KLD between images I1 and I2, we can
simply sum the KLD between corresponding subbands:

KLD[I1||I2] =

N
∑

j=1

KL[pj
1(X)||pj

2(X)] (4)

with pj
i denoting the PDF of the j-th subband of image i and N the number

of subbands. In this work we assume that the number of decompostion levels for
all images in the entire image database is the same, since the different subbands
are matched one to another.

We examined the fitting quality of GGDs to real wavelet coefficient distribu-
tions in different cases. We performed tests with data from very coarse images,
very smooth images and images that contain either part. For uniformly textured
images, the fidelity is usually well, however it is not sufficient for images that
have distinct regions. Especially affected are images that contain hard parti-
tioned smooth and coarse regions, e.g., a picture of a landscape with a sky, or
an object in front of a uniform background. However, these types of images are
common in standard user image databases. Figure 2 shows sample images for
three test cases, each with a wavelet coefficient distribution of a characteristic
subband next to it. The dashed blue curves show how well the GGDs model
the subband data distribution, respectively. The problem becomes evident when
looking at the image with distinct regions. The wavelet coefficients belonging
to the sky are close to zero and are forming a peak, the ones representing the
crowd are very wide spread and form a kind of base. The GGD can not model
this kind of distribution accurately.

2.4 Wavelet coefficient distribution with Gaussian Mixture Models

Because of this fitting inaccuracy, we propose to model the wavelet coefficient
distribution as Gaussian Mixture Model (GMM). A similar proposition was also
made by Crouse et al. [6] who use a two state zero mean Gaussian mixture model
to build a hidden Markov model for characterizing wavelet transformed signals.
Do et al. [8] also used these hidden Markov models for texture description. In our
case, we do not use hidden Markov models, but a single GMM for each subband
directly.
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Fig. 2. Wavelet coefficient distribution of sample subbands, fitted with GGD and GMM
with 2 components. Images are from the Benchathlon collection [1].



A mixture density has the form

p(x; Θ) =

N
∑

i=1

wipi(x; θi) (5)

where the parameters are Θ = (w1, . . . , wN ; θ1, . . . , θN ), such that
∑N

i=1 wi =
1, and each pi is a density function parameterized by θi. The functions used can
be any valid probability density function, i.e. any set of non-negative functions
integrating to one. In the case of Gaussian mixture models, Gaussian probability
density functions are used.

The parameters wi and θi (here µi and σi) can be estimated using the
Expectation-Maximization (EM) algorithm [5]. It is an iterative procedure that
needs good starting values and the number of mixture components necessary to
model the distribution accurately. In a general setting this is a problem. But we
already have knowledge how the mixture model to be estimated looks like. The
wavelet coefficient distribution of a subband of a natural image is centered about
zero and approximately symmetric (see figure 2). This means a small number
of Gaussian mixtures with mean µ ≈ 0 will be sufficient. Experiments showed
that already GMMs with two components model problematic wavelet coefficient
distributions better than GGDs.

In figure 2, the fitting quality of GMMs for different subband data can be
viewed (solid red curves). In this experiment, we used GMMs with two compo-
nents. In the first two cases, where the GGD already performed well, the fidelity
of the GMM is comparable. In the third case, modelling the subband data with
GMMs is much more accurate compared to using GGDs.

In contrast to GGDs, there does not exist a simple way to compute the KLD
on GMMs. A general approach is to use a Monte-Carlo (MC) estimation to
approximate the integral in equation 2 [7]. Then, the KLD between the mixture
densities p1(X) and p2(X) is estimated by:

KLD[p1(X)||p2(X)] ≈
1

Nrnd

Nrnd
∑

i=1

log
p1(xi)

p2(xi)
(6)

where the sample values {x1, . . . , xNrnd
} are drawn randomly and indepen-

dently from the model density p1(X). The number of Nrnd has usually to be
large which spoils retrieval time, however, we get improved results. Experiments
showed that 60 to 100 samples are sufficient.

Several scientists [7, 11, 10] have proposed ideas to compute the similarity
between GMMs more efficiently. We used the approach described by Goldberger
et al. [10]. They state different approximations of the KLD between mixture
densities. As our GMMs have the same number of components, we used the
method for calculating an upper bound for the KLD on mixture models. Details
on this can be found in [10]. In the following, we refer to this method as “GMM-
UB”.



3 Experimental Evaluation

In order to compare the efficiency of the methods described above, we imple-
mented a test framework. As image database we used a subset of the Benchathlon
collection [1] (4501 images) which consists of consumer photos. Since there is no
official ground truth available, we collected them by ourselves. We designed a
tool for acquiring ground truth by non expert users4. The test persons were
shown a query image and had to look through the whole database in order to
look for similar images. The subjects had no previous experience with image
retrieval systems. They were told to select images that they wanted to have re-
trieved by a system when presented the query image. So this ground truth can
be considered quite hard, since not only visually similar images were selected,
but also semantically similar ones. We acquired ground truth for a set of 11
randomly selected images by three different test persons, since similarity tends
to be judged differently by different persons.

