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1. Introduction

It has long been known that expected future sales and inventory stock
production may play an important role in the motion of national income
and the business cycle.1 One of the first models that attempts to capture
the interplay between expected future sales, inventory stock production
and the business cycle is Metzler’s (1941) well-known business cycle
model. In this paper, Metzler presents the dynamics that can be derived
from a simple linear model in which all producers hold the same heuristi-
cally derived expectation on future sales. Overall, his main contribution
is to show that in such a framework, inventory adjustments, triggered
by erroneous sales expectations, may lead to dampened business cycle
fluctuations. It is worth noting that Metzler’s linear approach is also
able to generate business cycles with constant amplitude. However, this
feature merely holds for quite specific parameter combinations.

1 Akerlof and Shiller (2009) convincingly argue that people’s expectations are
subject to animal spirits and may thus have a destabilising impact on macroeconomic
outcomes. Moreover, the relevance of inventory adjustments on the evolution of the
business cycle is, amongst others, demonstrated in Blinder and Maccini (1991) or
Ramey and West (1997).
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In this paper, we want to broaden this view by extending Metzler’s
original model nonlinearly.2 For this purpose, we introduce heteroge-
neous expectation formation into Metzler’s framework. For the sake of
simplicity, we will thereby focus on two different types of predictors,
i.e. producers either apply a simple but cheap extrapolative or a more
sophisticated but also more expensive regressive forecasting rule in
order to predict expected future sales. Moreover, producers exhibit a
boundedly rational learning behaviour in the sense that they tend to
select predictors that produced low squared forecasting errors in the
past.
As it turns out, the motion of the business cycle is defined by a higher-
order nonlinear difference equation, which has a unique fixed point.
Furthermore, we use a mixture of analytical and numerical tools to
describe the characteristics of this dynamical system. One central find-
ing is that our model is able to produce complex endogenous dynamics
for a broad range of parameter combinations. Such fluctuations are
particularly likely if agents react sensitively to differences in the rules’
performance. In such a situation, we then observe alternating periods
in which the majority of firms either rely on destabilising extrapola-
tive or stabilising regressive expectations. Another interesting finding
is that we observe coexisting attractors which emerge due to a so-called
Chenciner or crater bifurcation. Depending on initial conditions (or
exogenous shocks), national income may then either be driven towards
its long-run equilibrium or will display endogenous oscillations.
In a broader context, our paper is related to a number of recent con-
tributions which show that the expectation formation of boundedly
rational heterogeneous agents, relying on heuristic forecasting rules,
is an important driver of business cycle dynamics. There are several
proposals on how to model the agent’s predictor selection. In West-
erhoff and Hohnisch (2008), agents may change their strategy due to
(random) social interactions with other agents, and thus display a kind
of herding behaviour. In Lines and Westerhoff (2006) or Wegener et
al. (2009), in turn, agents switch between extrapolative and regressive
expectations in dependence on how far the economy deviates from its
long-run equilibrium, i.e. regressive expectations gain in prominence
as booms and slumps continue to grow, which makes an eventual mean
reversion more likely. More closely related to our current paper are mod-
els in which the selection of forecasting strategies depends on their past
performance. For papers in this direction, which employ quite different
types of macroeconomic models, see Branch and McGough (2009, 2010),

2 For other (nonlinear) extensions of Metzler’s framework, see, e.g. Franke and
Lux (1993), Franke (1996) or Matsumoto (1998).
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Anufriev et al. (2008), DeGrauwe (2008) or Lines and Westerhoff (2010).
Some of these models also explicitly incorporate learning behaviour.3

In Berardi (2007), for example, agents adjust the parameters of their
forecasting rules via recursive least squares techniques, while Tuinstra
and Wagener (2007) construct an interesting framework in which agents
switch between two competing learning strategies. Moreover, Marcet
and Nicolini (2003) have developed a model of “quasi-rational learning”,
which is able to replicate certain stylised facts observed during periods
of hyperinflation. Overall, these models have at least some ability to
explain business cycle dynamics, and may thus also be relevant from
a policy perspective. Nevertheless, our paper differs from this strand
of research in the sense that we focus on sales expectations of hetero-
geneous firms. We consider such a focus to be a quite promising and
natural starting point for exploring the relevance and consequences of
heterogeneous expectations on business cycle dynamics.
This paper is organised as follows. Our model is presented in section
2. In section 3, we begin with some comments on the stability of our
dynamical system. Section 4, in turn, contains a specific numerical il-
lustration of how our model functions, while section 5 demonstrates
the dynamical behaviour of our model for a broader range of parameter
combinations. The last section concludes the paper.

2. The model

In Metzler’s (1941) business cycle model, national income, Y , is deter-
mined by the three components: investments, I, inventory adjustments,
S, and expected consumer demand, U . Therefore, we have

Yt = It + St + Ut. (1)

To simplify matters, firms’ investments are regarded to be fixed, i.e.

