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Abstract

We develop a simple �nancial market model with heterogeneous interacting
speculators. The dynamics of our model is driven by a one-dimensional discon-
tinuous piecewise-linear map, having two discontinuity points and three linear
branches. On the one hand, we study this map analytically and numerically to
advance our knowledge about such dynamical systems. In particular, not much
is known about discontinuous maps involving three branches. On the other
hand, we seek to improve our understanding of the functioning of �nancial mar-
kets. We �nd, for instance, that such maps can generate complex bull and bear
market dynamics.
Keywords: �nancial crises, bull and bear dynamics, discontinuous piecewise

linear maps, border-collision bifurcations, adding scheme.

1 Introduction

In 1990, Day and Huang (1990) published their seminal bull and bear market
model to explain the complex dynamics of �nancial markets. In their model,
there are three types of market participants. Chartists buy (sell) assets when
they perceive a bull (bear) market and fundamentalists buy (sell) when the
market is undervalued (overvalued). The third player is the market maker who
adjusts prices with respect to the chartists�and fundamentalists�excess demand.
As it turns out, the (nonlinear) model of Day and Huang is able to generate in-
tricate price dynamics where complex bull market dynamics erratically alternate
with complex bear market dynamics. This contribution was indeed seminal �it
triggered hundreds of follow-up papers, of which some are surveyed in Chiarella
et al. (2009), Hommes and Wagener (2009), Lux (2009) and Westerho¤ (2009).
In 1993, Huang and Day (1993) developed a piecewise-linear version of their

original model. Due to the piecewise-linear shape of their model, certain new
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insights into the properties and dynamics of their model were gained. Since
then, only a few piecewise-linear models have been proposed. The few excep-
tions include, for instance, Huang et al. (2010) and Tramontana et al. (2010).
This is rather surprising - after all, piecewise-linear models may o¤er novel in-
teresting results about how �nancial markets function. One reason for this lack
of development may have been that the mathematical tools, which are obviously
necessary to study such systems, were rather limited. Therefore, the recent con-
tributions in this area usually do not only aim at improving our understanding
of �nancial markets but also at advancing our knowledge about how to deal
with piecewise-linear maps.
This is also true in our case. We develop a simple �nancial market model in

the tradition of Day and Huang (1990) and Huang and Day (1993). Within our
model, there are four types of speculators. Type 1 and type 2 chartists believe
in the persistence of bull and bear markets; type 1 and type 2 fundamentalists
believe in mean reversion. While type 1 chartists and type 1 fundamentalists are
always active in the market, type 2 chartists and type 2 fundamentalists are only
active when prices are at least a certain distance away from the fundamental
value. The speculators�transactions are mediated by a market maker who also
adjusts prices with respect to the excess demand.
As it turns out, the dynamics of our model is driven by a piecewise-linear

map with three separate branches. Formulated in terms of deviations from the
fundamental value, the map has the following appearance (see also Figures 1
and 2 in Section 4). The inner branch of the map, ranging from �z to +z on
the x-axis, always has a slope higher than 1 and a positive intercept parameter.
The outer two branches have either a slope (i) between 0 and 1 or (ii) between
-1 and 0 (and would intersect the origin). It will become apparent below that
the dynamics in the inner regime is solely due to the transactions of type 1
speculators, while the dynamics in the outer regimes is due to type 1 and type
2 speculators.
From a mathematical perspective, our results may be outlined as follows. In

case (i), only two of the three branches are involved in the asymptotic dynam-
ics. Depending on the intercept parameter, we may have either two coexisting
disjoint attractors or only one attractor. If the intercept parameter is relatively
high, only one attractor with periodic motion in the generic case (structurally
stable) exists, always located in the bull market (and, in exceptional cases,
structurally unstable, the attractor is a Cantor set). This regime is completely
determined in the parameter space, and we describe the so-called period-adding
structure of periodicity regions. If the intercept parameter declines, a second co-
existing attractor emerges, always located in the bear market and always chaotic
(in k-chaotic intervals, with k � 1). Case (ii) is much more complicated since
it may involve all three branches of the map. However, we found that there
exist both periodic and chaotic attractors. In a portion of the well-determined
parameter space (where the so-called period increment structure exists), the
attractors are cycles and there is evidence of bistability, i.e. two periodic cycles
may coexist (and be bounded by analytically determined bifurcation curves).
What both cases have in common is that the steady state of the model, if it
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exists, is never stable. Instead, there are either endogenous regular/chaotic
dynamics or the system explodes. Contrary to case (i), where the dynamics
remains either in the bull or in the bear market, we show that in case (ii) the
dynamics switches back and forth between bull and bear markets, and this can
occur with both a stable periodicity or in a chaotic way.
It goes without saying that these insights are also relevant from an economic

point of view. In addition, we stress here that our model is also capable of
generating quite interesting bull and bear market dynamics. Since the model is
asymmetric (due to the inner regime�s positive intercept parameter), we have,
on average, more positive bubbles than negative bubbles, as also seems to be
the case for real �nancial markets. A typical bubble-and-crash path may evolve
as follows. First, there is a slow build-up of a bubble. Then the momentum
of the bubble process increases �till it crashes. The crash can be quite abrupt
and severe. After the crash, the next bubble may start. However, we may also
see prices declining for some more time after a crash. Such price reductions
sometimes even lead to the aforementioned negative bubbles.
The remainder of our paper is organized as follows. In Section 2, we develop

our �nancial market model. In Section 3, we report some general properties of
our model. Section 4 and 5 are devoted to an in-depth analysis of our model.
In Section 6, we conclude the paper.

2 A simple �nancial market model

The design of our model is highly in�uenced by those of Day and Huang
(1990) and Huang and Day (1993), and may even be regarded as an exten-
sion/generalization of their models. The main ingredients of our model may be
summarized as follows. We consider a speculative market in which a market
maker mediates the transactions of speculators and adjusts prices with respect
to the current excess demand: if buying exceeds selling, they increase the price;
if selling exceeds buying, they decrease the price. The excess demand is made
up of the transactions of four di¤erent groups of speculators.
First of all, there are so-called type 1 chartists and type 1 fundamentalists.

