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Abstract

The paper estimates an elementary agent-based financial market model recently put for-
ward by the same authors. Invoking the two trader types of fundamentalists and chartists,
it comprises four features: price determination by excess demand; a herding mechanism
that gives rise to a macroscopic adjustment equation for the population shares of the
two groups; a rush towards fundamentalism when the price misalignment becomes too
large; and, finally, differently strong noise components in the demand per chartist and
fundamentalist trader, which implies a structural stochastic volatility in the returns.
The estimation is performed using the method of simulated moments. Combining it with
bootstrap and Monte Carlo methods, it is found that the model cannot be rejected by
the empirical daily returns from a stock market index and a foreign exchange rate. Mea-
sures of the matching of the single moments are satisfactory, too, while the behavioural
parameters are well identified and are able to discriminate between the two markets.

JEL classification: D84; G12; G14; G15.

Keywords: Method of simulated moments; daily returns; autocorrelation patterns; fun-
damentalist and technical trading.

1. Introduction

Over the past ten or twenty years, a rich literature on agent-based asset pricing models
has developed as an alternative to the rational expectations framework. Even simple
heuristic strategies of two (or a few) groups of traders have proven to be quite successful
in generating dynamic phenomena that share central characteristics with the time series
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from real financial markets. Numerical investigations have recently tended to become
the rule, and an increasing number of these models are now not only simulated to illus-
trate their basic mechanisms, but they also attempt to match certain stylized facts in
quantitative ways. 1 Extending research in the latter direction appears to be particularly
important since it promises progress in coping with the problem of the arising anecdotal
wilderness within the bounded rationality paradigm.

In many cases, the models use a calibration methodology in the following (limited)
sense: the researcher selects a number of summary statistics for the prices or (mostly)
returns of a set of financial markets, presents numerical values for the model’s parameters,
shows a few sample runs, and finally points out that the model-generated statistics are
quantitatively of a similar order of magnitude to the empirical ones. In this way, a model
can be considered validated. More generally, the analysis enables bad models to be sorted
out from the good ones. 2 However, it may also be desirable to distinguish between good
and “very good” models, so that, for example, future research may prefer to concentrate
on refining or generalizing the better of these models. This higher ambition for judging
a model, then, leads us from the still more or less informal calibration to the issue of
estimation.

In the present context, estimation in the first instance means the existence of a single
criterion that evaluates a model’s performance under alternative sets of numerical para-
meter values. In other words, estimation is based on an objective function that is to be
optimized across different parameters. In this paper we are concerned with a simulation-
based objective function, the outcome of which is also directly comparable across quite
different (and non-nested) models. The corresponding estimation procedure is known as
the method of simulated moments (MSM). 3 It is, in fact, a more rigorous version of what
we had roughly described as calibration, which refers to several summary statistics or,
synonymously, “moments” from the model simulations. The idea that these “moments”
should come close to their empirical counterparts is captured by an objective function
that, briefly speaking, simply adds up the deviations of the simulated moments from the
empirical ones. Each of these components is, however, weighted by a factor determined
by the empirical characteristics of the corresponding moment. 4

As an estimation method, MSM is frequently criticized because of its arbitrary choice
of moments in the criterion function. For this reason, methods such as indirect inference
or the efficient method of moments have been developed where, in effect, a set of moment

1 A recent overview by Chen at al. (2008) refers to about 50 such models.
2 This is not to say that these “bad” models might not have other merits.
3 Opinions seem to be divided over whether to call this method the ‘method of simulated mo-
ments’ or the ‘simulated method of moments’.
4 More exactly, as explained later on, the objective function is a quadratic function of the moment
deviations. Entering it is a weighting matrix derived from the data.
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conditions is endogenously defined by means of an auxiliary model. 5 It may, however, be
argued that this does not completely resolve the problem of arbitrariness, or judgement;
it is only shifted from the choice of moments to the choice of the auxiliary model. Taking
into account that structural models are necessarily misspecified, one may furthermore
prefer MSM to the other methods because of its higher degree of transparency. After all,
a model is not meant to resemble or mimic any actual economy or financial market; the
best we can expect from it is that it matches some of the ‘stylized facts’. While MSM
requires the researcher to make up his or her mind about the dimensions along which the
model should be most realistic, the implications of a decision for a particular auxiliary
model are usually less clear. Besides the fact that in certain cases MSM is possibly faster
or more robust than other methods, and in addition to the option of comparing its
performance across different models, we consider the explicitness of MSM and its easy
interpretation as the main argument for its use in estimation.

The short characterization of MSM and the accentuation of its merits brings us to the
question of what specific model to fit, so that we can learn more about the method and
the model. The present authors have put forward a small agent-based model (Franke
and Westerhoff, 2009) which ultimately was calibrated in the way indicated above. Since
its matching of some of the central moments of the daily returns of the S&P 500 stock
market index looked so good to us, we decided it was time to put the model to a more
stringent test, that is, to estimate it by MSM. As will be seen, the method allows us
to pin down the range of suitable parameter values, to measure the model’s overall
goodness-of-fit by a single number, and to compare the relative fit of the single moments
to each other. Apart from highlighting the generally good properties of our model, the
quantitative figures we thus obtain may be taken as a benchmark that other models of
similar complexity will still have to meet or, accepting it as a challenge, to surpass.

To put the aspect of a future model contest in a more specific perspective, we would
like to point out the main innovative feature of our model, which we called structural
stochastic volatility (SSV) and which was identified in Franke and Westerhoff (2009) as
the pivotal mechanism leading to the good results. Since SSV can be easily transferred to
other models (albeit with a similar philosophy), this device may prove equally worthwhile
to them or, regarding the matching of the stylized facts, even superior. 6

To give a brief impression of this concept of structural stochastic volatility, it may be
mentioned that the model, as so many others, stipulates fundamentalism and chartism as
two simple trading strategies between which the agents can switch on a day-to-day basis

5 Carrasco and Florens (2002) provide a succinct overview of MSM and the other two aforemen-
tioned methods.
6 Without placing particular emphasis on it, SSV has already been employed in a richer and, in
some other specification details, quite different model by Westerhoff (2008). Although the model
is “only” calibrated and moment matching is not thoroughly discussed, the diagrams shown look
very promising with respect to estimation.
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(according to a herding mechanism that is modified by a rush towards fundamentalism
when the price misalignment becomes too large). The average demand per agent in each
group, however, is split into a deterministic “core demand” and a random term, which
is supposed to capture the heterogeneity within the groups. Given that the two noise
terms differ in their variance, variations of the population shares will induce variations
in the noise level of total demand, which in turn determines the change in prices. The
model’s stochastic component is therefore akin to a GARCH-type of modelling and should
produce similar effects in the returns, though it is not just technically imposed but is
derived from a structural argument.

Returning to the approach of the method of simulated moments, it seems that it has
found application in only a few estimations of asset pricing models. 7 On the one hand,
there are several papers by a research group around M. Gilli and P.Winker (see Gilli and
Winker, 2003; Winker et al., 2007). Although their work is methodologically interesting,
the models they consider are not yet very well suited to reproduce the desired stylized
facts (at least not with the authors’ exogenous setting of the other model parameters that
were not estimated). On the other hand, Franke (2009) tested a more appropriate model
by Manzan and Westerhoff (2005) with MSM and obtained quite encouraging results,
showing the great potential of the estimation concept. The present paper distinguishes
itself from this study in two respects. First, the SSV modelling framework is more flexible
and has a wider scope than the somewhat special threshold mechanism in Manzan and
Westerhoff. Second, Franke (2009) relied on the asymptotic econometric theory of MSM,
whereas here we use bootstrap methods that can take better account of the small-sample
properties of the estimations and that also give us more specific information about the
model’s general goodness-of-fit. 8

The remainder of this paper is organized as follows. The next section briefly recapit-
ulates the SSV model from Franke and Westerhoff (2009). Section 3 presents the MSM
approach in its bootstrap version and then introduces a benchmark parameter set, which
we decide to be our final estimation result for the daily returns of the S&P 500 index.
By comparing the bootstrap distribution of the objective function to the corresponding
distribution from a battery of simulations of the model, Section 4 arrives at an assess-
ment of the overall fit of the model. In particular, it finds that the model cannot be
rejected by the empirical data. Section 5 goes into finer detail and evaluates the match-
ing of the single moments. Turning to the issue of the identification of the six parameters
to be estimated, Section 6 computes their one- and two-dimensional confidence regions.
Section 7 uses the same investigation methods to estimate an alternative financial mar-

7 For a recent overview of the use of estimation methods in agent-based asset pricing models,
see Chen et al. (2008; especially Table 3 on p. 22).
8 We do not put ‘small-sample’ in inverted commas since, although our samples over more than
25 years of daily data may appear huge from a macroeconomic point of view, it will be seen that
the bootstrapped distributions of the single moments are still not very narrow.
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ket, namely the US dollar / German mark exchange rate, and obtains markedly different
results. Section 8 concludes.