It = I. (2)

Moreover, their inventory adjustments, S, at time t are given by

St = Q̂t − Qt−1, (3)

where Q̂t denotes the desired inventory level producers wish to main-
tain, and the realised inventory at the close of the previous period is
denoted by Qt−1. Note that adjustments of the inventory stock can be

3 See Evans and Honkapojah (2001) for a general survey on learning in
macroeconomics.
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both negative and positive, corresponding to the depletion or accumu-
lation of inventory.
The desired inventory level is simply proportional to the expected sales
of consumption goods, i.e.

Q̂t = kUt, (4)

where parameter k > 0 may be regarded as an inventory accelerator.
Producers may not correctly predict consumer demand and thus do
not realise their desired inventory level. Hence, the effectively realised
inventory level, Q, is determined by the desired inventory level adjusted
by unexpected inventory changes. Since these unexpected inventory
changes are the differences between realised and expected sales, the
effectively realised inventory level at the close of the previous period is
determined by

Qt−1 = Q̂t−1 − (Ct−1 − Ut−1). (5)

Realised sales are given by agents’ consumption expenditures, and are
assumed to be proportional to national income, i.e.

Ct = bYt, (6)

where parameter b denotes the marginal propensity to consume, and is
obviously restricted to 0 < b < 1.
The framework presented so far followed Metzler’s (1941) original model,
in which expected consumer demand is homogeneously modelled as
the expectation of a single group of producers.4 Now we would like
to broaden this homogeneous point of view by introducing two dif-
ferent types of competing predictors that firms may use to determine
expected future sales. Note that there is significant empirical evidence
supporting the view that agents are boundedly rational and display rule-
governed behaviour.5 Moreover, laboratory experiments by Hommes et
al. (2005b) and Heemeijer et al. (2009) indicate that agents tend to
use simple linear forecasting rules to form predictions. In particular,
agents seem to use both extrapolative and regressive expectation for-
mation rules. There is also evidence that agents change their forecasting
strategies over time. Inspecting survey data on inflation expectation,
Branch (2004) concludes that agents do not blindly follow a certain
rule but that they select between a limited set of different predictors.
Interestingly, the proportion of agents using a certain predictor thereby
varies inversely with the predictor’s mean squared forecasting error, i.e.

4 In particular, Metzler (1941) discusses the effects of several simple linear
expectation formation rules on the dynamics of the business cycle.

5 See, e.g. Simon (1955), Kahnemann et al. (1986) or Smith (1991).
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agents seem to favour forecasting rules that did well in the past.6

Based on this empirical evidence, we want to allow producers to choose
between two different predictors in order to determine expected fu-
ture sales. In particular, producers of type one form extrapolative ex-
trapolations, i.e. they extrapolate the trend in consumption in order
to estimate their future sales. For instance, if consumption has de-
creased (increased) in the recent past, trend-extrapolating producers
believe that consumption will fall (rise) further. Technically, this type
of expectation formation can be described by

UE
t = Ct−1 + c (Ct−1 − Ct−2) , (7)

where c > 0 simply represents a positive extrapolation parameter.
Producers of the second type form regressive expectations, i.e. they
believe that consumption will always return to its equilibrium value, C,
in the long run. Thus, the regressive predictor may be expressed as

UR
t = Ct−1 + f

(
C − Ct−1

)
, (8)

where 0 < f < 1 stands for the expected adjustment speed towards
equilibrium.
Let wE

t and wR
t be the fractions of producers who respectively choose

the extrapolative and the regressive predictor. Overall, expected future
sales of consumption goods, Ut, may then be expressed as a weighted
average of both type of expectations,7 i.e.

Ut = wE
t UE

t + wR
t UR

t . (9)

We now want to specify how producers choose a certain forecasting
rule in order to predict future sales, i.e. how fractions wE

t and wR
t

evolve over time. A quite natural approach is that producers tend to
select forecasting rules with a high evolutionary fitness.8 The better one
predictor performed in the past, the more attractive this rule will be and
the more producers will choose it. In our case, producers shall favour
forecasting rules that produce low prediction errors. In this sense, the
attractiveness or fitness of both predictors can respectively be written

6 Further evidence on dynamic predictor selection and heterogeneous expectation
formation in different environments is provided by Reitz and Westerhoff (2003),
Alfarano et al. (2005), Boswijk et al. (2007) and Goldbaum and Mizrach (2008).

7 Anufriev et al. (2008) argue that the most natural way to embed heterogeneous
expectations into a linear macroeconomic model that has no explicit microfoundation
is to use a weighted average of individual expectations. However, we will discuss this
issue in more detail in appendix A.