Type 1 chartists believe in the persistence of bull and bear markets and thus buy
if prices are high and sell if they are low. Type 1 fundamentalists do exactly the
opposite. Fundamentalists expect prices to return towards their fundamental
value and thus buy if prices are low and sell if they are high. Type 1 chartists
and type 1 fundamentalists are always active in the market.
By contrast, type 2 chartists and type 2 fundamentalists are not always

active. They only become active if the price is at least a certain distance away
from its fundamental value. For instance, type 2 chartists may only recognize an
exploitable bull/bear market if the misalignment has crossed a certain threshold
level. For type 2 fundamentalists it may only seem reasonable to enter the
market as soon as there is some real chance and actual potential for mean
reversion. Apart from that, the trading philosophies of type 1 chartists and
type 1 fundamentalists are identical to those of type 2 chartists and type 2
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fundamentalists.
The dynamics of our model is due to a one-dimensional discontinuous piece-

wise linear map. In Section 2.1, we present the key building blocks of our model.
In Section 2.2, we derive the model�s law of motion. Since the underlying map is
very �exible, it cannot be dealt with in just one single paper. Alternatively, sub-
classes of models that seem interesting from either a mathematical or economic
point of view, or from both perspectives, should be singled out. A few sub-
classes of models, including that which we study in this paper, are introduced
in Section 2.3.

2.1 The setup

We consider a speculative market in which a market maker mediates the trans-
actions of speculators and adjusts prices with respect to the excess demand. The
market maker uses a (standard) log-linear price adjustment rule and quotes the
new log price P as

Pt+1 = Pt + a(D
C;1
t +DF;1

t +DC;2
t +DF;2

t ) (1)

Parameter a is a price adjustment parameter. Without loss of generality, we set
a = 1. The four terms in the bracket on the right-hand side of (1) capture the
transactions of type 1 chartists, type 1 fundamentalists, type 2 chartists and
type 2 fundamentalists, respectively. Obviously, excess buying drives the price
up and excess selling drives it down.
Chartists believe in the persistence of bull and bear markets. We thus for-

malize the orders placed by type 1 chartists as

DC;1
t =

�
c1;a + c1;b(Pt � F ) if Pt � F � 0
�c1;c + c1;d(Pt � F ) if Pt � F < 0

(2)

The reaction parameters c1;a, c1;b, c1;c and c1;d are non-negative. Given their
beliefs about future price movements, type 1 chartists optimistically buy (pes-
simistically sell) if prices are in the bull (bear) market, that is, if the log price P
is above (below) its log fundamental value F: As usual, the fundamental value
is constant and known to all market participants.. The reaction parameters c1;a

and c1;c capture some general kind of optimism and pessimism, respectively,
whereas the reaction parameters c1;b and c1;d indicate how aggressively type 1
chartists trade on their perceived price signals.
Fundamentalists expect prices to return towards their fundamental values.

We thus write the orders placed by type 1 fundamentalists as

DF;1
t =

�
�f1;a + f1;b(F � Pt) if Pt � F � 0
f1;c + f1;d(F � Pt) if Pt � F < 0

(3)

Again, the reaction parameters f1;a, f1;b, f1;c and f1;d are non-zero. Hence type
1 fundamentalists always trade in the opposite direction as type 1 chartists. In
an overvalued market they sell and in an undervalued market they buy. Similar
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to type 1 chartists, the trading intensity of type 1 fundamentalists may depend
on market circumstances: a certain mispricing in the bull market may trigger a
higher or lower transaction than the same mispricing in the bear market.
Type 2 chartists are only active if prices are at least a certain distance away

from their fundamental value. Let Z > 0 denote this distance. We can then
express the orders placed by type 2 chartists as

DC;2
t =

8<: c2;a + c2;b(Pt � F ) if Pt � F � Z
0 if � Z < Pt � F < Z
-c2;c + c2;d(Pt � F ) if Pt � F � �Z

(4)

As usual, c2;b, c2;d > 0; i.e. the trading intensity of type 2 chartists increases
with the distance between prices and fundamentals. Moreover, c2;a � �c2;b(Z�
F ) and c2;c � �c2;d(Z + F ), i.e. the transactions of type 2 chartists are non-
negative in the bull market and non-positive in the bear market.
For simplicity, type 2 chartists and type 2 fundamentalists share the same

market entry level. We thus model the orders placed by type 2 fundamentalists
as

DF;2
t =

8<: -f2;a + f2;b(F � Pt) if Pt � F � Z
0 if � Z < Pt � F < Z
f2;c + f2;d(F � Pt) if Pt � F � �Z

(5)

where the conditions f2;b, f2;d � 0, f2;a � f2;b(F � Z) and f2;c � f2;d(F + Z)
hold. Again, fundamentalists buy if the market is undervalued and sell if it is
overvalued.
As we will see in the sequel, assuming common market entry levels for all

type 2 agents along with otherwise linear trading rules results in a simple one-
dimensional map with two discontinuity points and three linear branches. Our
setup allows us to perform a detailed analytical treatment of our �nancial market
model. Given the �nancial market turmoil we currently face in Europe, we
believe that it is important to improve our understanding of �nancial markets
and hope that our paper helps in this respect. Note also that Tramontana and
Westerho¤ (2012) demonstrate that a stochastic version of our model does quite
well in replicating the main stylized facts of �nancial markets, which may be
regarded as empirical support for our approach.

2.2 The model�s law of motion

In total, trading rules (2) to (5) contain 16 reaction parameters. To simplify
the notation, we introduce the following eight aggregate parameters8>><>>:

m1 = c1;a � f1;a; s1 = c1;b � f1;b;
m2 = f1;c � c1;c; s2 = c1;d � f1;d;
m3 = c2;a � f2;a; s3 = c2;b � f2;b;
m4 = f2;c � c2;c; s4 = c2;d � f2;d:

(6)

Given the assumptions about the individual reaction parameters, it is clear that
each of the eight aggregate parameters can take any value. Furthermore, it is
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convenient to express the model in terms of deviations from the fundamental
value. De�ning ePt = Pt � F and combining (1) to (5), we obtain

ePt+1 =
8>>><>>>:
m1 +m3 + (1 + s1 + s3) ePt if ePt � Z
m1 + (1 + s1) ePt if 0 � ePt < Z
m2 + (1 + s2) ePt if �Z < ePt < 0
m2 +m4 + (1 + s2 + s4) ePt if ePt � �Z

; (7)

which is a one-dimensional discontinuous piecewise-linear map. Since there are
no restrictions on the eight aggregate parameters, each of the four branches of
(7) can be positioned anywhere in the ( ePt+1; ePt) space. To develop an under-
standing of the model, it is therefore necessary to study sub-classes of (7).