2. Formulation of the model

In this section, we briefly reiterate the financial market model put forward and analyzed
in Franke and Westerhoff (2009). Asset price changes are determined by excess demand
on a market populated by two types of speculative traders—fundamentalists and chart-
ists. Fundamentalists have long time horizons and base their demand on the differences
between the current price and the fundamental value. Even though they might expect
the gap between the two prices to widen in the immediate future, they do not trade on
the likeliness of this event and rather choose to place their bets on an eventual rapproche-
ment. Chartists, on the other hand, have a short-term perspective and bet on the most
recent price movements, buying (selling) if prices have been rising (falling). However, the
agents are allowed to switch from one type to the other, where their choice is governed
by a herding mechanism combined with the evaluation of the most recent price levels.

Let us start with the demand for the asset. 9 We join numerous examples in the litera-
ture and, for the core of each group, postulate a demand per average trader that is kept as
simple as possible. For the fundamentalists, it is inversely related to the deviations of the
price from its fundamental value. That is, in period t their core demand is proportional
to the gap (p? − pt), where pt is the log price of the asset known at the beginning of the
period, and p? is the (constant) fundamental log value. The core demand of the group of
chartists is hypothesized to be proportional to the returns they have just observed, i.e.
(pt − pt−1).

The innovative part of the model is that we add a noise term to each of these de-
mand components (and not just their sum). The two terms are supposed to reflect the
many individual digressions from the simple rules, which we do not wish to describe
in full detail. This noise, which therefore captures a certain within-group heterogeneity,
is conveniently represented by normally distributed random variables εf

t and εc
t for the

fundamentalists and chartists, respectively. Combining the deterministic and stochastic
elements, the average fundamentalist and chartist trader has the following net demand
for the asset in period t:

df
t = φ (p? − pt) + εf

t εf
t ∼ N(0, σ2

f ) φ > 0, σf > 0 (1)

dc
t = χ (pt − pt−1) + εc

t εc
t ∼ N(0, σ2

c ) χ ≥ 0, σc ≥ 0 (2)

Total demand on the market (normalized by the population size) results from multiplying
df

t and dc
t by the population shares of the two groups.

9 To be exact, by demand we mean the orders (positive or negative) per trading period, not the
desired positions of the agents.
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Since it will be important later in Section 7, we stress that the polar case χ = σc = 0
also makes economic sense. Under these circumstances ‘chartism’ is tantamount to not
trading at all. In other words, the agents would then choose between fundamentalist
strategies and complete inactivity. 10

Concerning the market fractions of the traders, let nf
t and nc

t be the number of fun-
damentalists and chartists. For the analysis of the model it is convenient to scale the
population size with 2N and define xt := (nf

t − nc
t)/2N as the majority index of the

fundamentalists. By construction, xt is contained between −1 (all traders are chartists)
and +1 (all traders are fundamentalists). It is easy to show that total excess demand is
thus given by (1+xt) df

t /2 + (1−xt) dc
t/2.

In general, the market is in disequilibrium. A market maker is assumed to absorb any
excess of supply, and to serve any excess of demand from his inventory. He reacts to this
imbalance by adjusting the price for the next period with a (constant) factor µ > 0 in
the direction of excess demand. Accordingly, the equation determining the price for the
next period t+1 results from (1) and (2) as

pt+1 = pt +
µ

2
[ (1+xt) φ (p? − pt) + (1−xt) χ (pt − pt−1) + εt ] (3)

εt ∼ N(0, σ2
t ) , σ2

t = [(1+xt)2 σ2
f + (1−xt)2 σ2

c ] / 2 (4)

Equation (4) is derived from the fact that the sum of the two normal distributions in (1)
and (2), which are to be multiplied by the market fractions (1±xt)/2, is again normally
distributed, with mean zero and the variance being equal to the sum of the two single
variances. Obviously, if σ2

f and σ2
c are distinct, σ2

t will alter with the changes in the
majority index xt. This feature of a time-varying variance σ2

t in the returns (i.e. the log
differences in prices) is what was coined structural stochastic volatility (SSV) in Franke
and Westerhoff (2009).

It remains to set up the motions of the majority index xt. To this end, we first introduce
a so-called switching index s = st, which is uniform across the agents. The basic idea is
that an increase of the switching index increases the probability of an individual chartist
becoming a fundamentalist, and decreases the probability of an individual fundamentalist
becoming a chartist. Assuming a large population (and two further natural specification
details), it can be demonstrated that, at the macroscopic level, the adjustments of the
majority index are governed by the deterministic equation,

xt+1 = xt + ν [ (1−xt) exp(st) − (1+xt) exp(−st) ] (5)

where ‘exp’ is the exponential function and the (positive) coefficient ν may generally be
characterized as a flexibility parameter. Hence, in a situation xt ≤ 0 when chartists are
not in the minority, the market moves towards fundamentalism if st is positive, i.e. xt

10 The situation for φ = 0 and, possibly, σf = 0 would be formally analogous. In this case,
however, the price dynamics would no longer be anchored in the fundamental value.
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increases. Conversely, there is unambiguously a movement towards chartism if xt ≥ 0 and
st is negative. If both xt and st are equally signed, it depends on the precise circumstances
in which direction the majority index changes. 11

The switching index itself is specified as follows:

st = αo + ax xt + αd · (pt − p?)2 (6)

Here, the coefficient αo can be interpreted as a predisposition parameter, since in a bal-
anced state xt = 0 where also the other effects in (6) cancel out, a positive (negative) αo

would give rise to an aggregate motion in the direction of fundamentalism (chartism).
The other two parameters αx and αd are understood to be positive. Thus, the sec-

ond term on the right-hand side of (6) captures the idea of herding: the more traders
are already fundamentalists (i.e. the higher xt), the higher the probability that also the
remaining chartists convert to fundamentalism (and vice versa, since xt < 0 if chartists
are in the majority). The coefficient αx may correspondingly be called a herding para-
meter. The third term in (6) measures the influence of price misalignment. It expresses
the idea that when the price is further away from its fundamental value, “professionals
tend more and more to anticipate” its “mean-reversion towards equilibrium” (Menkhoff
et al., 2009, p. 251). In the present context, this means that the probability of becoming
a fundamentalist rises so that, ultimately, with the overall increase in xt, the price in (3)
should be driven back to normal.

To sum up, the two central dynamic equations of the model are (i) the price adjust-
ments (3), (4) with the structural stochastic volatility component σ2

t , and (ii) the changes
in the majority index xt described in (5) and (6), which basically represent a herding
dynamics curbed by a control for strong price misalignment. The system has an obvious
recursive structure and can easily be iterated forward.

3. The estimation method

The model has been designed to explain—at least partially—the most important stylized
facts of financial markets. 12 Referring to price changes at a daily frequency, we aim to
check the four features that have received the most attention in the literature on agent-
based models. These are the absence of autocorrelations in the raw returns, fat tails in
their frequency distributions, volatility clustering, and long memory (see Chen et al.,
2008, p. 19). The returns themselves are specified in percentage points, so we may write

11 In more structural detail, the expressions ν exp(±st) in (5) have the interpretation of individual
transition probabilities. In the simulations below, these terms are therefore bounded from above
by unity (so that, strictly speaking, ν should not be isolated outside the brackets). As also checked
by the computer program, it is then no problem for the trajectories to stay away from the ±1
boundaries.
12 Detailed descriptions of the statistical properties of asset prices can be found in Cont (2001),
Lux and Ausloos (2002), or Lux (2009).
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rt := 100 · (pt − pt−1) , vt := |rt| (7)

For a quantitative analysis, we measure these features by a number of summary statistics
or, synonymously, moments. The first moment is the volatility of the returns, which we
define as the mean value of the absolute returns vt (here and in the autocorrelations below
it makes no great difference whether one works with the absolute or squared returns).
This is a (necessary) matter of scaling and, in the first instance, will have a bearing on the
admissible general noise level in the model, as it is brought about by the two variances
σf and σc. The second moment is the first-order autocorrelation of the raw returns. The
requirement that it be close to zero should limit the chartists’ extrapolations in the form
of the parameter χ. On the other hand, we checked that if this moment is matched, the
autocorrelations at the longer lags will all practically vanish, too. This lack of additional
information is also the reason why we only use one moment of the raw returns.