8 This idea was put forward by Brock and Hommes (1997, 1998).
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as

AE
t = −

(
Ct−1 − UE

t−1

)2

+ mAE
t−1, (10)

AR
t = −

(
Ct−1 − UR

t−1

)2

+ mAR
t−1 − µ. (11)

The first terms of (10) and (11) simply describe the last period’s squared
forecasting errors, while the second terms reflect producers’ memory.
The associated memory parameter, m, is restricted to 0 ≤ m ≤ 1.
For instance, if m = 0, producers have no memory at all and the
attractiveness of a certain predictor does not depend on past forecasting
errors. But the larger producers’ memory, the more a certain strategy’s
attractiveness will also be subject to its past performance. Finally, for
m = 1, producers will have a perfect memory and the attractiveness of
a certain predictor consequently incorporates all past forecasting errors.
Also note that regressive expectations may be regarded as a quite
sophisticated predictor. In order to determine equilibrium national in-
come, Y , and the adjustment speed, f , producers may have to evaluate
various macroeconomic variables. In other words, forming regressive ex-
pectations requires more effort than forming extrapolative expectations.
Thus, regressive expectations are relatively more expensive. In (11),
these higher information gathering costs are captured by the positive
term µ ≥ 0. Moreover, Branch (2004) argues that µ may also be inter-
preted as a predisposition effect. In this sense, µ > 0 means that agents
have a behavioural preference for simple extrapolative expectations.
The evolution of the fractions, wE

t and wR
t is based on a discrete choice

approach (see, e.g. Manski and McFadden, 1981), i.e.

wE
t = (1 − δ)

exp[gAE
t ]

exp[gAE
t ] + exp[gAR

t ]
+ δwE

t−1 (12)

and

wR
t = (1 − δ)

exp[gAR
t ]

exp[gAE
t ] + exp[gAR

t ]
+ δwR

t−1. (13)

Note that (12) and (13) incorporate the more general case of asyn-
chronous updating, i.e. in each time step only a fraction (1 − δ) of
producers reconsiders its decision for a certain predictor.9 Obviously, δ

is restricted to 0 ≤ δ ≤ 1. Moreover, parameter g ≥ 0 is the well-known
intensity of choice, and simply reflects how quickly producers switch
from one forecasting rule to another. For g = 0 there is no switching

9 For (financial market) models with asynchronous updating, see Diks and van der
Weide (2005) and Hommes et al. (2005a). For an interesting alternative specification,
see also Dieci et al. (2006).
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at all, whereas in the extreme case of g = ∞ producers react to even
minimal differences in the attractiveness of both predictors. In such a
case, a fraction of (1 − δ) producers will instantly switch to the best
forecasting rule. In other words: the switching intensity increases with
parameter g.
Combining (1)-(13) now reveals that our model corresponds to a higher-
order nonlinear difference equation. By introducing the auxiliary vari-
ables Xt = Yt−1 and Zt = Xt−1 = Yt−2, this difference equation may
be extended to the following system of first-order nonlinear difference
equations

Yt =b(1 + k)(fXt−1 − Xt−1 − fY )wR
t−1+

b(1 + k)(θ̃2 − δθ̃2 + δwR
t−1)(fY + Yt−1 − fYt−1)+

b(1 + k)(θ̃1 − δθ̃1 + δwE
t−1)(Yt−1 + cYt−1 − cXt−1)−

b(1 + k)(Xt−1 + cXt−1 − cZt−1)w
E
t−1 + bYt−1 + I, (14)

Xt =Yt−1, (15)

Zt =Xt−1, (16)

wE
t =(1 − δ)θ̃1 + δwE

t−1, (17)

wR
t =(1 − δ)θ̃2 + δwR

t−1, (18)

AE
t = − b2(Yt−1 − Xt−1 + cXt−1 + Zt−1)

2 + mAE
t−1, (19)

AR
t = − b2(Yt−1 − Xt−1 + fXt−1 − fY )2 + mAR

t−1 − µ, (20)

where θ̃1 = θ1

θ1+θ2
, θ̃2 = θ2

θ1+θ2
and

θ1 = exp[gmAE
t−1 − gb2(Yt−1 − Xt−1 − cXt−1 + cZt−1)

2],

θ2 = exp[gmAR
t−1 − gµ − gb2(Yt−1 − Xt−1 + fXt−1 − fY )2].

Using a combination of both analytical and numerical tools, we in-
vestigate the properties of this 7D-nonlinear dynamical system in the
subsequent three sections.

3. Fixed point and local stability analysis

Let us begin our analytical survey by noting that (1)-(6) yield

Yt = (1 + k)(Ut − Ut−1) + bYt−1 + I. (21)

It is easy to see from this equation that the model has the unique fixed
point

Y =
I

1 − b
, (22)
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that corresponds to the well-known Keynesian multiplier solution. Sim-
ilar calculations reveal that the other steady state variables of system
(14)-(20) are determined by

X = Y , (23)

Z = Y , (24)

AR =
µ

m − 1
, (25)

AE = 0, (26)

wR =
θ

1 + θ
, (27)

wE =
1

1 + θ
, (28)

where θ = exp[ gµ
m−1

].
By using these results, we are able to linearise our nonlinear system
around this unique steady state, and obtain the following Jacobian

J =




a11 . . . a17

...
. . .