For evaluation we generated precision/recall plots, averaged over all three
test persons and query images. Precision and recall are defined as [14]:

precision =
|R ∩ T|

|T|
(7)

recall =
|R ∩ T|

|R|
(8)

where R is the set of images that are relevant to the query, T is the set of
returned images and |A| is the cardinality of set A.

3.1 Evaluation of Features and Measures

The procedure for evaluating the algorithms was as follows: As explained in
section 2, we calculated two different feature sets, one for color and one for
texture. In order to access the wavelet coefficients in the JPEG2000 images,
we used a modified version of the JasPer JPEG2000 codec [3]. Separate queries
for color and texture similarity were performed implicitly and the individual
rankings combined on the basis of the score of each image. As score of an image,
a weighted sum of the normalized texture and color similarity measure is used.
For color, this is the normalized HI value, for texture it is 1/(1− KLD). These
values are always between 0 and 1. The more similar an image is regarded by
the system, the closer its value is to 1, with the query image itself having the
maximum score of 1. As we evaluate arbitrary color pictures, equal weighting
of the different feature types was performed. The texture features and the way
their similarity is determined change in every experiment, color features however
stay the same and thus will not be mentioned explicitly. When calculating the
graphs for the MC method, the retrieval process was performed 3 times and the
results averaged, due to the random nature of MC integration and the therefore
slightly variable results.

4 This tool is available under http : //muscle.prip.tuwien.ac.at/software here.php
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Fig. 3. Example query results. The query image is in the upper left corner.



As could be seen in figure 2, the modelling of the data only improved for
images with hard partitioned textured and smooth areas. So a significant im-
provement is only expected here. For this reason, we evaluate the results for
the “crowd and sky” image independently from the other images in the ground
truth. Figure 3 shows a screen shot of the 10 best matches for images with texture
modelled with GGDs and GMMs respectively. In the GMM case, the matching
was performed with Monte Carlo integration with 60 samples (GMM-MC60).
As we can see, the results improved noticeable.

A more precise evaluation can be done by looking at the precision/recall
plots. In figure 4 on the left, the retrieval results for the different experiments
are displayed. In this example, the GMM-based queries (GMM-UB and GMM-
MC60) performed better than the GGD based one, since the precision is higher
for the same level of recall. The best result was achieved by the GMM-MC
method, because it has the highest recall values at the beginning of the pre-
cision/recall plot. This means that after few images retrieved, more relevant
images are found compared to the other methods (the user wants to browse as
few images as possible).

The average result for all images in the ground truth can be viewed in figure 4
on the right. Here also the advantage of the GMM method can be seen, however
not that clearly, since many of the randomly selected query images do not have
a problematic distribution.
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Fig. 4. Results for the problematic image and the entire ground truth

The resources needed by the different algorithms vary. In the GGD case, two
parameters (α, β) describe the wavelet coefficient distribution per subband, in
the GMM case we need 3×N with N being the number of mixture components
(2 in our case). Since the JPEG2000 images used had 5 decomposition levels,
the number of coefficients to characterize texture information in the image is
12 × 2 = 24 for GGDs and 12 × 6 = 72 for GMMs (we have 4 × 3 high pass
subbands).



More severe are the differences in matching time for an image pair: for the
calculation of the KLD on GGDs a single expression needs to be evaluated (see
equation 3), so this is rather quick. When using the MC approximation, the
retrieval time depends linearly on Nrnd, the number of random samples drawn.
The calculation speed of the KLD for GMMs with an upper bound depends on
the number of mixture components N . As described in [10], in order to obtain
a tight upper bound for mixture models with equal N , minimizing over N !
permutations of the mixing components is necessary. However, since we use only
N = 2 Gaussians, this is much less than the MC integration.

The absolute retrieval times for a texture query in our java framework on
a P4 2.8GHz machine for 4501 images were about 600 ms for the GGD model,
14000 ms for GMM model with MC computiaton with 60 samples and 900 ms for
the GMM-UB method. The evaluation time for the color features is the same in
all cases. There the query time depends on the number of non-empty bins to be
compared for histogram intersection, on average this was about 700 ms. We see,
the computation of the KLD on GMMs with an upper bound is only 50% slower
as computation of GGD similarity, while the method with MC integration with
60 samples takes over 23 times as long. As the performance of the GMM-UB
method is almost as good as the GMM-MC method, it should be preferred.

4 Conclusions

In this paper, we presented and evaluated methods for image retrieval with
features derived from JPEG2000 wavelet subband data. In particular, color and
texture features were computed, which represent characteristics of the image
well. We illustrated that for certain images, the modelling of texture features by
GGDs has weaknesses and proposed to model them by GMMs. As shown, the
probabilisitc modelling of the data in terms of distributions makes it easy and
efficient to compare collections. Approximate evaluation of KLD between GMMs
showed good results for problematic images, combined with fast evaluation. To
further improve speed and retrieval quality, methods should be researched how
to choose the most suitable method for modelling subband data automatically
according to the data distribution.
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