Next, in order to capture the long memory effects, we invoke the autocorrelation func-
tion (ACF) of the absolute returns up to a lag of 100 days. As it is slowly decaying
without becoming insignificant at the long lags, we have an entire profile to match. We
view it as being sufficiently well represented by the six coefficients for the lags τ =
1, 5, 10, 25, 50, 100. The sample variability involved in their computation is reduced by
using the centred three-lag averages. 13 Lastly, the fat tail property is measured by the
well-known Hill estimator of the tail index of the absolute returns, where the tail is
conveniently specified as the upper 5 per cent. Thus, on the whole, we evaluate the per-
formance of the model on the basis of nine moments, which we summarize in a (column)
vector m = (m1, . . . , m9)′ (the prime denotes transposition).

In Franke and Westerhoff (2009), a set of numerical parameter values was proposed
and, referring to these moments, an illustrative sample run of the model demonstrated
that the resulting return series was fairly close to the daily returns of the S&P 500 stock
market index. In the present paper, we employ a formal estimation procedure to make
the informal summary of “fairly close” more precise. As this issue has been put forward,
and from the arguments mentioned in the Introduction, it is only natural for us to utilize
the method of simulated moments.

For this purpose, we first of all need an objective function that allows us to define a
distance between two moment vectors. It is given by a quadratic function, which is char-
acterized by a weighting matrix W ∈ IR9×9 (to be specified shortly). Having a moment
vector m ∈ IR9 to compare to another reference vector mref ∈ IR9, the function reads,

J = J(m, mref ;W ) := (m−mref )′ W (m−mref ) (8)

13 That is, at lag τ the mean of the three autocorrelation coefficients for τ−1, τ , τ+1 is computed,
except for τ = 1, where it is the average of the first and second coefficient. It may also be noted
that volatility clustering, which describes the tendency of large changes in the asset price to be
followed by large changes, and small changes to be followed by small changes, is closely related
to these long-term dependencies between the returns.
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The weighting matrix takes the sampling variability of the moments into account. The
basic idea is that the higher the sampling variability of a given moment i, the larger
the differences between mi and mref

i that can still be deemed insignificant. This can
primarily be achieved by a correspondingly small diagonal element wii. In addition,
the matrix W should provide for possible correlations between the single moments. An
obvious candidate for a suitable weighting matrix is the inverse of an estimated variance-
covariance matrix Σ̂ of the moments,

W = Σ̂
−1

(9)

One such estimate Σ̂ to set up W may be obtained from a Newey-West estimator of the
long-run covariance matrix of the empirical moments (see, e.g., Lee and Ingram, 1991,
p. 202, or the application of the method of simulated moments in Franke, 2009, Section
2.2). In this paper, we follow Winker et al. (2007) and choose a bootstrap approach to
construct additional empirical samples of the moments, from which the covariances can
then be derived.

More exactly, a block bootstrap is appropriate due to the long-range dependence in
the series. An immediate idea for choosing the block length is one year, i.e. 250 days
(Winker et al., 2007, Section 3.2). Thus we reduce our empirical return series of S&P 500
(which comprises 6866 data points) to T = 6750 observations, subdivide it into 27 fixed
blocks of 250 days, and construct a new series, block by block, from 27 random draws
(with replacement). Subsequently, all of the desired moments can be computed from this
string of the blocks of returns.

Repeating this 5000 times, a frequency distribution for each of the moments is ob-
tained. Ideally, the empirical moment should be more or less in the centre. For the ACF
of the absolute returns at longer lags τ ≥ 10, however, the bootstrapped coefficients show
a non-negligible tendency towards lower values. This bias suggests that the blocks in the
bootstrap are too short. We therefore also tried longer blocks of 500 and 750 days. 14 For
the latter it was indeed found that the bias was considerably mitigated. On the basis of
these explorations of the bootstrap distributions, we decided to use a block length of 250
days for the first five “short memory” moments (the Hill estimator, volatility, first-order
autocorrelation of the raw returns, and the autocorrelations at lags τ = 1 and τ = 5 for
the absolute returns), and a block length of 750 days for the last four “long memory”
moments (the ACF of vt = |rt| at lags τ = 10, 25, 50, 100).

The frequency distributions of these bootstrapped moments can be used to obtain an
estimate Σ̂ of the moments’ variance-covariance matrix. Formally, let b = 1, . . . , B iden-
tify the bootstrap samples (B = 5000 presently), let mb = (mb

1, . . . , mb
9)
′ be the resulting

moment vectors, and compute the vector of their mean values m: := (1/B)
∑

b mb. From
this, Σ̂ results like

14 Unfortunately, blocks of 1000 days seem too long compared to the empirical sample period.

9



Σ̂ :=
1
B

B∑
b=1

(mb − m:)(mb − m:)′ (10)

As the weighting matrix W in (9) is now well-defined, we can turn to an estimation of
the model. Denote memp

T as the vector of the empirical moments from a return series of
length T . Furthermore, let θ denote the vector of the model parameters to be estimated,
and let m(θ;S) be the moment vector from a simulation of the model with a specific
parameter set θ over S periods. Since long time horizons reduce the sample variability,
we follow a common practice and choose S = 10 · T . It is also understood that several
hundred observations from an initial transition period have been discarded before, and
that all simulations use the same random number sequence for the demand shocks. 15 On
this basis, the estimation amounts to solving the following minimization problem across
the admissible parameter vectors θ,

J [m(θ;S),memp
T ;W ] = [m(θ;S)−memp

T ]′ W [m(θ;S)−memp
T ] = min

θ
! (11)

We employ the Nelder-Mead simplex algorithm to carry out these optimizations (see
Press et al., 1986, pp. 289–293). To avoid getting prematurely trapped in a local mini-
mum, we repeatedly restart the procedure upon convergence several times with a rela-
tively large new starting simplex which hopefully reaches beyond the “hills” surrounding
such a local “valley”, until no further noteworthy improvement in the minimization oc-
curs. If in the course of the search some parameter θi violates a non-negativity constraint
and becomes negative, we reset it to zero to run the simulation. However, after computing
J from its moments, a penalty is added that proportionately increases with the extent
of the violation.

Regarding the parameters, we can fix the price impact factor µ, the predisposition
coefficient αo, and the herding coefficient αx. While a free choice of µ is an obvious mat-
ter of scaling, it was argued in Franke and Westerhoff (2009) when discussing the phase
diagrams that the effects of variations of αo and αx could at least be qualitatively com-
pensated by suitable changes in the other parameters (of αd in the first instance). In fact,
no compelling reason was found to try further improvements over the numerical values
we decided to choose after a moderate number of initial explorations. Six parameters
therefore remain to be estimated, namely,

θ := (φ, χ, ν, αd, σf , σc) (12)

As already indicated, we try to fit the daily returns of the S&P 500, for which 6866 ob-
servations from January 1980 to mid-March 2007 are considered. Proceeding for the min-
imization (11) as described above (though in this case not too extensively) and rounding

15 For the normally distributed εt with variance σ2
t , this more precisely means that for each simu-

lation run at time t the same random number ε̃t is drawn from the standard normal distribution
N(0, 1) and εt is set as σt ε̃t.

10



the solution to two digits after the decimal point, we concentrate on the result summa-
rized in Table 1. In the rest of the discussion of the present estimation problem, we also
refer to this vector as our benchmark parameter set θo.

φ χ µ ν αo αx αd σf σc

0.18 2.35 0.01 0.57 −0.15 1.35 11.40 0.79 1.91

Table 1: Benchmark parameter set θo for S&P500.

Given the underlying random number sequence, the value of the objective function
brought about by θo is J = 10.33. Extending the minimization procedure to an interactive
trial-and-error re-initialization of the search algorithm, two additional, and still superior,
local minima have been found. One at J = 8.00 is achieved by φ = 0.195, ν = 0.570
and almost negligible changes in χ, αd, σf , σc . The other is constituted by φ = 0.180,
ν = 0.634 and minor changes in χ, αd, σf , σc , which beats the first one with J = 7.79.

However, employing another random number sequence in the estimation is bound to
lead to different results; in particular, the minimum value of J may well be lower than
7.79 or higher than 10.33. Hence an improvement in a single estimation of the kind
just reported, which could only be detected with a certain additional effort, should not
be overrated. The following analysis will rather focus on the question of how a specific
parameter set, on which we finally have to settle for a succinct message, stands up to
different random shocks. In this respect, the benchmark coefficients θo may be quite as
good. Reference to θo might also emphasize that we take a broader view and do not rely
on the results from a single estimation.