2.3 Sub-classes of our model

Let us point out a few sub-classes of our model. First, assume that m1 = m2 =
m3 = m4 = 0, s1 = s2 and s3 = s4. The assumptions concerning the intercept
parameters imply the absence of any general kind of optimism or pessimism.
The assumptions about the slope parameters imply that the trading intensity
of the speculators does not depend on whether the market is in a bull or a bear
state. We then have the map

ePt+1 =
8><>:
(1 + s1 + s3) ePt if ePt � Z
(1 + s1) ePt if �Z < ePt < Z
(1 + s1 + s3) ePt if ePt � �Z (8)

This map has been studied in detail in Tramontana et al. (2011). While this
model cannot produce chaotic dynamics, we found, for instance, that it can
produce high-periodicity cycles and quasi-periodic dynamics which have the
appearence of being chaotic.
Second, assume again that the speculators react symmetrically to bull and

bear market price signals (s1 = s2 and s3 = s4). However, the intercept para-
meters may be nonzero. In the current paper, we consider the case m1 = m2

and m1 = �m3 = �m4. Note that this implies that the general kind of op-
timism/pessimism of type 1 speculators (exactly) o¤sets the general kind of
optimism/pessimism of type 2 speculators. As a result, we obtain the map

ePt+1 =
8><>:
(1 + s1 + s3) ePt if ePt � Z
m1 + (1 + s1) ePt if �Z < ePt < Z
(1 + s1 + s3) ePt if ePt � �Z (9)

Clearly, the di¤erence between map (8) and map (9) is that the inner branch
of map (9) has a nonzero intercept. However, this very simple mathematical
di¤erence implies a completely di¤erent dynamic behavior. The intrinsic stabil-
ity with structural instability of the dynamics of map (8) can no longer occur
in map (9) with m1 6= 0: the dense periodic or quasiperiodic trajectories are
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completely destroyed and substituted by more interesting/realistic dynamic be-
haviors. Indeed, as we show in Sections 4 and 5, this new scenario can generate
quite interesting dynamic phenomena.
Third, assume that m1 = m2 = 0, m3 = �m4, s1 = s2 and s3 = s4. We

then obtain the map

ePt+1 =
8><>:
m3 + (1 + s1 + s3) ePt if ePt � Z
(1 + s1) ePt if �Z < ePt < Z
�m3 + (1 + s1 + s3) ePt if ePt � �Z (10)

This map has been studied in Tramontana et al. (2012b). Interestingly, this
map embeds the famous model of Huang and Day (1993) as a special case. This
is seen when the outer two branches are shifted, via parameter m3, such that
they connect with the inner branch.
Finally, assume that m1 = m2 and s1 = s2. The map then turns into

ePt+1 =
8><>:
m1 +m3 + (1 + s1 + s3) ePt if ePt � Z
m1 + (1 + s1) ePt if �Z < ePt < Z
m1 +m4 + (1 + s1 + s4) ePt if ePt � �Z (11)

In Tramontana and Westerho¤ (2012), we studied a stochastic version of this
model and found that it can match the stylized facts of �nancial markets quite
well. To be precise, stochastic variations of the model parameters introduce
random switches between stability and instability, which can make the dynamics
quite unpredictable. This also shows the importance of establishing analytical
results about the deterministic skeleton of such maps � they are the key to
understanding the dynamics of their stochastic counterparts.

3 Some properties of our model

Let us start our analysis by pointing out some important properties of our
model. For ease of exposition, let us now express (9) as

F : X 0 =

�
(1 + S1)X +m1 if jXj < Z
(1 + S1 + S2)X if jXj > Z (12)

where S1 = s1 and S2 = s3. Recall again that parameters S1; S2 and m1 can
take positive or negative values, while Z > 0.
A �rst property is that parameter z is a scale variable. In fact, by using the

change of variable x = X=Z and de�ning the aggregate parameter M1 = m1=Z;
our model in (12) becomes

F : x0 =

�
f(x) = (1 + S1)x+M1 if jxj < 1
g(x) = (1 + S1 + S2)x if jxj > 1 : (13)

to which we shall refer henceforth. Parameter M1 can be positive, negative or
zero. The case M1 = 0 leads to a non-chaotic map with peculiar properties,
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which has been completely investigated in the paper cited above. The two cases
with a positive and negative sign of M1 are topologically conjugated to each
other, as it can easily be seen using the change of variable y = �x. So we can
state the following:

Property A. Map F in (13) with M1 < 0 is topologically conjugated with
the same map with M1 > 0.

Thus in the following we shall consider only the positive sign, M1 > 0. So
the model of interest, which we rewrite as follows:

F : x0 =

8<: g(x) = (1 + S1 + S2)x if x < �1
f(x) = (1 + S1)x+M1 if � 1 < x < 1
g(x) = (1 + S1 + S2)x if x > 1

(14)

is represented by a one-dimensional piecewise linear discontinuous map, with
two discontinuity points. The study of the dynamics of piecewise linear discon-
tinuous maps with two discontinuity points is a new �eld of research that is
not yet completely understood. An immediate property for our class of maps,
associated with the piecewise linear structure, is that the appearance of cycles
cannot occur via fold (or tangent) bifurcation, as is usually the case in smooth
maps. Instead, here a cycle can only appear/disappear via a border collision
bifurcation. This term was used for the �rst time in the papers by Nusse and
Yorke (1992, 1995), and is now extensively used in the literature of piecewise
smooth systems. A cycle undergoes a border collision bifurcation when one of
its periodic points merges with a discontinuity point.
Even if, as we shall see, we can have cycles with periodic points in two

or three partitions of the map, only two functions are involved, so that the
eigenvalue of a cycle depends only on the number of periodic points in which
the functions f(x) and g(x) are applied. Moreover, the �ip bifurcations are
not the usual ones (we recall that for smooth maps they are associated with
the appearance of a stable cycle of double period). In piecewise linear maps
only degenerate �ip bifurcations can occur, so that at the bifurcation value
there exists a whole segment of cycles of double period that are stable but
not asymptotically stable. The dynamic e¤ects after the bifurcation are not
uniquely de�ned, and it is possible to have several kinds of dynamics. However,
this bifurcation often leads to chaotic sets, i.e. to chaotic intervals (see Sushko
and Gardini, 2010). Thus, the following property holds (whose proof, as already
remarked, is an immediate consequence of the piecewise linear nature of the
map):

Property B. A cycle of map F in (13) can appear/disappear only via a
degenerate �ip bifurcations or a border collision bifurcation. The eigenvalue of
a cycle having p periodic points in the middle region ( jxj < 1) and q outside
( jxj > 1) is given by � = (1 + S1)p(1 + S1 + S2)q.
Moreover, another property is also immediate, and excludes cases which

are unfeasible in the applied context, since they lead to divergent trajectories.
From Property B we have that when both slopes of the functions f(x) and

