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Abstract

We enrich the classical cobweb framework by allowing producers to enter different markets.

The market entry decision is repeated every period and depends on the markets’ historical

profit differentials. As a result, the number of producers in a market and thus also a market’s

total supply vary over time. Analytical and numerical investigations of our four-dimensional

nonlinear model indicate that interacting cobweb markets may contribute to the strong cyclical

price motion observed in many commodity markets. We furthermore find that endogenous

dynamics may either set in via a Flip or a Neimark-Sacker bifurcation. Interestingly, the latter

scenario is prevalent if producers are sufficiently risk averse.
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1 Introduction

Cobweb models describe the price dynamics in a market of a non storable good that takes one time

unit to produce. Due to the production lag, suppliers must form price expectations one time period

ahead. Such a setup is typical for agricultural markets. Consider, for instance, the cultivation of

crops. The growing season guarantees a finite lag between the time the production decision is

made and the time the crop is ready for sale. The farmer’s decision about how much should be

produced is usually based on current and past experience. Within the classical cobweb model of

Ezekiel (1938), producers simply form naïve expectations. This early model has obtained certain

empirical support since it provides an explanation - at least in principle - for the cyclical tendencies
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observed in many commodity markets. There is also evidence that farmers indeed rely on simple

strategies to predict prices (Baak (1999), Chavas (2000)). Such behavior has also been detected in

laboratory cobweb experiments (Hommes et al. (2007), Sonnemans et al. (2004)). However, due

to the assumption of linear demand and supply, the range of long-run outcomes that the classical

linear cobweb model is able to produce is restricted - in practice - to either damped or exploding

oscillations around the equilibrium price, which is why it has never been considered as a very useful

tool.

A renewed interest in cobweb models has emerged in the last twenty years, triggered by the

growing popularity of nonlinear dynamics as a tool of economic analysis, and the classical linear

cobweb model has been extended in several directions. Exploiting nonlinearities in demand and

supply, Chiarella (1988), Day (1994), Hommes (1994, 1998) analytically show the possibility of

chaotic price dynamics for producers’ different adaptive expectation schemes. In the seminal work

of Brock and Hommes (1997), the demand and supply curves are linear, but producers may switch

between different expectation formation rules. Depending on publicly available fitness measures,

producers opt for either free naïve or costly rational expectations. The choice is rational in the sense

that forecasting rules with a high level of fitness are preferred. The model does not only have the

potential to produce complex price dynamics - it also suggests that irregular dynamics may be part

of a fully rational notion of equilibrium. Interesting related approaches include, for instance, Goeree

and Hommes (2000), Branch (2002), Chiarella and He (2003), Onozaki et al. (2003) and Laselle

et al. (2005). Further nonlinear extensions assume boundedly rational heterogeneous producers

and explicitly consider the role of risk aversion and time-varying second moment beliefs (Boussard

(1996), Chiarella et al. (2006)).

Finally, a number of authors have extended the classical framework to the case of interdependent

cobweb economies for substitutes or complements goods, “linked” from the demand side (Currie

and Kubin (1995), Hommes and van Eekelen (1996), Yousefi et al. (2000)). They have shown

how small interdependencies can dramatically affect the dynamics - with respect to the case of

independent economies - and have discussed the implications for the relevance of partial analysis

in economics.

Also the present paper is devoted to exploring market interdependencies within the cobweb

framework, though in this case market interactions are considered from the supply side. The goal

of the present paper is to take into account that suppliers produce different goods. For instance,

when a farmer decides to reduce his production of rye, he may alternatively expand his production

of wheat. To make matters as simple as possible, we consider within our model a situation in which

producers may choose between one of two markets. The producers’ choice, which depends on how

profitable the two markets have been in the recent past, is updated over time. The market which

has been more successful for the producers will consequently be selected by more producers than

its counterpart. Since the number of producers in a market varies over time, the total supply is

nonlinear. Nonlinearity is thus brought into the model not directly, but emerges endogenously by

allowing suppliers to switch between ‘linear’ cobweb markets.