4. Assessment of the overall model fit

The process of bootstrapping the weighting matrix in the objective function J provides
us with a large sample of empirically derived moments. If the weighting matrix is ap-
plied to their deviations from the moments actually observed, we also get a frequency
distribution of values of J itself. From this a critical value of J can be established that,
so it seems, allows us to assess the values of J that we obtain from the simulations of the
model. The straightforward idea is that this bootstrap distribution proxies the distribu-
tion of J that would materialize if the hypothetical construct called the real-world data
generation process (DGP) could produce a large number of different samples of return
series. Accordingly, if a given model-generated series and its moments yield a value of J

within the range of the bootstrapped values of J , we would not be able to tell it apart
from a real-world series. Conversely, and taking account of rare extreme events with a
significance level of 5%, a simulated return series will be found to be inconsistent with
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the real-world data, and will therefore be rejected, if its J-value exceeds the 95% quantile
of the bootstrapped J .

In the present case, we compute J = J0.95 = 22.5 for this critical value. However, it
cannot not serve as a yardstick for the minimized J-values from (11) in the estimation
procedure, where (as already mentioned at the end of the previous section) our bench-
mark parameter set θo gave rise to J = 10.3. Here it must not be forgotten that, just in
order to reduce the sample variability, these returns were simulated over a time horizon
that is ten times as long as the samples of the returns entering the bootstrap. Rather, for
a meaningful comparison to the bootstrapped J0.95, the J-values of simulations of equal
length should be used.

It is obvious that the information from a single simulation run over the relatively short
bootstrap period T = 6750 is not reliable enough for a final evaluation of the model fit.
Nevertheless, it is easy to undertake a Monte Carlo (MC) experiment and repeat these
simulations many times. In this way an entire distribution of model-generated J-values
is obtained, which can subsequently be contrasted with the bootstrap distribution.

To describe our precise method, and to distinguish it clearly from the experiment
below, let us emphasize that the bootstrapped moments are extracted from the empirical
data {remp

t }T
t=1 by writing mb = mb({remp

t }), and that the weighting matrix is deduced
from the same set of data by writing W =W emp. 16 Furthermore, indicate the different
random number sequences underlying the MC simulations by the letter c, giving rise
to moments m = mc(θo;T ) (as in the bootstrap, we work with c = 1, . . . , 5000). The
frequency distributions from the following two sets of J-values are then considered:

Bootstrap : { J [mb({remp
t }), memp

T ; W emp ] }5000
b=1 , T = 6750

Monte Carlo : { J [mc(θo;T ), memp
T ; W emp ] }5000

c=1

(13)

The outcome of this experiment is shown in Figure 1. 17 The bootstrap distribution,
plotted as the thin solid (green) line, is much narrower than the MC distribution, which
is the bold (blue) line. A large part of the simulated series would therefore be rejected.
How many exactly would be rejected is marked by the vertical line at J = 22.5, which
is the 95% quantile of the bootstrap distribution. Regarding the MC distribution, we
compute that 27.7% of its J-values are less than this rejection level. For a succinct
summary of the general moment matching, it may therefore be tempting to say that our
model has a p-value of 27.7%, with respect to the S&P 500 index and the parameter set
θo. This means that roughly three-fourths of the simulations of the model over T = 6750

16 The moments mb are the same as those that already underlaid the estimate of the variance-
covariance matrix Σ̂ in (10), which in turn yielded W emp as its inverse by eq. (9).
17 The density functions in this and the other diagrams are estimated by means of the Epanech-
nikov kernel; see Davidson and MacKinnon (2004, pp. 678–683) for the computational details.
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periods would be classified as being inconsistent with the empirical returns, while roughly
one-fourth of these simulations would not be rejectable on these grounds.

Figure 1: Distributions of J from the bootstrap (solid line) and
the MC simulations of θo (bold line) described in (13).

Note: The vertical line at J = 22.5 indicates the 95% quantile of the bootstrap distribution,
and the 27.7% quantile of the MC distribution.

The conclusion, so far, is that the model is not rejected by the data. The assumption
on which it rests was clarified at the beginning of the section, namely, that the bootstrap
distribution of J is a proxy for the distribution of J that we (hypothetically) would pro-
cure from different samples of the real-world DGP. The extent to which this assumption
is justified, and how the conclusions drawn from it may have to be modified, can be
checked by an elementary thought experiment where we have everything under control.
It is based on the question of how the bootstrap and MC distribution of J would be
related if both come from the same DGP, and this ‘true’ DGP is given by our model
with parameter set θo.

Thus, let us take the simulated returns obtained in the estimation procedure with the
near-optimal parameters θo and use the first T = 6750 values as an artificial ‘empirical’
sample. 18 To highlight the fact that it has been generated from the special random
number sequence underlying the estimation, we indicate this sequence by c = 0 and write
{ro

t (θ
o)}T

t=1 for the resulting return series (which could also be viewed as the outcome
of a special MC simulation run with c = 0). The corresponding ‘empirical’ moments are
mo(θo;T ), for which we may more briefly write mo

T .

18 We repeated the following experiment several times with other ‘empirical’ samples from the
model and found no great differences in the results. The numerical figures reported below are
therefore sufficiently representative.
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In the first step, we follow the bootstrap prescriptions of eqs (9), (10) (again with the
differentiated block lengths of 250 and 750 days, as described in the previous section)
and construct a weighting matrix from the returns {ro

t (θ
o)}. To distinguish it from the

matrix underlying (13), we designate it W = W o, and write mb = mb({ro
t (θ

o)}) for the
bootstrapped moments from which W o was composed. Subsequently, the J-values based
on W o are computed from these 5000 moments. On the other hand, the simulation runs
in the MC part of the experiment can be the same as above. The only difference is that
their moments are now related to mo

T (instead of memp
T ), and that these deviations are

evaluated using the weighting matrix W o. To sum up, this experiment is implemented
by the following two distributions:

Bootstrap : { J [mb({ro
t (θ

o)}), mo
T ; W o ] }5000

b=1

Monte Carlo : { J [mc(θo;T ), mo
T ; W o ] }5000

c=1

(14)

Figure 2 presents the distributions resulting from (14). The most important thing to note
is that the bootstrap and MC distribution do not coincide, not even approximately so.
Although it is so consequential, the phenomenon that the bootstrap distribution (again
the thin solid line) is narrower than the MC distribution (the bold line) may not be too
surprising. After all, the bootstrap distribution is constructed from a single realization
of the DGP, so that the variability in J is exclusively due to the stochastic mixing and
selection of the bootstrap blocks in the return series. By contrast, the MC distribution
has more heterogeneity in its data since the random shocks that are at work in each of
its samples feed back on the price and therefore, in interaction with the deterministic
core, propagate in the entire model. 19

As a matter of fact, in the present setting it is the MC distribution that would be
the appropriate distribution to set up a critical value of J , simply because it is the
distribution of the objective function from a large number of realizations of the true
DGP. Apparently, the bootstrap distribution, with which we would try to help ourselves
if we had only one sample of the same DGP available, is not a very representative proxy
for it.

In other words, in the beneficial case where we have the data of 5000 realizations of
the DGP on hand, it would not be correct to take the 95% quantile of the bootstrap
distribution in Figure 2, where J = 23.2, as the critical value of J ; it is rather J = 66.8,
which constitutes the 95% quantile of the MC distribution. 20 By the same token, it

19 In particular, near the isoclines of the majority index xt, even small shocks of opposite sign
can drive the market toward either chartism or fundamentalism with their different volatility
regimes, where it then will stay for quite a while; see Figures 1 and 2 in Franke and Westerhoff
(2009).
20 The quantile is so high because the distribution stretches out further to the right. Although
appropriate, it is not indicated in Figure 2 since a vertical line at J = 66.8 would hardly be
visible.
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Figure 2: Distributions of J from the bootstrap (solid line) and
the MC simulations of θo (bold line) described in (14).

Note: The vertical line at J = 23.2 indicates the 95% quantile of the bootstrap distribution,
and the 47.3% quantile of the MC distribution.

would not be correct to refer to the observation that J = 23.2 is the 47.3% quantile of
the MC distribution and infer from it that the model has a p-value of 47.3%. Since here
we know that the model is the true DGP, its p-value is 95% by construction.