8



g(x) are in modulus higher than 1, then all the possible cycles are unstable, as
j�j > 1: In these cases, a piecewise-linear map can only have chaotic dynamics
(when bounded trajectories exist) or divergent trajectories. However, due to
the particular structure of our map, we have the following property (stating
that when all the slopes are in modulus higher than one, then only divergent
trajectories can exist):
Property C. Let map F be with j1 + S1j > 1 and j1 + S1 + S2j > 1; then

any initial condition di¤erent from the unstable �xed point (if existent) has a
divergent trajectory.
Depending on the values of the parameters as, for example, positive or nega-

tive slopes of functions f and g, we can have di¤erent dynamic properties. Thus
it turns out to be suitable to distinguish three cases, depending on the slope of f;
as follows: H1 : (1+S1) > 1; H2 : (1+S1) < �1; and H3 : �1 < (1+S1) < 1:
In this work we shall consider the dynamics of the �rst case, leaving the inves-
tigation of the dynamic behaviors in the other cases for further studies. So, let
us �x

H1 : (1 + S
1) > 1 (15)

and the map as in (14). From Property C we are led to bounded dynamics for
j1+S1+S2j < 1 and can further distinguish between two qualitatively di¤erent
situations, namely

(i) : (1 + S1) > 1; 0 < (1 + S1 + S2) < 1 (16)

(ii) : (1 + S1) > 1; �1 < (1 + S1 + S2) < 0 (17)

in which the function g(x) de�ned in the outer branches either increases or
decreases.
Before we continue, let us brie�y discuss what cases (i) and (ii) imply eco-

nomically. What both cases have in common is that type 1 chartists trade more
aggressively on a given price signal than type 1 fundamentalists (and therefore
s1 > 0). Another aspect both cases have in common is that type 1 fundamen-
talists and type 2 fundamentalists jointly dominate type 1 chartists and type
2 chartists, again with respect to their price-dependent trading intensity. The
di¤erence between the two cases is that this dominance is �weak�in case (i) and
�strong� in case (ii). Finally, M1 > 0 implies that there is some extra price-
independent buying pressure in the inner regime (resulting from fundamentalists
in the bear market and chartists in the bull market).

4 Case M 1 > 0 and (i)

In this section we consider assumption (i) on the parameters: (1+S1) > 1; 0 <
(1 + S1 + S2) < 1. As already remarked, we can also �x the sign of parameter
M1; assuming M1 > 0: So the function de�ned in the middle branch increases
with a positive value in x = 0, and an unstable �xed point P �; if existent,
belongs to the negative side (as shown in Fig. 1), given by

P � = �M1=S1 < 0: (18)
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Clearly it exists as long as M1 < S1; as it merges with the discontinuity in
x = �1 for

M1 = S1; (19)

which thus represents the border collision bifurcation of the �xed point P �:
In case (i) investigated here, the two discontinuity points of the map may

lead to two disjoint absorbing intervals, bounded by the o¤sets of the functions
at the two discontinuity points, inside which the dynamics are di¤erent, as
shown in Fig. 1.
It is clear (due to (1 + S1) > 1) that the dynamics of the points in the

middle branch take only a few iterations to go outside the interval �1 < x < 1
where the function g(x) applies, which is contractive by assumption (as 0 <
(1 + S1 + S2) < 1). Thus the orbits are pushed back in the same absorbing
interval, and cannot diverge. Let us de�ne

IR = [g(1); f(1)] = [(1 + S1 + S2); (1 + S1) +M1]; (20)

the absorbing interval on the right-hand side of the origin (which always exists,
for M1 > 0), and

IL = [f(�1); g(�1)] = [�(1 + S1) +M1;�(1 + S1 + S2)]; (21)

which may be the absorbing interval on the left-hand side of the origin. In
fact, this is an absorbing interval as long as P � > g(�1); i.e. as long as M1 <
S1(1 + S1 + S2): It follows that for

0 < M1 < S1(1 + S1 + S2) (22)

Fig. 1 Shape of the map for P � > g(�1) at M1 = 0:2; S1 = 0:75 and S2 = �1:1:

we have two coexisting attracting sets in the two disjoint absorbing intervals.
Moreover, noticing that the �xed point P � must exist, asM1 < S1(1+S1+S2) <
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S1, we have that the basins of attraction are given by B(IR) =]P �;+1[ (any
initial condition in B(IR) is mapped in IR in a �nite number of steps, and
the trajectory cannot escape from IR), and by B(IL) =] �1; P �[ (any initial
condition in B(IL) is mapped in IL in a �nite number of steps, and the trajectory
cannot escape from IL). Inside the two absorbing intervals we have di¤erent
dynamic behaviors, as shown, for example, in Fig. 1: the attracting set is a
cycle of period 13 in IR while the trajectories are chaotic in the whole interval
in IL:
The restriction of map F to the absorbing IR is given by

FR : x0 =

�
f(x) = (1 + S1)x+M1 if x < 1
g(x) = (1 + S1 + S2)x if x > 1

; (23)

while the restriction of F to the absorbing IL is given by

FL : x0 =

�
g(x) = (1 + S1 + S2)x if x < �1
f(x) = (1 + S1)x+M1 if x > �1 : (24)

Fig. 2 In (a) shape of the map for �1 < P � < g(�1) at M1 = 0:5; S1 = 0:75 and
S2 = �1:6: In (b) shape of the map when P � does not exist at M1 = 0:9;

S1 = 0:75 and S2 = �1:6:

It is clear that a contact bifurcation occurs at M1 = S1(1+S1+S2), leading to
the disappearance of the absorbing interval IL: That is, forM1 = S1(1+S1+S2)
any initial condition in x < 0, except the �xed point (if existent), is mapped
in a �nite number of iterations inside the absorbing interval IR (from which it
cannot escape).
Now let us investigate in more detail which kind of dynamics exist inside the

absorbing intervals. As immediately veri�able for M1 > 0 we have g � f(1) <
f � g(1), which implies that the map is uniquely invertible in the absorbing
interval IR. In fact, from g �f(1) = (1+S1+S2)[(1+S1)+M1] and f �g(1) =
(1+S1)(1+S1+S2)+M1 we have that the inequality g �f(1) < f �g(1) holds.
Thus no periodic point can belong to the interval J = (g � f(1); f � g(1)) � IR
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(see Fig. 2a,b), as the points belonging to that interval have preimages only
external to IR.
The situation is di¤erent in the absorbing interval IL, where map FL has the