...
a71 . . . a77



 , (29)

where the coefficients aij(i, j = 1, 2, . . . , 7) denote the partial derivatives
of system (14)-(20) calculated at the above defined steady state.
Our fixed point is then locally asymptotically stable if and only if all
seven eigenvalues of the above Jacobian, J , are less than one in absolute
value.10 Straightforward computations reveal that in our case the first
four eigenvalues are given by λ1,2 = m and λ3,4 = δ and are thus by
definition always less than one in absolute value. In turn, the remaining
three eigenvalues, λ5, λ6 and λ7, are determined by the roots of the
characteristic polynomial

P (λ) = λ3 + a1λ
2 + a2λ + a3 = 0, (30)

with the coefficients

a1 = −
b(2 + c + ck + k − θ(f − 2 + (f − 1)k))

(1 + θ)
,

a2 =
b(1 + k)(1 + 2c + θ(1 − f))

1 + θ

10 See, e.g. Galor (2007) and, for a more comprehensive survey on stability
conditions for higher-order linear systems, also Gandolfo (2009).
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and

a3 = −
bc(1 + k)

1 + θ
.

Unfortunately, this polynomial is too complex to derive the remaining
three eigenvalues explicitly. However, it can be shown that all eigen-
values of the above given characteristic polynomial are less than one
in absolute value if and only if the following conditions simultaneously
apply11

1 + a1 + a2 + a3 > 0 (31)

1 − a1 + a2 − a3 > 0 (32)

1 − a2 + a1a3 − a2
3 > 0 (33)

3 + a1 − a2 − 3a3 > 0. (34)

The first three conditions are thereby associated with different types
of bifurcation: violation of (31) is a necessary condition for a flip bi-
furcation, violation of (32) is a necessary condition for a saddle-node
bifurcation and violation of (33) is a necessary condition for a Neimark-
Sacker bifurcation to occur. Moreover, these three conditions may also
be regarded as the crucial conditions for smooth stability, i.e. if we have
a stable fixed point and then continuously change the parameter under
control, one of the first three conditions will always be violated before
condition (34) is hit.12

Straightforward calculations now reveal that for our model conditions
(31)-(34) yield

1 − b > 0 (35)

1 + 3b − 2bf + 2bk − 2bfk +
2b(2c + f)(1 + k)

1 + θ
> 0 (36)

1 −
b + 2bc(1 − b)

(1 + θ)2
−

bk(1 + 2c)

(1 + θ)2
+

b2ck(3 + k)

(1 + θ)2
−

bθ(3 + 2c)

(1 + θ)2
+

2bθ(bc + f)

(1 + θ)2
−

bkθ(3 + 2c)

(1 + θ)2
+

b2ckθ(3 − 2f)

(1 + θ)2
+

bfθ(2k − bc)

(1 + θ)2
+

b2ck2θ(1 − f)

(1 + θ)2
> 0 (37)

3 − 3b − 2bk +
2bf(1 + k)

1 + θ
> 0 (38)

11 See, e.g. Lines (2007). For an alternative set of stability conditions see, Chiarella
and He (2005).

12 See, e.g. Lines (2007), who proves that no parameter combination satisfies
the last condition as an equality while simultaneously satisfying the first three
conditions.
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Taking into account that 0 < b < 1 and 0 < f < 1, it is not difficult
to see that the first two conditions are always fulfilled. In turn, the last
two conditions may be violated. In particular, condition (37) and its
possible violation for certain parameter combinations thereby indicate
that under a smooth change of parameters our unique fixed point may
only loose its stability via a Neimark-Sacker bifurcation. In the following
sections we attempt to scrutinise these interesting analytical findings
by giving some numerical examples of the dynamics our model may
produce.

4. A numerical example of the dynamics

We start our numerical analysis with a brief illustration of the dynam-
ics our model may produce. For this purpose, we choose the following
parameter setting: b = 0.75, c = 1, f = 0.6, g = 250, k = 0.1, m = 0.05,
δ = 0.15 and µ = 0.01. Furthermore, investments are fixed at I = 10,
implying that equilibrium income is then given by Y = 40.

[Figure 1 about here.]

Figure 1 now displays a typical simulation run for the above given
parameter setting. The panels in the first two rows depict the evolution
of national income, consumption, expected sales and inventory produc-
tion over a period of 100 time steps. A longer transient of 10000 steps
is omitted. Obviously, our model is able to produce intricate and irreg-
ular business cycles with booms and slumps. Both the frequency and
amplitude of the cycles vary over time. Please note that these upswings
and downturns of national income are created endogenously within our
model. No exogenous shocks are necessary to explain or maintain the
persisting cyclical motions of national income.
Instead, dynamics may be explained as follows. The bottom panels of
figure 1 clearly indicate that in many time steps almost all agents either
form regressive or extrapolative expectations. Let us suppose that all
producers use the regressive forecasting rule, i.e. wR

t = 1 and wE
t = 0.