Two things can thus be learned from the experiment of eq. (14). Generally, the boot-
strap distribution of J , since it is based on a single empirical data series, is very likely
to be narrower than the distribution we would obtain if we had at our disposal a large
number of different realizations of the real-world DGP. 21 The true critical value of J

would therefore be higher than J0.95 = 22.5, the value obtained in Figure 1. Likewise, the
true p-value of the MC distribution in Figure 1 would be higher than the 27.7% induced
by this value of J . That is, what we have tentatively called the “p-value” of our model
can only be a proxy p-value, to which we resorted for lack of something more precise.
This also means that J0.95 = 22.5 is a most conservative guess of the true critical value
of J , so that our proxy p-value is (perhaps considerably) downward biased. Hence, our
model is rejected even less by the data than stated before.

A second insight from the experiment is more specific, though somewhat speculative.
In the thought experiment with the model as the true DGP, the bootstrap distribution
proposed 23.2 as a candidate for a critical value of J , whereas from the 95% quantile
of the MC distribution we know that the true critical value is 66.8 . If we now dare
to hypothesize that the 95% quantile of the empirical bootstrap, J0.95 = 22.5, and the

21 This supposition is indirectly confirmed here by the fact that the narrow model-based bootstrap
distribution in Figure 2 is very close to the empirical one in Figure 1. In particular, with 22.5
versus 23.2, their 95% quantiles are only marginally different.
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unknown 95% quantile Jrw
0.95 of the MC distribution of samples from the real-world DGP

are similarly related, then the equation Jrw
0.95/22.5 = 66.8/23.2 can be set up to obtain

Jrw
0.95 = 64.8. Turning to the MC distribution in Figure 1, where the model-generated

samples are evaluated at the empirical weighting matrix W emp, we find that it has its
89.0% quantile at this value of J . So our guess of a more appropriate p-value of the model
would be that it is even in as high a region as 89%.

While we do not mean to take this p-value literally, it may underline the good fit of the
model. Furthermore, an argument of this kind could be interesting if, in the estimation of
another model, a proxy p-value less than the original 27.7% in Figure 1 were obtained. On
the other hand, in order not to exaggerate the 89% p-value, we recall that the objective
function is composed from a limited choice of moments. The favourable p-values, to
which of them so ever we might refer, will certainly decrease if additional moments (i.e.,
additional dimensions of reality) were included to test the model.

5. Matching the single moments

Despite the positive evaluation of the model as a whole in the previous section, the match-
ing of the empirical moments is, of course, not perfect. For a more detailed analysis of the
model’s goodness-of-fit, it is enlightening to compare the (marginal) MC distributions
of the single simulated moments mc(θo;T ) computed above to the moments mb({remp

t })
from the empirical bootstrap. From the deviations or a close coincidence of the two dis-
tributions, we can hopefully learn along which dimensions the model performs well or
where it may still exhibit certain shortcomings.

Figure 3 presents the distributions of six selected moments. There is only one moment,
namely the mean value of the absolute returns (vMean), for which the MC distribution
nearly impeccably reproduces the bootstrap distribution. A minor shift to the right is
obtained for the MC distribution of the autocorrelation of the absolute returns with a
lag of 25 days (vACF–25), while the coefficients with a lag of 5 and 100 days (vAC–5
and vAC–100, respectively) show a minor shift to the left.

A stronger downward bias has to be noticed for the first-order autocorrelation of the
absolute returns (vAC–1). The deficiency of the model responsible for this and the slightly
weaker autocorrelation effects at lag 5 can be understood from a direct comparison of the
profile of the empirical ACF with the ACF from a single (but long) simulation run. 22

Corresponding to the often discussed power law behaviour, the human eye perceives a
slight convex curvature over the first (more or less) 30 lags of the empirical ACF. In
contrast, the decay in the simulated ACF occurs in an almost linear manner. Hence, if
we think of the estimation problem as basically fitting a straight line to the curved line of

22 Not shown for reasons of space, but see Figure 3 in Franke and Westerhoff (2009).

16



Figure 3: Distributions of selected moments (based on empirical data).

Note: The bold (blue) line represents the distributions of the moments resulting from the MC
simulations of θo, the solid (green) line depicts the corresponding bootstrap distributions from
{remp

t }; both with a time horizon of 6750 days. The (red) vertical bar indicates the empirical
moments.

the empirical ACF, there will be a tendency to underestimate the lower-lag coefficients
and to overestimate the higher-lag coefficients.

In addition to the quasi-linear decay of the ACF, a second potential problem of the
model is revealed in the top-left panel of Figure 3. The upward bias in the MC distribution
of the Hill estimator indicates that the model with its parameter set θo tends to produce a
lower fatness in the tails of the returns. Nevertheless, the six panels in Figure 3 also make
it clear that the deviations in the distributions of the simulated from the bootstrapped
moments are associated with a relatively high sample variability. This is something that
has to be accepted if the time series are “only” 27 years long (when T = 6750). It
is, however, somewhat astonishing that both types of distributions here have a similar
spread, in contrast to the distributions in Figure 1 of the objective function itself, which
in a certain sense “adds up” the single moments.
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The diagrams in Figure 3 show the effects in relation to the width of the entire distri-
butions and therefore might over- or underemphasize the deviations somewhat. Besides,
three of the nine moments to be estimated are omitted. To supplement Figure 3 and
to give a quantitative short summary information about the order of magnitude in the
imperfect moment matching, Table 2 contrasts the median values of the moment distri-
butions from the MC simulations with those from the bootstrap distributions. Looking
at the figures of the autocorrelation coefficients of the absolute returns, their underesti-
mation at the low lags 1 and 5 may now appear less pronounced than in the graphical
representations of the frequency distributions. The deviations of the simulated moments
at the medium and long lags should be even more tolerable. hence the Hill estimator
seems to remain the moment with the strongest bias.

vAC

rAC–1 Hill vMean 1 5 10 25 50 100

median MC : 0.006 3.72 0.707 0.160 0.156 0.148 0.127 0.094 0.045
median B : −0.009 3.46 0.718 0.183 0.175 0.148 0.117 0.094 0.059

t-statistic : 1.39 1.01 −0.26 −0.53 −0.89 0.06 0.43 −0.08 −0.49

Table 2: Moment statistics.

Note: B and MC refer to the samples of length T = 6750 from the bootstrap and the MC
simulations with θo. The t-statistics is derived from eq. (15).

A comparison of the median values should not only be based on the mere figures but
may also take the sampling variability of the single moments into account. As the latter
is captured by the diagonal elements in the estimated variance-covariance matrix of the
moments from eq. (10), it is straightforward to compute the (analogue of the) t-statistics
of the differences in the medians. 23 They are given, in obvious notation, by

ti = (MC-mediani − B-mediani)
/ √

Σ̂ii (15)

Their values are reported in the last row of Table 2. Since we have no knowledge of their
distributional properties, (15) cannot be used as a test statistic to infer whether or not
the MC and bootstrap distributions are “significantly” different. However, these figures
can give us information about the moments’ goodness-of-fit relative to each other. An
exception is the autocorrelation of the raw returns, where the values of 0.006 and −0.009

23 As in ordinary hypothesis testing in finite samples, using the expression “t-statistic” does not
mean that it will follow the Student’s t-distribution.
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are practically zero for us; therefore this t-statistic, although it is the highest, can be
safely neglected. The matching of the Hill estimator and the autocorrelation coefficient
of vt = |rt| at lag 5 are, then, the least satisfactory features of the model. Apart from
this, the deviations in the ACF of vt at very low and (in our context) very long lags
can perhaps be evaluated as mild, while there are no problems worth mentioning at the
medium lags or with respect to the scaling of the returns in form of the mean value of
vt.

When we mentioned “deviations” in the last paragraph, it may have been understood
as implying that these phenomena would not occur if the Monte Carlo moments in Table
2 had been generated from the true DGP. This presumption can be readily checked with
the model-generated ‘empirical’ return series that was already used in the experiment in
the previous section. That is, as explained when introducing eq. (14), we take a specific
random number sequence, simulate a return series designated {ro

t (θ
o)}T

t=1 on this basis,
and bootstrap 5000 moment vectors mb = mb({ro

t (θ
o)}) from it. Rather than applying

the objective function J to this sample, we now consider the frequency distributions of
the single moments and contrast them with the moment distributions from the model’s
Monte Carlo simulations mc = mc(θo;T ). The outcome for the six selected moments
considered in Figure 3 is presented in Figure 4. The distributions of the MC moments
are the same as in Figure 3, and again drawn as bold (blue) lines. The solid (green) lines
represent the alternative bootstrap distributions from the artificial data series {ro

t (θ
o)}.