functions f(x) and g(x) with exchanged roles. We have g � f(�1) = (1 + S1 +
S2)[�(1 + S1) +M1] and f � g(�1) = �(1 + S1)(1 + S1 + S2) +M1, leading to
g �f(�1) < f �g(�1), which implies here that the map is not uniquely invertible
in the absorbing interval IL as, in fact, all the points belonging to the interval
(g � f(�1); f � g(�1)) � IL have two distinct rank-one preimages in IL: one on
the right and one on the left of the discontinuity point x = �1 (see Fig. 1).
Summarizing, we have proved that the restrictions of map F to the absorbing

intervals is a one-dimensional piecewise-linear map with only one discontinuity
point and two increasing branches, which is the kind of map already studied in
several papers, such as Keener 1980 and Gardini et al. 2010, where it was proved
that, as long as the map is uniquely invertible (resp. non-uniquely invertible)
in the absorbing interval, then only regular dynamics (resp. chaotic dynamics)
can exist. That is, regular dynamics in the absorbing interval IR means that
either an attracting cycle (of any period) exists, which is structurally stable
(i.e. the attracting cycles exists for parameter values varying in an interval)
or attracting sets with a Cantor structure exist in the interval (but these are
not structurally stable situations: a small variation of any parameter leads to
qualitatively di¤erent dynamics, generally a stable cycle). Moreover, bistability
cannot occur inside IR: at each set of values of the parameters only a unique
stable cycle can exist, globally attracting in IR: Below we shall demonstrate
under which conditions suitable cycles exist, showing that all periods can occur,
determining a few related periodicity regions.
The occurrence is di¤erent in the absorbing interval IL (as long as this

absorbing interval exists) where the map is noninvertible, and the dynamics
in IL can only be chaotic, in a �nite number of intervals, with robust chaos
(following Banerjee et al. 1998) as persistent under parameter variation (see
Keener 1980 and Gardini et al. 2010), an example is shown in Fig. 1. Thus, we
have proved the following

Theorem 1. Let map F be as in case H1(i) with M1 > 0: Then
(t1) IR = [(1 + S1 + S2); (1 + S1) +M1] is an invariant absorbing interval,

inside which a unique stable cycle exists, globally attracting in IR and struc-
turally stable, or an attractor with Cantor structure exists and is structurally
unstable;
(t2) for 0 < M1 < S1(1 + S1 + S2) the invariant absorbing interval IR

coexists with an invariant absorbing interval IL = [�(1+S1)+M1;�(1+S1+
S2)]; and a robust chaotic attractor exists in IL, globally attracting in IL, made
up of k�chaotic intervals, k � 1.
We notice that when the value ofM1 is so high that the unstable �xed point

disappears (i.e. M1 > S1), then only the absorbing interval IR exists (i.e. part
(t1) of theorem 1). An example is shown in Fig. 2b, where the attracting set is
a stable 2-cycle, globally attracting.
The properties described in the theorem given above are illustrated via the
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two-dimensional bifurcation diagrams in Figs. 3 and 4. In these �gures we have
also evidenced the strips in which the di¤erent cases occur, i.e. regions (i) and
(ii) are bounded by straight lines.
The lines of equations (1 + S1 + S2) = 1 and (1 + S1 + S2) = 0; that is

S2 = �S1 and S2 = �1 � S1; bound the region in which case (i) occurs. On
the other hand, (1 + S1 + S2) = 0 and (1 + S1 + S2) = �1; that is S2 =
�1 � S1 and S2 = �2 � S1; bound the region in which case (ii) occurs. This
yields the regions:

(i) : S1 > 0; �1� S1 < S2 < �S1 (25)

(ii) : S1 > 0; �2� S1 < S2 < �1� S1:

Fig. 3 In (a) the two-dimensional bifurcation diagram illustrates the asymptotic
dynamics of an initial condition close to x = 1. In strip (i) it shows the periodicity
regions of attracting cycles belonging to the interval IR: Di¤erent colors correspond
to di¤erent periods of the cycles. In (b) the one-dimensional bifurcation diagram
shows the state variable x as a function of S2 with S1�xed at 0.75 (along the

vertical path shown in (a)), and with initial condition close to x = 1.
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Fig. 4 In (a) the two-dimensional bifurcation diagram illustrates the asymptotic
dynamics of an initial condition close to x = �1. In strip (i) the curve separating

the chaotic regime in IL from the periodic regime in IR has equation
M1 = S1(1 + S1 + S2): In (b) the one-dimensional bifurcation diagram shows the
state variable x as a function of S2 with S1�xed at 0.75 (along the vertical path

shown in (a)), and with initial condition close to x = �1.

Now let us complete the analysis of the attracting periodic orbits that can exist
in case (i) inside the absorbing interval IR. As already remarked, the map is
topologically conjugated with the piecewise linear map considered in Gardini
et al. 2010, so that all the periodicity regions described there associated with
the so-called period adding structure can exist. In our case, the discontinuity
point is not in the origin, so that either we perform a change of variable or we
determine the conditions using our discontinuity point x = 1, enabling us to
keep the map as given in (23).
We recall that the periodic points may be on the right or left side of x =

1, which we denote as the R or L side (where the function f(x) or g(x) is
applied, respectively). The cycles are uniquely characterized by a symbolic
sequence (cyclically invariant) denoting the sequence of letters of the periodic
points of the orbit (and denoting the side to which they belong). To obtain the
periodicity regions for the so-called maximal cycles, with the symbolic sequence
LRn (having one periodic point on the L side and all the others on the R side),
we consider the equation gn � f(x�) = x� which gives the periodic point (x�) of
the cycle on the L side. The related cycle exists as long as g(1) � x� � 1: The
equations x� = 1 and g(1) = x� give the border collision bifurcation curves,
leading to the appearance/disappearance of the cycle. We also remark that
from the symbolic sequence of the periodic points of a cycle colliding with the
discontinuity point x = 1 we always immediately have the implicit equation of
the border collision bifurcation curves (see Tramontana et al. 2012a). For the
cycles with symbolic sequence LRn we have gn � f(1) = 1, as already remarked
(corresponding to the merging x� = 1), and gn�1 � f � g(1) = 1 (corresponding
to the merging with x = 1 of the periodic point close to it from the right).
So, considering that gn(x) = (1+S1+S2)nx; the border collision bifurcation

curves giving the boundaries of the periodicity regions for cycles with symbolic
sequence LRn of the map F; whose implicit equation is gn � f(1) = 1 and
gn�1 � f � g(1) = 1; are given, respectively, as follows:

(1 + S1 + S2)n(1 + S1 +M1) = 1 (26)

(1 + S1 + S2)n�1[(1 + S1)(1 + S1 + S2) +M1] = 1: (27)