In such a case, our model is reduced to the following second-order linear
difference equation

Yt = b (2 + k − f − fk)Yt−1 + b (f − 1) (1 + k)Yt−2 + I, (39)

the fixed point of which is given by the previously presented Keynesian
multiplier solution.
Straightforward calculations reveal that the fixed point is (globally
asymptotically) stable for our initial parameter setting.13 Hence, pe-

13 For a comprehensive survey on the stability of linear difference equations, see,
e.g. Gandolfo (2009).
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riods in which (almost) all producers form regressive expectations tend
to have a stabilising impact on dynamics.
If, in turn, all producers form extrapolative expectations, the evolution
of national income is described by

Yt =b (2 + c + k + ck) Yt−1 − (1 + k) (1 + 2c) Yt−2+

c (1 + k)Yt−3 + I, (40)

a third-order linear difference equation. Again, the fixed point of (40)
corresponds to the Keynesian multiplier solution. But this time the
fixed point is unstable within our parameter setting. Hence, our model
behaves in an unstable manner if all producers rely on extrapolative ex-
pectations and extrapolative expectations may be regarded as a desta-
bilising force.14

However, the panels presented in figure 1 clearly indicate that output
neither converges to its fixed point nor does it explode, and that neither
regressive nor extrapolative expectations will permanently dominate
dynamics. It rather seems to be the interplay between these two com-
peting forces that leads to intricate endogenous business cycles within
our model. This interplay may be explained as follows. Let us suppose
that national income and consumption fluctuate closely above their
equilibrium values. In such a case, the forecasting errors of both predic-
tors become quite small. Accordingly, both predictors will yield similar
results. But since the use of regressive expectations is relatively more
expensive, extrapolative expectations appear more attractive. Thus, a
large fraction of producers will immediately switch to extrapolative
expectations, and regressive expectations are increasingly crowded out
of the market. As a result, national income will be driven away from its
equilibrium in an oscillatory fashion.
Nonetheless this motion will not last forever. At some point in time,
extrapolative expectations may produce quite strong prediction errors,
and the benefits of forming regressive expectations may now outweigh
the higher information gathering costs and the predisposition effect.
Since regressive expectations now appear superior, more and more pro-
ducers will switch to regressive expectations and a period of convergence
sets in. Producers decrease both production of consumption goods for
sales and inventory purposes and, as a result, national income, Y , will
start to fall. This decrease continues until national income is close to
its equilibrium value again and the pattern may repeat itself.

14 In the next section it will become clear that these claims may not be generalised
too much. For some parameter combinations stability may in fact crucially depend
on the interplay between parameters c and f , i.e. the two parameters defining the
expectational forces in our model.
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Note also that in an upswing, producers become optimistic and thus
increase their inventory. Accordingly, production is higher than in a
model without any inventory stock production. In contrast, in an eco-
nomic downswing, firms deplete their inventory, which has a negative
impact on production. Overall, we conclude that not only the expec-
tation formation of boundedly rational heterogeneous producers but
also their inventory management may in fact play an important role in
economic activity.15

5. Routes to endogenous business cycles

In the previous section, we only analysed the dynamics for a particular
parameter setting. But since the true parameters of the economy are
unknown, we would like to broaden our view in this section by explor-
ing the model’s dynamical behaviour for a wider range of parameter
combinations.

[Figure 2 about here.]

Let us begin our numerical investigation with an illustration of the
effects of parameters f and c, the corresponding bifurcation diagrams
of which are depicted in figure 2. Hereby, each parameter is increased in
500 discrete steps, as indicated on the axis, while all other parameters
are identical to those in our default parameter setting used in the pre-
vious sections. The first bifurcation diagram suggests that the stability
of the fixed is independent of the expected adjustment speed towards
equilibrium income. For instance, when f is too low or too high, an ex-
plosion of the dynamics (represented by the blank areas in the diagram)
occurs, while for values of f between 0.45 and 0.65, intricate endogenous
dynamics in the form of business cycles with varying amplitudes arise.
Put differently, for our default parameter setting we will not observe
a convergence towards the model’s unique fixed point for any value of
0 < f < 1.
In turn, the second bifurcation diagram for parameter c exhibits that
national income converges towards its equilibrium when c is low. But
when c exceeds a certain threshold, dynamics change essentially. The
fixed point suddenly loses its local asymptotic stability, and pronounced
endogenous dynamics set in. This threshold may be calculated by the

15 As it turns out, in rare situations the inventory becomes negative for our initial
parameter setting. This issue may be circumvented by either adding a fixed buffer
or an inventory floor to (4). However, such a fixed buffer does not affect the model’s
law of motion. For a more detailed description of a model with an inventory floor,
see, e.g. Sushko et al. (2009).
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help of the stability conditions presented in the previous section. For our
particular parameter setting it is c = 0.5905. Moreover, our analytical
results also indicate that with respect to a smooth increase in param-
eter c, our fixed point may only lose it stability via a Neimark-Sacker
bifurcation. However, the sharp and sudden change in the dynamical
behaviour of the system now suggests that our Neimark-Sacker bifurca-
tion is of subcritical type and is furthermore accompanied by a so-called
Chenciner or crater bifurcation.16