Possibly, the first impression gained from the six panels in Figure 4 is the perfect
congruence of the two distributions for the Hill estimator; the deviations displayed in
Figure 3 have completely disappeared. However, the top-right panel reveals that this
improvement is not without a side effect: whereas in Figure 3 it was the bootstrap
and MC distributions of the mean volatility that almost coincided, this feature is not
preserved and vMean in Figure 4 shows a similar deviation to that of the Hill estimator
in Figure 3.

We should add here that the bootstrap distribution from an alternative artificial series
{ro

t (θ
o)} can easily give rise to a further shift of, in particular, the two moments just dis-

cussed. The reason for this is that (put somewhat loosely) the model dynamics irregularly
switches between a fundamentalist and a chartist regime, with a low and high volatility,
respectively. It is in this respect that, as stated above, the time horizon T = 6750 is still
rather short, so that two arbitrary samples may have different numbers of such regimes,
with different durations (cf. also footnote 19). Accordingly, the series may have quite
distinct Hill estimators and mean volatilities, and this will carry over to the (support
of the) moment distributions bootstrapped from them. Hence, if the dissimilarities in a
bootstrap and MC distribution are not too dramatic, it is not obvious whether they are
mainly due to different DGPs underlying them or to the peculiarities of the return series
itself from which the bootstrap samples derive.

Apart from a shift of the MC versus the bootstrap distributions of the moments, the
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Figure 4: Distributions of selected moments (based on artificial data).

Note: The bold (blue) line represents the distributions of the moments resulting from the MC
simulations of θo, and the solid (green) line depicts the corresponding bootstrap distributions
from {ro

t (θ
o)}; both with a time horizon of 6750 days.

results for J in the previous section seem to suggest narrower bootstrap distributions
here, too (since they use information from a single history of returns, whereas the MC
distributions evaluate a large sample of different series). This idea is in fact borne out
by the autocorrelations of the absolute returns at lags 1, 5 and 25 in Figure 4. How-
ever, it may also be recalled that the single empirical return series gave rise to wider
bootstrap distributions in these cases (see Figure 3), so there is no general rule in this
respect either. 24 We take these observations as further evidence against premature con-
clusions from, or overinterpretations of, possible differences between the bootstrap and
MC distributions of the moments.

In sum, the (at the worst) moderate dissimilarities in the bootstrap and MC moment
distributions documented in Figure 3 and Table 2 might (at the worst) be interpreted as

24 The bootstrap distribution of vAC–1 in Figure 3 is not only wider than in Figure 4, but even
wider than the MC distribution.

20



being weakly indicative of the fact that the model is not sufficiently compatible with the
real-world DGP. However, even if we therefore wished to improve the model, we could
not be sure along which dimensions this should primarily be done.

6. Parameter identification

When introducing the benchmark parameters θo, three questions were hinted at (implic-
itly at least). (A) Can we be sure that a local minimum of the objective function (11)
found by the search procedure is also a global minimum? (B) How large is the “valley”
where a minimum has been found? And (C), how different will the solution be if another
random number sequence is employed in the model simulations. All three questions are
aspects of the problem of how well the model parameters can be identified, a special sub-
problem being whether all of the parameters truly contribute to the market dynamics
and are hence significantly distinct from zero.

Let us pick up on question (B), which involves the local nature of the objective func-
tion around the minimum. A long valley extending in the direction of a coefficient or a
combination of coefficients would be indicative of an identification problem; one parame-
ter set would be equally good at matching the moments as another very different one. 25

A most straightforward method for a first exploration of the local neighbourhood around
the minimum solution is to fix all parameters except one at their estimated values, and
to compute J over the long simulation horizon S = 10 ·6866 as a function of the variable
parameter θi (maintaining, of course, the random number sequence, designated c = 0,
underlying the estimation with its moments m=mc(θ;S)). The results are very similar
if, instead of the parameter estimates, reference is again made to the benchmark vector
θo. To be precise, if a vector θex(i) collects all components of the vector θ except the i-th
one, then locally around θo

i we consider the functions defined by

Jo(θi) := J [mo(θi, θ
o
ex(i);S),memp

T ;W emp ] , i = 1, . . . , 6 (16)

An important feature of the model is that the market irregularly switches between two
regimes—one dominated by chartists and the other by fundamentalist traders. Although
with respect to a given random number sequence the objective function is purely deter-
ministic, one may therefore expect the system to be fairly sensitive to changes in the
initial conditions or, which amounts to the same, to slight variations in the parameters.
This is confirmed by the graphs of the functions Jo = Jo(θi), which are all plotted in
Figure 5. In fact, the raggedness they display is immediately visible. 26 The accordingly

25 An example of this problem is the MSM estimation of the Manzan–Westerhoff (2005) asset
pricing model in Franke (2009). There it was impossible to pinpoint the reaction parameter φ of
the fundamentalists (which was only natural in that modelling framework and with the moments
considered). It could not even be recognized as being bounded away from zero.
26 Other examples of this behaviour can be found in Franke (2009) or Gilli and Winker (2003). In-
cidentally, the graphs for our two predetermined parameters θi = αo, αx are noticeably smoother.
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high number of local minima is typical for applications of the method of simulated mo-
ments to agent-based asset pricing models, and often the functions do not become much
smoother if they are computed over smaller intervals with a higher resolution. It would
therefore not be very pertinent to put too much strain on a search algorithm to determine
the “absolute” minimum. 27

Figure 5: Graphs of the functions θi 7→ Jo(θi), for θi = φ, χ, ν, αd, σf , σc .

Note: Middle (red) dashed line depicts the benchmark value θo
i of the parameter, the two outer

dashed lines indicate the 2.5% and 97.5% quantiles of the estimations presented below. The
underlying time horizon is S = 68660.

Generally, the diagrams in Figure 5 make us more confident that a solution of the esti-
mation problem is situated within the parameter intervals shown there (we also checked
this over wider intervals, especially for Jo =Jo(χ) in the top-right panel). In detail, the
graphs give us a clue where there are prospects for improvements. Regarding the bench-
mark θo, this is clearly seen for the coefficients φ, ν, αd, and plots of these functions

27 Unless one is interested in the properties of the algorithm itself, as in Gilli and Winker (2003),
where the authors test their deterministic analogue of a simulated annealing procedure.
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were indeed the basis for the interactive search mentioned at the end of Section 3. Recall
that we reported the existence of two local minima superior to θo, where one of them
is essentially characterized by φ = 0.195 and the other by ν = 0.634. However, are the
corresponding gains in J (which was lowered in this way from 10.33 to 8.00 and 7.79)
significant? Or, to return to the formulation above, what exactly would be “too much”
strain in the determination of a global minimum?

These considerations lead us to the problem of how to construct a confidence interval
for the single parameters. Unfortunately, we have no critical level Jcrit of the objective
function J , analogous, for example, to that from a likelihood ratio test, which would
specify the confines of a parameter region or interval beyond which J > Jcrit and where
parameters entailing J > Jcrit could be regarded as being “significantly different” from
the vector that had minimized J . Instead of attempting to construct such a value Jcrit

from simulated data (which could only be valid for a given random number sequence),
we can use a Monte Carlo re-estimation as a more direct approach. Accordingly, we
devise a large number of different shock sequences, re-estimate the model on each of
them, and compute the frequency distributions of the parameters thus obtained. This
experiment will also answer question (C) from above. To address question (A) for the
global minimum, we need not be overly eager to find it with rigorous accuracy in these
estimations, since there is no indication that the errors are very systematic when a
parameter vector is prematurely accepted as a minimum solution (provided, of course,
the search algorithm has already proceeded far enough; with two re-initializations, say).

Specifically, a sample size of 1000 of these re-estimations proves to be sufficient for
our purpose. The resulting marginal distributions of the six parameters φ, χ, ν, αd, σf ,
σc are displayed in Figure 6, together with the median values and the 2.5% and 97.5%
quantiles (the dashed lines for the latter two are not always clearly visible if the tails are
too flat). Despite perhaps having preferred a smoother shape in the distribution of χ,
which would probably require a (much) larger sample, the distributions are sufficiently
informative. All are unimodal and at least so regular that the three quantiles are suitable
statistics for a short characterization.