Similarly, to obtain the periodicity regions for the maximal cycles, having the
symbolic sequence RLn, we consider the equation fn � g(x�) = x�, which gives
the periodic point on the R side of the cycle. The cycle exists as long as
1 � x� � f(1): The equations x� = 1 and f(1) = x� are the border collision
bifurcation curves leading to the appearance/disappearance of the cycle. In this
case, the collisions of the periodic points of the cycle with the discontinuity
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x = 1 are given by fn � g(1) = 1 and fn�1 � g � f(1) = 1: Considering that

fn(x) = (1 + S1)nx+
(1 + S1)n � 1

S1
M1; (28)

we have that the equations of the border collision bifurcation curves giving the
boundaries of the periodicity regions for cycles with symbolic sequence RLn of
map F; whose implicit equation is fn � g(1) = 1 and fn�1 � g � f(1) = 1; are
given, respectively, by:

(1 + S1)n(1 + S1 + S2) +
(1 + S1)n � 1

S1
M1 = 1 (29)

(1 + S1)n�1(1 + S1 + S2)(1 + S1 +M1) +
(1 + S1)n�1 � 1

S1
M1 = 1:(30)

Fig. 5 In (b) we see BCB curves for n = 1; :::; 10 whose equations are given in (26)
and (29), in the parameter plane (S1; S2) at a �xed value M1 = 0:2. In (a) the

curves are drawn above the periodicty regions �lled with di¤erent colors, identifying
stable cycles.

In Fig. 5 we have drawn for n = 1; :::; 10 the border collision bifurcation
curves whose equations are given in (26)-(27), bounding the family LRn; and
(29)-(30), bounding the family RLn; in the two-dimensional parameter plane
(S1; S2) at a �xed value of M1 (M1 = 0:2). The four di¤erent families of
curves are shown in color in Fig. 5b and in black in Fig. 5a above the colors
identifying regions of stable cycles (the region (ii) will be commented on in the
next section). We have also plotted the same curves of families LRn and RLn in
the parameter plane (S2;M1) at a �xed value of S1 (S1 = 0:75), for n = 1; :::; 7;
as shown in Figs. 6 and 7.
Comparing Fig. 6a and Fig. 7a numerically obtained with two di¤erent

initial conditions, one close to x = 1 and the other close to x = �1, we can see
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the regions of two coexisting di¤erent attracting sets (due to the overlapping
of the periodicity regions). In Figs. 6b and 7b we only show the two families
of curves of the �rst level of complexity (as Leonov 1960a,b called it, see also
in Gardini et al. 2010), whose analytical equations have been given above.
However, with the adding scheme, in�nitely many other periodicity regions can
be detected, with the rule that between any two consecutive periodicity regions
there are other in�nitely many regions associated with cycles of di¤erent periods
(following the adding mechanism, and whose rotation numbers follows the Farey
summation rule).

Fig. 6 Parameter plane (S2;M1) at S1 = 0:75: In (a) we have periodicity regions
with initial condition close to x = 1. In (b), part (i) shows the border collision

bifurcation curves of the families LRn and RLn for n = 1; :::; 7; in part (ii) we see
the border collision bifurcation curves given in (36) and (37) for k = 1; 2; 3:
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Fig. 7 Parameter plane (S2;M1) at S1 = 0:75: In (a) we have periodicity regions
with initial condition close to x = �1, evidencing the coexistence of di¤erent

attractors. (b) re�ects the same as in Fig.6b.

We can also analytically obtain the families of border collision bifurcation curves
of levels higher than 1, in a method similar to that used for the �rst level of
complexity (the details can be found in Gardini et al. 2010).
Before analysing of the second case (ii) in the next section, let us close the

present one by describing what occurs at the exact bifurcation value between
cases (i) and (ii), for (1+S1+S2) = 0, when the external branches are horizontal
on the axis. Due to the fact that any trajectory has an iterated point external
to the interval (�1; 1) and that outside of this interval the map is set to the
value x = 0, we have that all the points have the same asymptotic behavior,
which is convergence to a superstable cycle with a periodic point in x = 0. The
period of the superstable cycle (unique and globally attracting) depends on the
parameters�values, and can be any integer n � 1. In Figs. 3, 4 and 5 we can
see that the line (1+S1+S2) = 0 crosses several periodicity regions; indeed all
the periods are crossed, as can be seen better in Figs. 6 and 7 (see the vertical
line S2 = �1:75), where all the periodicity regions of the family RLn for n � 1
(given in (29)) are shown and crossed.

5 Case M 1 > 0 and (ii)

Let us now turn to case (ii) for which �1 < (1 + S1 + S2) < 0: If g(x) has a
negative slope, the external branches of our map F are now decreasing, as shown
in Fig. 8. Thus an invariant absorbing interval in the region x < 0 cannot exist,
as any point x < �1 is mapped in the positive side. It follows that in case (ii)
there exists a unique invariant absorbing interval I, bounded by the images of
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the o¤sets in the discontinuity points, which attracts all the trajectories except,
at most, the �xed point.

Fig. 8 (a) Attracting 4-cycle at M1 = 0:5; S1 = 0:75 and S2 = �1:936: (b) for
S2 = �1:937, soon after the degenerate �ip bifurcation, the attracting set is made

up of chaotic intervals.

Consider g�f(1) = (1+S1+S2)[(1+S1)+M1] (which is negative by assumption).
Then we can distinguish the following di¤erent ranges for the dynamics:

� (a) for �1 < P � < g � f(1), that is:

j1 + S1 + S2j(1 + S1 +M1) <
M1

S1
< 1; (31)

the invariant absorbing interval is given by I = [g � f(1); f(1)] = [(1 +
S1+S2)((1+S1)+M1); (1+S1)+M1] and the asymptotic dynamics are
given by the map FR : I ! I, as de�ned in (23);

� (b) for �1 < g � f(1) < P �, that is:

M1

S1
< j1 + S1 + S2j(1 + S1 +M1) < 1; (32)

the invariant absorbing interval is given by I = [f(�1); f(1)] = [�(1 +
S1) +M1; (1 + S1) +M1] and the asymptotic dynamics are given by the
map de�ned by three branches, F : I ! I; where F is de�ned in (14);

� (c) for g � f(1) < �1, that is:

1 < j1 + S1 + S2j(1 + S1 +M1); (33)

the invariant absorbing interval is given by I = [g � f(1); f(1)], as in case
(a) above, but map F is de�ned by three branches (as given in (14)), as
in case (b) above.
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When the parameters satisfy condition (a), then the asymptotic dynamics
reduce to that of a discontinuous piecewise-linear map with a unique discon-
tinuity point, and branches with slopes of the opposite sign, whose dynamics
has been investigated throughly in several papers (Avrutin and Schanz 2006,
Avrutin et al. 2006, Gardini and Tramontana 2010). Thus we know that the
dynamics associated with this kind of map either involves stable cycles or chaos.
The stable cycles have periodicity regions following the increment structure with
overlapping, leading to regions of bistability and regions with a unique stable
cycle. The chaotic regime occurs with chaos in a unique interval or in k�chaotic
intervals bounded by the images of the o¤sets in the discontinuity point.
In our map we can argue that, close to the bifurcation value (1+S1+S2) =

0, we have the existence of stable cycles. In fact, we can see from Figs.5, 6
and 7 that one family of periodicity regions exists. These regions are pairwise
overlapping. These cycles have the symbolic sequence RLn for n � 1; and the
boundaries of the related periodicity regions are the border collision bifurcation
curves given in (29). The portion of overlapping regions (clearly visible in the
�gures) corresponds to regions of bistability of the pair of cycles with symbolic
sequence RLn and RLn+1: Inside the existence region of each cycle (bounded by
the bifurcation curves given in (29)) the cycle is stable as long as it is on one side
of its �ip bifurcation curve; on the other side the cycle exists but is unstable.
In fact, as described in Avrutin et al. 2006, Gardini and Tramontana 2010, the
stable cycles in this kind of map undergo a �ip bifurcation which is, as recalled
in section 2, degenerate (see also Sushko and Gardini 2010), and is followed by
chaotic dynamics (in chaotic intervals). An example is shown in Fig. 8. Fig.
8a shows a unique attracting cycle of period 4, close to its �ip bifurcation (the
eigenvalue of the cycle in Fig. 8a is given by (1+S1)3(1+S1+S2) = �0:9968):
In Fig.8b we show the chaotic attractor (in chaotic intervals) soon after the
degenerate �ip-bifurcation (occurring when (1 + S1)3(1 + S1 + S2) = �1, i.e.
for S1 = 0:75 at S2 = �(1 + S1)� 1=(1 + S1)3 = 1:9365889):
Property B yields that the �ip bifurcation of the cycle with symbolic sequence

RLn occurs for
(1 + S1)n(1 + S1 + S2) = �1 (34)

while that of the cycles with symbolic sequence LRn occurs for

(1 + S1 + S2)n(1 + S1) = �1: (35)
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Fig. 9 (a) chaotic attractor at M1 = 0:2; S1 = 0:75 and S2 = �1:95: (b) attracting
3-cycle for M1 = 0:5; S1 = 0:75 and S2 = �2:4:

If the parameters satisfy condition (b), we have determined a chaotic regime
(an example is shown in Fig. 9a). At the bifurcation value, when g �f(1) = P �;
the asymptotic dynamics is chaotic in the whole invariant interval I, which is
no longer absorbing, having the repelling �xed point on the boundary. The
chaotic regime persists, even if we are unable to prove rigorously that stable
cycles cannot exist in this regime. Here the map changes its de�nition, and now
three branches are always touched by any trajectory, and the added branch has
a slope with a stabilizing e¤ect which, in fact, plays an important role in the
other regime (c).
When the parameters satisfy condition (c), although the dominant dynamics

are chaotic intervals (always bounded by the images of the endpoints of the ab-
sorbing interval I), we can also �nd regions associated with stable cycles, whose
periodic points belong to all three branches of map F . An example is shown
in Fig. 9b, where a stable cycle of period 3 (the least period which an orbit in
this regime (c) can have) is shown, which is globally attracting. The symbolic
sequence of this cycle, in terms of the functions whose composition gives the
cycle, is gfg; the region associated with this cycle in the parameter plane cor-
responding to case (ii) is clearly visible in Figs. 6 and 7. The existence of this
kind of cycles is a new phenomenon, associated with the existence of two discon-
tinuity points. In fact, the bifurcations are di¤erent to all other border collision
bifurcations we have seen so far, in which a cycle appears/disappears due to
the collision with a same discontinuity point of two di¤erent periodic points of
the cycle (which are the two periodic points closest to discontinuity on opposite
sides). Instead, we now have a cycle with periodic points in three di¤erent par-
titions and two discontinuity points, and the appearance/disappearance of the
cycle occurs via collision of the periodic points with two di¤erent discontinuities.
In fact, this 3-cycle undergoes its border collision bifurcation when the smallest
periodic point merges with x = �1 and when the periodic point in the middle
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region closest to x = 1 merges with x = 1. The two border collision bifurcation
curves associated with its existence are thus given by the implicit equations

g � f � g(�1) = �1 and g2 � f(1) = 1:

Moreover, this is not the only cycle of this kind which can exist and be stable.
In fact, other cycles of period (2k+1) with the symbolic sequence g(2k�1)fg for
any k � 1 can also be stable. In order to detect the border collision bifurcation
curves associated with these cycles, we look for the implicit equations

g2k�1 � f � g(�1) = �1 and g2k � f(1) = 1:

The �rst equation leads to the border collision bifurcation curves in an explicit
form:

g2k�1�f�g(�1) = �1 : M1 = � 1

(1 + S1 + S2)2k�1
+(1+S1)(1+S1+S2) (36)

The second equation (which also corresponds with that already computed
above in (26) using 2k in place of n) gives:

g2k � f(1) = 1 : M1 =
1

(1 + S1 + S2)2k
� (1 + S1): (37)

The bifurcation curves given in (36) and (37) are plotted in the portion (ii) of
the parameter plane, for k = 1; 2; 3 in Figs. 6 and 7.
Another peculiarity of this new kind of cycle is that they cannot undergo a

degenerate �ip bifurcation. In fact, by using Property B we have that their
eigenvalue is given by � = (1 + S1)(1 + S1 + S2)2k, which is always positive
(as (1 + S1 + S2)2 > 0), thus a �ip bifurcation cannot occur. They can only
appear/disappear via border collision bifurcations. If they exist, they are either
stable or unstable, depending on the inequality 0 < � < 1 or � > 1; where

� < 1 occurs for (1 + S1)(1 + S1 + S2)2k < 1:

Fig. 10 (a) chaotic attractor at M1 = 0:8; S1 = 0:75 and S2 = �2:4: (b) attracting
12-cycle for M1 = 0:9; S1 = 0:75 and S2 = �2:4:
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Fig. 10a shows the chaotic attractor that exists when the boundary of the
border collision bifurcation curve of the stable 3�cycle in region (ii) is crossed
(increasing M1) . Moreover, we remark that the attracting set here is unique,
as two coexisting disjoint attracting sets can occur only in regime (a) described
above.
Clearly, the dynamics in this regime (c) are very complicated, and we are

far from a complete description of the stable cycles which can exist (due to the
interplay of two discontinuity points and thus three branches in the iterated
map F ). For example, we illustrate in Fig. 10b a stable cycle of period 12, with
many periodic points in all three branches, which is not a cycle belonging to the
family g(2k�1)fg considered above. And it is possible that several other regions
may exist in the parameter space.