To be precise, a Chenciner bifurcation is a generic phenomenon that
may occur in higher dimensional nonlinear systems with two or more
parameters. Due to the Chenciner bifurcation, our stable fixed point
coexists with two limit cycles. The first limit cycle is unstable and
repelling, and defines the fixed point’s basin of attraction, i.e. all tra-
jectories starting within that region in parameter space will finally
converge to our locally asymptotically stable fixed point. Instead, tra-
jectories starting outside that neighbourhood of the fixed point are
attracted by the second and stable limit cycle. Similarly to the occur-
rences in the case of a pure subcritical Neimark-Sacker bifurcation, the
basin of attraction eventually decreases and shrinks as parameter c ap-
proaches its critical bifurcation value. At the critical bifurcation value,
the unstable limit cycle finally merges with the fixed point, such that the
fixed point becomes unstable. However, figure 3 clearly indicates that
we may observe a global bifurcation before the critical bifurcation value
is reached. Depending on initial conditions trajectories may already
start outside the shrinking basin of attraction and are thus immediately
attracted by the remaining stable limit cycle. As a consequence, we will
then observe a sharp, sudden change in dynamics.17

[Figure 3 about here.]

It is a well-known fact in the economic literature that such a coexis-
tence of attractors may cause hysteresis phenomena, and may thus have
important practical economic implications.18 For instance, consider a
situation in which the crucial parameter c changes due to some exterior
effects such that it crosses its critical bifurcation value and the fixed
point destabilises through the above-described Chenciner bifurcation
scenario. Once the fixed point has lost its stability, all trajectories will

16 For a complete mathematical treatment of the Chenciner bifurcation, see
Kuznetsov (2004). Moreover, economic applications covering this kind of bifurcation
are given by Gaunersdorfer et al. (2008), Lines and Westerhoff (2009), Neugart and
Tuinstra (2003), Kind (1999), Agliari (2006) and Agliari et al. (2005).

17 In contrast, in the case of a pure subcritical Neimark-Sacker bifurcation, the
fixed point becomes unstable and all trajectories simply diverge.

18 See, e.g. Agliari (2006)or Agliari et al. (2006).
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be attracted by the remaining stable limit cycle. Since this attracting
limit cycle is now relatively far away from the fixed point, all trajec-
tories are also clearly outside the fixed point’s basin of attraction. As
a consequence, a simple restoration of the previously stable parameter
value is not enough to allow the system to return to its equilibrium ever
again. In other words: any stabilisation policy aimed at a mere change
of parameters must clearly fail unless the trajectories are not pushed
back into the (attracting) vicinity of the steady state.
Another interesting numerical phenomenon can be observed at about
c = 0.70. For values of c close before this threshold all trajectories
are attracted by the stable limit cycle. At about c = 0.70, however,
dynamics explode, while for values above c = 0.70 a strange attractor
emerges, the amplitude of which is larger than that of the stable limit
cycle. Even a slight increase in parameter c may thus have a significant
effect on dynamics.
From an economic point of view, such a destabilising effect of an increase
in parameter c may be comprehended as follows. Recall that parameter
c denotes the expected speed of deviation from equilibrium income.
The higher c is, the more optimistic or pessimistic producers are, and
the stronger these producers will extrapolate the trend in consump-
tion, which apparently tends to amplify dynamics. Furthermore, our
bifurcation diagram for parameter c indicates that the amplitude of the
business cycle increases with c.

[Figure 4 about here.]

Nevertheless, trend-extrapolating producers may not be regarded as a
source of instability per se since such a destabilising effect of parameter
c has to be treated carefully. In fact, stability depends on the balance be-
tween parameters c and f . To understand this, please take into account
that our crucial stability condition (33) implicitly defines a function
in (c, f)-parameter space separating stable from unstable parameter
combinations.19 The upper panel of figure 4 now illustrates these stable
(blank) and unstable (black) regions in parameter space for our default
parameter setting. Clearly, within our default parameter setting the
effects of a variation of parameters c and f are unambiguous, i.e. an
increase in parameter c always tends to have a destabilising impact on
dynamics, and a single variation of parameter f does not affect stability
at all. But these results have to be treated more carefully and may not
be generalised to other parameter settings. The lower panel of figure
4 gives a stylised sketch of the stable and unstable regions in (c, f)-
parameter space. This sketch may be regarded to hold for a broader

19 Please recall, that the other stability condition which may be violated is
completely independent of parameter c.
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range of parameters settings. Let us now assume that we have a stable
parameter setting in the upper left blank region. A single increase in
parameter c, i.e. a rightward movement into the black unstable region
of parameter combinations, will then clearly have a destabilising impact
on dynamics. The same holds true for a single decrease in parameter
f , i.e. a downward movement in the diagram. In turn, an increase in
parameter c together with a simultaneous decrease in parameter f , i.e. a
right-downward movement in parameter space, may have a destabilising
impact on dynamics in the first place, but any further parameter shift
into the same direction will then at some point of time clearly stabilise
dynamics again.

[Figure 5 about here.]