Table 3 gives a synopsis of the numerical values of the three quantiles (rounded).
Contrasting the medians with our benchmark vector θo in the first two rows, it is seen
that θo was a decent choice of a representative parameter set. 28 The intervals between
the two outer quantiles can now be regarded as the confidence intervals that we have been
looking for. This is also why these values were additionally plotted as the outer dashed

28 We decided on θo as our benchmark parameters at an early stage of our investigations and
subsequently came across no reason why it should be replaced by another, in some sense better
vector. More systematically, we could also have employed the median values from Table 3 as a
benchmark. In fact, this would hardly make any difference. In particular, the proxy p-value of
the model established in Section 4 would then only slightly decrease (rather than increase) from
27.7% to 26.8%.
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Figure 6: Marginal distributions of the re-estimated parameters.

Note: The vertical dashed lines indicate the 2.5%, 50% and 97.5% quantiles, respectively. The
underlying sample size is 1000.

lines in Figure 5. Returning to these diagrams, it can now be seen that the increase from
a minimum J to which the two quantiles give rise are not necessarily symmetric (which
would make it even more problematic to establish one critical level of the function, Jcrit,
for all of the parameters).

The last row in Table 3 computes the ratio of the standard deviation of the distributions
and the medians. It shows that regarding their estimation, the parameters fall into two
categories with a, respectively, similar relative width of their distributions. Remarkably,
the coefficients in the deterministic skeleton of the model all belong to the same class, that
with the wider distributions, while the two noise parameters σf and σc in the stochastic
part both have much narrower distributions. In any case, all of the six parameters are
well identified and definitely bounded away from zero.

Although the marginal distributions of the parameters provide valuable information
about the identification of the model, it may also be recognized that generally the pa-
rameter estimates are not completely independent of each other. Limiting our attention
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φ χ ν αd σf σc

benchmark : 0.18 2.35 0.57 11.40 0.79 1.91
median : 0.18 2.47 0.58 11.74 0.80 1.94

2.5% quantile : 0.13 1.97 0.48 9.32 0.77 1.85
97.5% quantile : 0.21 2.91 0.68 13.86 0.83 2.07

sd/median : 0.114 0.092 0.083 0.092 0.023 0.027

Table 3: Summary statistics of the estimated parameters.

Note: ‘sd’ means standard deviation of the corresponding marginal distribution.

to possible interdependencies between pairs of coefficients, a convenient measure is given
by the correlation coefficients of the 1000 estimates. The compilation of these statistics
in Table 4 shows a wide range of what is possible. There are relatively strong correla-
tions, which may be positive or (mostly) negative, while others are weak or practically
non-existent. To pick out three cases: the reaction coefficients of the fundamentalists and
chartists, φ and χ, exhibit a certain complementarity: a higher estimate of one of them
tends to go hand in hand with a lower estimate of the other; likewise, higher estimates
of the flexibility parameter ν tend to be associated with lower estimates of the noise
level σf in fundamentalist demand, but higher noise levels σc in chartist demand. On the
other hand, estimations of the noise levels of the two groups of traders themselves are
perfectly independent (which is in some contrast to the ‘complementarity’ between their
deterministic responsiveness φ and χ).

φ χ ν αd σf σc

φ : 1.00 −0.45 −0.14 −0.09 0.07 −0.34
χ : 1.00 −0.26 −0.41 −0.01 −0.07
ν : 1.00 −0.11 −0.59 0.36

αd : 1.00 0.14 0.03
σf : 1.00 −0.01
σc : 1.00

Table 4: Pairwise correlations of parameter estimates.

Figure 7 translates this information into a graphical representation by constructing
two-dimensional confidence regions for selected pairs of parameters. To this end, we make
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Figure 7: Two-dimensional confidence regions of the parameter estimates.

Note: The (red) crosses indicate the benchmark values of the parameters, and the dots are the
re-estimated pairs (θ̂c

i , θ̂
c
j) (some of which may be outside the panels); ‘rho’ is the correlation

coefficient.

use of the Wald statistic (see, e.g., Davidson and MacKinnon, 2004, pp. 189–196). With
respect to two (distinct) components i and j of the parameter vectors, let {(θ̂c

i , θ̂
c
j)} be

the set of their estimates for the random number sequences designated c = 1, . . . , 1000,
and V the corresponding 2×2 variance-covariance matrix. Furthermore, let θ̄k be the
mean of the 2.5% and 97.5% quantiles of the θ̂c

k (k = i, j). Writing η̂c := (θ̂c
i , θ̂

c
j)
′ and

η̄f := (θ̄j , θ̄j)′ for compactness, we then obtain the 1000 “test statistics”

τ c = τ(η̂c) := (η̂c − η̄f )′ V (η̂c − η̄f ) , c = 1, . . . , 1000 (17)

Sorting τ c from smallest to largest and denoting their 95% quantile by τ?, the 95%
confidence region is specified as the set

Cij := { (θi, θj) : [(θi, θj)′ − η̄f ]′ V [(θi, θj)′ − η̄f ] ≤ τ? } , i 6= j (18)

Hence, by construction, the confidence regions in Figure 7 have an elliptical shape and
are symmetrical around (θ̄i, θ̄j), not the benchmark (θo

i , θ
o
j ). We already know that the
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estimates are not uniformly distributed, which implies that the Cij are not filled out
evenly by the pairs (θ̂c

i , θ̂
c
j). Characterizing the density of the clouds of dots in the two-

dimensional parameter plane, we note that roughly 80 – 85 per cent of the estimates
are concentrated in a considerably smaller area than the entire Cij region. Hence, when
applied to other financial markets, the model seems to offer good prospects of being able
to classify them as being more or less similar to the S&P 500, or essentially distinct from
it.

7. Estimation of a foreign exchange market

Having established the positive parameter identification in the estimations of the S&P
500, we are now interested in the problem of whether the model can also differentiate
between (at least) stock and foreign exchange markets. In this respect, we hope it will
prove at least as efficient as the totally different (and much simpler) asymmetric herding
model estimated in Alfarano and Franke (2007). The maximum likelihood method that
could be applied there characterized the stock markets by a consistently higher popu-
lation share of noise traders vis-à-vis the stabilizing fundamentalists. To check whether
statements of a similar kind hold true for the present model, we concentrate on a repre-
sentative foreign exchange market, namely the US dollar / Deutsche mark exchange rate
over the same period as above (6861 daily observations from January 1980 to mid-March
2007). 29 Of course, in addition to telling the USD–DEM and S&P 500 indices apart, we
also wish to investigate whether the previous good estimation properties are basically
maintained.

After a few explorations to guide the search algorithm towards a suitable parameter
region, it became clear that chartism will have to play a weaker role in the market dynam-
ics. This finding incited us to go to the extreme and eliminate the chartists altogether.
As already remarked on the demand equations (1) and (2), by setting the coefficients
specifying the chartist behaviour to zero, χ = σc = 0, the agents choose between fun-
damentalist strategies and not trading at all. More in line with empirical evidence, the
two components of the hitherto ‘fundamentalist’ demand (1) could also be interpreted
as modelling pure fundamentalists (the deterministic part) and—in the aggregate—pure
noise traders (the stochastic part). 30

Usually the objective function was not yet strictly minimized under this zero con-
straint. Since, on the other hand, its relaxation led to only relatively minor improvements,
we prefer the greater clarity of the radical assumption. The benchmark parameters on

29 Following euro adoption, the USD–DEM rates are pseudo rates imputed by applying the euro
locking rate to the current euro exchange rate.
30 It would be interesting to find out if the performance of the model could be enhanced by
considering a choice between inactivity, fundamentalists, and chartists proper (similar to, in this
respect, Westerhoff, 2008).
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φ χ µ ν αo αm αd σf σc

1.75 0.00 0.01 0.92 −0.15 1.35 37.10 1.55 0.00

Table 5: Benchmark parameter set θo for USD–DEM exchange rate.

which we thus decide are reported in Table 5. Comparing them to the set in Table 1,
it may be noted that besides the disappearance of the chartists, the reaction coefficient
φ of the fundamentalists is now almost ten times higher and the parameter αd more
than three times as high. Since both coefficients reinforce the mean-reverting forces in
the market, the price deviations from the fundamental value as well as the volatility of
the returns will be more limited. 31 It furthermore makes good sense that a priori, as
expressed by the higher value of the flexibility parameter ν, the agents have a stronger
tendency to switch to inactivity (ν = 0.92) than to chartism (ν = 0.57 in Table 1 for the
stock market).

To evaluate the model’s overall goodness-of-fit with respect to the benchmark para-
meters, we proceed as in Section 4. That is, as described in eq. (13), we bootstrap the
empirical returns and contrast the resulting values of the function J with the MC distri-
bution of the objective function (based on θo, of course). However, here two versions of
specifying J will be considered: the same function as above, which continues to underlie
the estimations to follow, and, second, a version J̃ where the first-order autocorrelation
of the raw returns (rAC–1) is excluded from the moments entering the function.