Finally, let us explore a few chaotic trajectories belonging to case (ii). Of
course, the dynamics depicted in Figs. 11 and 12 are only examples. From
an economic point of view, however, they are highly interesting. Let us start
with the right-hand panel of Fig. 12, where we can see typical bubble-and-crash
dynamics. At the beginning, the bubbles slowly build up. Then the bubble
paths accelerate unitl the movements abruptly crash. Note also that in this
panel there are only positive bubbles, i.e. the temporary price explosion is
always upward. In the left-hand panel of Fig. 11 we see a similar picture, with
the only exception that now prices decline for longer after a crash. The two
other panels (i.e. the right-hand panel of Fig. 11 and the left-hand panel of
Fig. 12) reveal that such a further price decline may occasionally even turn into
a negative bubble. It goes without saying that all these dynamics mark excess
volatility. The fundamental value is constant and - in an ideal world - prices
should thus also be constant and equal to the fundamental value.

Fig. 11 Versus time trajectory of 100 iterations. (a) at M1 = 0:2; S1 = 0:5 and
S2 = �1:9: (b) at M1 = 0:2; S1 = 0:75 and S2 = �1:9:
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Fig. 12 Versus time trajectory of 100 iterations. (a) at M1 = 0:4; S1 = 0:5 and
S2 = �2: (b) at M1 = 0:4; S1 = 0:75 and S2 = �2:

In a nutshell, the reasons for the depicted price dynamics are as follows. Since
type 1 chartists dominate type 1 fundamentalists, the price dynamics within
the inner regime is always unstable. Since there is some additional non-price-
dependent buying pressure, prices tend to move upwards and a bubble process
is initiated. Once prices enter the region where type 1 chartists and type 2
fundamentalists are active, we have a stronger price correction, i.e. a crash.
This pattern repeats itself in a complex manner.
Only now and then do we observe a negative bubble. This may happen when

the price-independent buying pressure is overcompensated by the selling orders
placed by bearish chartists. Since type 1 chartists become increasingly bearish
the lower the price falls, the speed of such a price drop increases. Eventually,
however, type 2 speculators become active and then the joint trading behavior
of type 1 and type 2 fundamentalists is stronger than the joint trading behavior
of type 1 and type 2 chartists. As a result, the negative bubble ends and prices
increase, typically quite dramatically, and a positive bubble may start.

6 Conclusions

Financial markets are highly volatile and regularly display signi�cant bubbles
and crashes. In this paper we develop a simple �nancial market model in the
tradition of Day and Huang (1990) and Huang and Day (1993) to improve our
understanding of such price movements. Within our model, we consider hetero-
geneous market participants: a market marker, chartists and fundamentalists.
The market maker mediates transactions out of equilibrium and adjusts prices
with respect to the excess demand. Chartist speculators buy assets if prices are
high and sell them if they are low �hoping that bull and bear markets persist
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for longer. Fundamentalist speculators do the opposite: they buy assets if prices
are low and sell them if they are high, thus betting on mean reversion. Since
some chartists and some fundamentalists only become active if prices are at least
a certain distance away from the fundamental value, our model is represented
by a discontinuous map.
To be precise, the trading strategies of the speculators imply that the dynam-

ics of the model is driven by a one-dimensional discontinuous piecewise-linear
map with three branches and two discontinuity points. The inner branch of
the map always has a slope higher than one and a positive intercept parameter.
The outer two branches have either a slope between zero and one or between
minus one and zero. The slopes of the outer two branches are the same, and
their intercept parameters are zero. The contribution of this paper is two-fold.
First, we o¤er an in-depth mathematical analysis of these kinds of map. Sec-
ond, we seek to draw lessons from this exercise which may help us improving
our understanding of how �nancial markets function. We �nd, amongst other
things, that the dynamics may involve only two branches of the map or all three
of them. In particular, if it involves all three branches we may see intricate bull
and bear market dynamics.
Since our �nancial market model is rather simple, we can indeed pin down

the causalities leading to such price phenomena. The emergence of endogenous
bubbles and crashes is obviously a consequence of the trading behavior of the
market participants who rely on linear and nonlinear trading strategies. In
certain market circumstances, destabilizing chartists dominate the market and
their orders tend to drive the price away from the fundamental value. In other
market circumstances, however, stabilizing fundamentalists rule the market and
prices are pushed towards the fundamental value. As it turns out, these two
regimes alternate for a broad range of parameter values in an intricate way, thus
generating boom-bust-cycles.
Our model has some straightforward policy implications. A central author-

ity is able change the shape of the map by applying simple linear feedback
strategies. For instance, by buying and selling assets proportional to the cur-
rent mispricing, the central authority renders the slope of the map. Moreover,
by buying or selling �xed amounts of assets, it can also alter the position of
the map. Therefore, a cleverly designed intervention strategy can guarantee,
at least in theory, that the price converges towards its fundamental value (or
to any other desired value). Such intervention rules are indeed used by central
banks in actual foreign exchange markets. For a �nancial market application
see Westerho¤ (2009).
There are several avenues in which our model may be extended. For instance,

type 2 chartists and type 2 fundamentalists so far share the same market entry
level. Relaxing this simplifying assumption leads to a discontinuous piecewise-
linear map with �ve branches, and possibly to even more complicated dynamics.
One may even consider the case where all agents rely on their own subjective
market entry levels. So far, we have only considered a one-dimensional map.
By assuming that chartists pay attention to the most recent observed price
trend, the model would turn into a two-dimensional map. Note that Sushko and
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Gardini (2006) present some tools and results for studying higher-dimensional
discontinuous maps. However, Tramontana et al. (2009a, 2009b) show that
certain bifurcation features observed within a 1D nonlinear (�nancial market)
model carry over to an extended 2D or 3D model version. Another possibility
to extend our model is by enriching it with dynamic noise. This could be done
by adding additive noise for instance by allowing for some additional random
orders placed by pure noise traders, or by including multiplicative noise, for
instance by randomizing the parameter values of the speculators trading rules.
It would also be interesting to calibrate or even estimate a stochastic version
of our model and to determine in how far it is able to mimic the behavior of
actual �nancial markets. Can it do better than existing models? However, we
leave these challenging tasks for the future.
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