Figure 5 now continues with two bifurcation diagrams for parameter
g, which are plotted for slightly different initial conditions for national
income. Obviously, the result of this exercise exhibits certain similarities
to our previous bifurcation diagram for parameter c. Visual inspection
reveals that when the intensity of choice is low, national income, Y ,
converges towards its equilibrium value and no fluctuations in business
cycles appear. But as parameter g increases and finally exceeds a certain
threshold of about g = 75.477, the dynamical behaviour of our system
will change fundamentally again, i.e. the fixed point abruptly loses its
stability, and business cycles with substantial amplitude are created
endogenously within our model. The bifurcation diagrams presented on
the right-hand side of figure 5 clearly displays that we may also observe a
global bifurcation before the critical bifurcation value is reached. Again
depending on initial conditions all trajectories may already start outside
the fixed point’s basin of attraction and may thus immediately converge
to some coexisting strange attractor. The latter point is furthermore
illustrated by the phase space plot depicted in figure 6.

[Figure 6 about here.]

All in all, we thus conclude that, equivalently to our previous case for
parameter c, a Chenciner bifurcation also takes place for parameter g

exceeding a certain threshold.
But why does an increase in parameter g lead to complex endoge-
nous dynamics? Recall that parameter g denotes producers’ intensity
of choice, and that the higher g is, the more sensitively producers will
react to even the slightest differences in the attractiveness of both pre-
dictors. Hence, the higher g is, the faster producers will switch from one
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forecasting rule to another. Apparently, such behaviour tends to have
a destabilising impact on dynamics.20

[Figure 7 about here.]

Finally, the bifurcation diagrams for parameters b and k are depicted in
figure 7. They lead to the following results. When parameter b is low,
national income converges to its equilibrium value. However, when b ex-
ceeds a certain threshold, the fixed point will lose its stability, and both
complex and explosive dynamics may occur. Similarly, the bifurcation
diagram for parameter k reveals that intricate endogenous dynamics
but also unstable trajectories may appear. Furthermore, both bifurca-
tion diagrams indicate that the amplitude of business cycles seems to
increase with both parameters. It follows from this that an increase in
one of these parameters has a destabilising effect on dynamics.
At least with respect to an increase in parameter k, this result is eco-
nomically quite clear. Recall that the higher k is, the more inventory
producers wish to hold. Hence, an increase in parameter k implies that
inventory fluctuations will become more dominant, and as a conse-
quence, we will observe stronger fluctuations in both inventory and
national income. Similar arguments also hold for parameter b, though
the effective mechanism at work seems to be more complicated. First
of all, an increase in parameter b will lead to an increase in equilibrium
national income and consumption via the multiplier. But since produc-
ers forming regressive sales expectations directly base their decision on
the level of equilibrium consumption, such an increase will also boost
overall production of consumption goods. This, in turn, urges producers
to expand their inventory, and thus tends to have the above-described
destabilising effect on dynamics.
As a concluding remark, we wish to point out that all bifurcation
diagrams presented in this section verify that our nonlinear model -
in contrast to Metzler’s original linear approach - is able to produce
intricate endogenous dynamics for a broad range of parameters.

6. Conclusions

In this paper, we extend Metzler’s (1941) well-known linear business
cycle model by developing a framework in which producers can ei-
ther apply a simple and cheap extrapolative or a more sophisticated
but relatively more costly regressive predictor to determine expected

20 For similar results in different frameworks, see, e.g. Brock and Hommes (1997),
Brock et al. (2006) or Westerhoff (2006).
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future sales. Producers thereby display a boundedly rational learning
behaviour, in the sense that they tend to select forecasting rules with a
high evolutionary fitness. As it turns out, the motion of national income
is then described by a higher-order nonlinear difference equation, which
has a unique fixed point. Using a mixture of analytical and numerical
tools, we try to describe the characteristics of the model’s dynamical
system and obtain the following results.
With respect to a smooth increase of the control parameters the unique
fixed point may only lose its local asymptotic stability via a subcritical
Neimarck-Sacker bifurcation, which may furthermore be accompanied
by a so-called Chenciner bifurcation. Once the fixed point has desta-
bilised, complex business cycles with varying amplitude are created
endogenously within our model for a broad range of parameter com-
binations. In particular, no exogenous shocks are necessary to explain
or maintain the persisting up- and downward movements of national
income and related variables, such as consumption or inventory stock
production. Instead, dynamics are driven by the interplay between the
different expectations. Our results thereby indicate that regressive ex-
pectations may be seen as a stabilising force whereas extrapolative
expectations tend to have a destabilising impact on dynamics. More-
over, the crucial factor between these two competing forces seems to be
producers’ intensity of choice. Since both our analytical and numerical
results suggest that an increase in producers’ intensity of choice may
lead to complex dynamics, we also conclude that producers, who quickly
switch between predictors may be regarded as a source of instability.

Appendix

A. Aggregation of sales expectations

In this appendix, we illustrate the conditions under which expected sales
of consumption goods, Ut, may be expressed as a weighted average of
both types of expectations. For the sake of simplicity, we restrict our
analysis to the simplest case in which producers have no memory at
all and have no preference for simple linear heuristics, i.e. m = 0 and
µ = 0. Given this, (10) and (11) will reduce to

AE
t = −

(
Ct−1 − UE

t−1

)2

,

AR
t = −

(
Ct−1 − UR

t−1

)2

.