The reason for the second version is that the empirical coefficient is 0.013 with a
confidence interval from −0.011 to 0.037, so that we still tend to view this correlation
as negligible. 32 The MC distribution, on the other hand, is centred around −0.003 and
therefore bears out the model’s complete absence of autocorrelation in rt. While these
differences do not seem serious, they nevertheless cause a noticeable increase in the
J-values of the MC versus bootstrap distribution, part of which effect is due to the
corresponding diagonal element in the weighting matrix, which is almost twice as high
as in the weighting matrix derived from the S&P 500.

Using, therefore, the function J̃ as our main reference, the bootstrap and MC distrib-
utions are shown in Figure 8. The picture is qualitatively similar to Figure 1 in Section
4, although now the MC distribution turns out to be wider. As a consequence, we get
a lower proxy p-value of the model, as we called it. The value J̃ = 25.8, which consti-
tutes the 95% quantile of the bootstrap, corresponds to the 18.4% quantile of the MC
distribution. If instead we take the original objective function J with rAC–1 included,
the additional penalty reduces the proxy p-value to 12.8%. This is worse than in the

31 Although the weaker price misalignment is not shown in this paper, we checked it.
32 The Bartlett confidence band is 0.013± 2/

√
6750.

28



Figure 8: Distributions of J̃ for USD–DEM from the bootstrap
(solid line) and the MC simulations of θo (bold line).

Note: The vertical line at J̃ = 25.8 indicates the 95% quantile of the bootstrap distribution,
and the 18.4% quantile of the MC distribution (J̃ does not include the rAC–1 moment).

estimation of the S&P 500 (where this proxy p-value amounted to 27.7%). But still, and
all the more if we refer to the discussion in the second part of Section 4, the model is
not rejected by the data either.

For a more detailed diagnostics to identify the moments with the greatest problems,
we are less exhaustive here than in Section 5, and content ourselves with the counterpart
of Table 2. The statistics reported in Table 6 buttress the negative, even dominant role of
the rAC–1 moment in the objective function, since all other moments have a substantially
lower (in modulus) t-statistic.

The second-worst match is the first-order autocorrelation (smoothed) of the absolute
returns vt. Certain problems with it are, however, preconditioned. Whereas we were
happy enough for the model to produce a systematic decay in the ACF(vt), something
widely considered to be a stylized fact of financial markets, the USD–DEM exchange
rate displays the curiosity of an increase over the first few lags. The relatively high (in
modulus) t-statistic of the coefficient at lag 100 has a similar explanation: empirically,
the ACF tends to increase slightly rather than decrease from lag 90 on. Since the model,
as any other model we know of, is not designed to mimic these counterexamples to a
generally monotonic behaviour in the ACF, the overall fitting of the model may appear
in a more positive light than before.

Regarding the identification of the parameters, we directly turn to their re-estimation
when using 1000 different random number sequences in the simulation runs. The main
characteristics of the resulting marginal distributions of the four parameters are given in
Table 7. Again, all of the coefficients have well-confined confidence intervals. The different
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vAC

rAC–1 Hill vMean 1 5 10 25 50 100

empirical : 0.013 3.98 0.496 0.084 0.101 0.091 0.060 0.034 0.022

median B : 0.013 4.04 0.500 0.080 0.098 0.087 0.053 0.029 0.016
median MC : −0.003 4.23 0.491 0.100 0.092 0.082 0.057 0.031 0.008

t-statistic : 2.42 0.76 −0.50 1.21 −0.43 −0.35 0.40 0.22 −0.83

Table 6: Moment statistics for USD–DEM exchange rate.

Note: B and MC refer to the samples of length T = 6750 from the bootstrap and the MC
simulations with θo. The t-statistics derive from eq. (15).

φ χ ν αd σf σc

benchmark : 1.75 0.00 0.92 37.1 1.55 0.00
median : 2.08 – – 0.91 37.8 1.60 – –

2.5% quantile : 1.41 – – 0.84 25.5 1.49 – –
97.5% quantile : 2.98 – – 0.94 44.9 1.86 – –

sd/median : 0.196 – – 0.026 0.126 0.060 – –

Table 7: Summary statistics of the parameter estimates for USD–DEM.

Note: ‘sd’ means standard deviation of the corresponding marginal distribution.

nature of the USD–DEM and S&P 500 markets is also further corroborated, as none of
them shows the slightest overlap with a confidence interval of the re-estimates in Table
3 for the stock market. The relative widths of the intervals, specified as the ratio of the
standard deviation of the distribution to the median, are perhaps interesting to note but
cannot be too strictly compared to the ratios in Table 3 since for USD–DEM there are
fewer parameters to estimate.

Table 8 shows that again the estimates of the parameters are by no means independent.
The inverse relationship between estimates of the flexibility parameter ν and the (now
only) noise level σf is even of an almost perfect kind. Compared to the correlation
coefficients in Table 4, the relationship between αd and ν (and σf ), which is negative in
Table 4 (weakly positive, for both σf and σc), is now positive (negative, respectively). The
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φ ν αd σf

φ : 1.00 −0.72 −0.17 0.74
ν : 1.00 0.65 −0.98

αd : 1.00 −0.67
σc : 1.00

Table 8: Pairwise correlations of USD–DEM parameter estimates.

other relationships maintain their sign but are moderately, or even drastically, stronger.
Together Tables 7 and 8 convey concise information about the parameter values that most
suitably describe the agents’ behaviour on the foreign exchange market in our model.

8. Conclusion

Although any structural model is false and therefore, trivially, cannot be expected to
reproduce reality in all its facets, one would often like to employ formal estimation meth-
ods to identify (a range of) suitable numerical parameter values. “Suitable”, accordingly,
means that the model captures reality along certain dimensions to a certain degree. One
advantage of using the method of simulated moments (MSM) for estimation is that it
obligates the researcher to put forward summary statistics, or moments, that can clarify
his or her preferred dimensions. The estimation results themselves are also transparent
and easy to interpret. In addition, the MSM approach has no problems in treating un-
observable variables and nonlinearities in the model dynamics, and it usually requires
less computational effort than other simulation-based estimation procedures. Having a
small-scale asset pricing model at hand that looked very promising regarding its ability
to match the salient ‘stylized facts’ of the daily returns of (at least) the S&P 500 stock
market index (Franke and Westerhoff, 2009), these were all good reasons for us to ap-
ply MSM for a more rigorous test. The moments we chose for this purpose capture, in
particular, the fat tails and the long memory in the absolute returns.

Rather than relying on the asymptotic theory of MSM, in this paper we used boot-
strap methods that can better account for the small-sample properties of the estimation.
In particular, we thus got an empirically based distribution of the objective function
J , to which one could compare a Monte Carlo (MC) distribution of J obtained from
a large number of simulation runs with the same parameter set. The percentage of the
MC distribution, the values J of which are less than the 95% quantile of the bootstrap
distribution, can then be conceived of as a proxy for the model’s p-value. It was further-
more argued that this proxy is (probably strongly) downward biased. In any case, it was
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a safe conclusion that at least one-fourth (if not many more) of the sample runs of the
model over the empirical time horizon cannot be recognized as being inconsistent with
the empirical returns. In this sense, our model was not rejected by the data.

A comparison of the bootstrap and MC distributions of the single moments gave us
more information along which dimensions the model performs better or worse, although
we also conducted an experiment that warns against premature conclusions. A battery of
re-estimations of the model with different random number sequences for the simulations
provided us with distributions of the parameters. As all of the one- and two-dimensional
confidence intervals constructed from them were relatively narrow, identification of the
model proved to be no problem. This feature was of special importance in the last section
when the model was estimated on the US dollar / German mark exchange rate. Here two
of the six parameters could be fixed at zero, and the confidence intervals of the remaining
four did not overlap with those from the S&P 500. Considering the economic meaning of
the parameters, the estimation therefore revealed that these stock and foreign exchange
markets are different, offering us an interpretation of in which respect.

A further virtue of MSM is that the values of its objective function are directly com-
parable across models. Being now fairly satisfied with the results for our model, we wish
to see how it will perform relative to other models of similar complexity. These can be
existing “rival” models, or developments or modifications of the present model, or com-
binations of some of its elements (basically that of structural stochastic volatility) with
the building blocks from other models. In general, a wider perspective is thus opened up.
By providing a reliable criterion to evaluate models of very different kinds, MSM allows
us to make progress in coping with the anecdotal wilderness that, after this research
has been firmly established, now threatens the field of agent-based models of financial
markets.
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