Moreover, we want to omit all cases of asynchronous updating. Hence,
the fractions of agents using either the extrapolative or the regressive
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forecasting rule are respectively denoted by

wE
t =

exp[gAE
t ]

exp[gAE
t ] + exp[gAR

t ]
(41)

and

wR
t =

exp[gAR
t ]

exp[gAE
t ] + exp[gAR

t ]
. (42)

Let us now suppose that there are N firms in the market. All firms
shall be equal in size in the sense that each firm is able to sell the same
amount of consumption goods. Nevertheless, each firm still forms its
individual expectations about its future sales, which are now specified
by

UE
i,t =

Ct−1

N
+ c

(
Ct−1

N
−

Ct−2

N

)
(43)

=
1

N

(
Ct−1 + c

(
Ct−1 − Ct−2

))
(44)

=
1

N
UE

t (45)

and

UR
i,t =

Ct−1

N
+ f

(
C

N
−

Ct−1

N

)
(46)

=
1

N

(
Ct−1 + f

(
C − Ct−1

))
(47)

=
1

N
UR

t . (48)

Accordingly, the individual performance of each predictor may be writ-
ten as

AE
i,t = −

(
Ct−1

N
− UE

i,t−1

)2

(49)

= −

(
Ct−1

N
−

UE
t−1

N

)2

(50)

=
1

N2
AE

t (51)
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and

AR
i,t = −

(
Ct−1

N
− UR

i,t−1

)2

(52)

= −

(
Ct−1

N
−

UR
t−1

N

)2

(53)

=
1

N2
AR

t . (54)

The individual weighting function

wE
i,t =

exp[giA
E
i,t]

exp[giA
E
i,t] + exp[giA

R
i,t]

(55)

may now be interpreted as the (individual) probability with which a
particular firm chooses the extrapolative forecasting rule. Hence, ex-
pected future sales of a particular firm are determined by the following
probability function

Ui,t =

{
UE

i,t with probability wE
i,t

UR
i,t with probability 1 − wE

i,t

(56)

while overall expected sales are simply given by

Ut =
N∑

i=1

Ui,t. (57)

If we furthermore suppose that all producers react equally sensitive to
differences in the performance of both predictors, we are able to scale
parameter g so that the intensity of choice of each producer is given by

g =
gi

N2
. (58)

With this simple transformation, it is now straightforward to see that
our individual probability function (55) corresponds to the weighting
function (41). Thus, for a sufficiently large number of firms, approx-
imately wE

t N firms will choose the extrapolative predictor, while ap-
proximately (1−wE

t )N firms will select the regressive forecasting rule.
Accordingly, the aggregate of expected sales of consumption goods may
properly be approximated by

Ut = wE
t UE

t + wR
t UR

t . (59)
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Figure 1. Evolution of national income Y and related variables in a simulation run
for m = 0.05, µ = 0.01, δ = 0.15, g = 250, c = 1, f = 0.6, k = 0.1 and b = 0.75.
Equilibrium values of income and consumption are Y = 40 and C = 30.
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Figure 2. Bifurcation diagrams for parameters f and c. Each parameter is increased
in 500 discrete steps, as indicated on the axis. Dynamics are plotted after a transient
of 5000 observations. The other parameters are identical to those in figure 1. The
dashed line depicts the calculated critical bifurcation value for parameter c
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Figure 3. Bifurcation diagrams for parameter c plotted with different starting values
for national income. Left-hand side: Y0 = 40.01. Right-hand side: Y0 = 40.1. De-
pending on initial conditions, we may observe a global bifurcation before the critical
bifurcation value (depicted by the dashed line) is reached.
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Figure 4. Stability condition (33) implicitly defines a function in (c, f)-parameter
space, which separates stable (blank) from unstable (black) parameter combina-
tions. Upper panel: stable and unstable combinations of parameters c and f within
or default parameter setting. Lower panel: stylised sketch of stable and unstable
combinations which holds for a more general set of parameters.

manuscript.tex; 7/07/2010; 10:37; p.26



FIGURES 27

0 50 100 150 200 250 300
30

35

40

45

50

parameter g

Y

0 50 100 150 200 250 300
30

35

40

45

50

parameter g

Y

Figure 5. Bifurcation diagrams for parameter g with different initial conditions.
Left-hand side: Y0 = 40.01. Right-hand side: Y0 = 40.1. Shortly before the critical
bifurcation value (depicted by the dashed line) is reached the stable fixed point
coexists with a strange attractor.
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Figure 6. Shortly before the critical bifurcation value for parameter g is reached,
our stable fixed point (depicted in black) coexists with a strange attractor (depicted
in gray).
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Figure 7. Bifurcation diagrams for parameters b and k. Each parameter is increased
in 500 discrete steps, as indicated on the axis. Dynamics are plotted after a transient
of 5000 observations. The other parameters are identical to those in figure 1. The
dashed line depicts the calculated critical bifurcation value for parameter b.
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