Using analytical and numerical tools we find that our model has the potential to produce
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long-run price fluctuations, and even complex dynamics. Besides the parameters which govern

the slopes of demand and supply schedules, it turns out that the ‘switching’ parameter, i.e. the

agents’ sensitivity to past relative profit opportunities, is particularly important for bifurcation

analysis. What is remarkable is that market interactions may create endogenous dynamics even for

parameter combinations for which both isolated markets would be globally asymptotically stable.

In a stylized way, the dynamics evolves as follows. Suppose that some producers switch from the

less to the more profitable market. In the less profitable market, the total supply decreases and

the price increases. In the other market, the opposite occurs: the total supply increases and the

price decreases. Since the profit differential is likely to reverse, some producers stream back to the

other market. This pattern may repeat itself in an intricate way.

A further important feature of the model is its ability to generate endogenous fluctuations in

different ways - by producing different kinds of local bifurcations - when steady state stability is lost

due to changes of a key parameter. Such possibly different outcomes may be set in relation with the

impact of risk and risk aversion on output decisions. Namely, under sufficiently low risk aversion,

or risk perception, of the producers, the emerging scenario is that of a Flip bifurcation, where the

system departs from its steady state and prices jump above and below their equilibrium levels,

converging to a cyclical orbit of period two. This outcome may be regarded as analogous to the

unstable behavior of the traditional linear cobweb. High risk aversion, or strong risk perception, are

associated, instead, with the possibility of a Neimark-Sacker bifurcation. This represents a quite

new scenario, characterized by more intricate fluctuations of prices. In the presence of demand and

(individual) supply schedules of linear type, such an outcome appears therefore as the combined

effect of producers’ risk aversion and their tendency to switch between markets, depending on

relative profit opportunities. Interactions between cobweb markets may thus add to the cyclical

component of commodity prices. The model may also be relevant from a policy perspective. Policy

makers who intervene in one market should pay great attention to such mechanisms of interaction,

in order to anticipate to what extent other markets will be influenced, too. Stabilization schemes

have to be planned carefully.

The remainder of our paper is organized as follows. In Section 2, we present a model with two

interacting cobweb markets. In Section 3, we reduce the model to a 4-dimensional discrete-time

nonlinear dynamical system. We also add some remarks about the impact of our assumptions

on the dynamical structure of the model. Analytical results about the steady state of the model

are then derived in Section 3.1, whereas its local stability properties are explored, for the case of

symmetric markets, in Section 3.2. In Section 4 we present and discuss some simulation results.

In particular, Section 4.1 performs a bifurcation analysis, with respect to various parameters, for

the reference case of symmetric markets. Section 4.2 introduces asymmetries between markets, and

explores their effect on the local stability properties and the global behavior. Section 4.3 performs

numerical experiments on some simple generalizations of the model. In Section 5, we summarize our

main findings and point out some avenues for future research. The Appendices provide a discussion

of the decision problem of the single producer (A1) as well as mathematical details about the steady

state (A2) and its local asymptotic stability conditions (A3).
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2 The model

Traditional cobweb models describe a dynamic price adjustment process on a competitive market

for a single non storable good with a supply response lag. We seek to extend this framework

by considering two interacting markets, called markets X and Z. The interaction arises because

producers are able to select the market they want to enter. The market entry decision is repeated

at the beginning of each period and depends on the markets’ most recent profit differential. For

instance, if market X was more profitable than market Z, it attracts a higher number of producers.

Since the total supply in a market is not constant over time, the model is nonlinear. For simplicity,

we specify all other model parts as in the classical cobweb literature.

Let us now formalize the model. We consider a fixed number N of producers. The fractions

of producers entering markets X and Z at time step t are denoted as WX,t and WZ,t = 1−WX,t,

respectively. An individual producer either supplies quantity SX,t or SZ,t. Hence, the total supply

in the two markets is NWX,tSX,t, NWZ,tSZ,t. Market clearing occurs in every period, implying

that

DX,t = NWX,tSX,t, DZ,t = NWZ,tSZ,t, (1)

where DX,t and DZ,t denote the demand for goods X and Z, respectively.

Consumer demand depends negatively upon the current market price Pt. Using linear demand

curves, demand for goods X and Z may be expressed as

DX,t = (aX − PX,t)/bX , DZ,t = (aZ − PZ,t)/bZ , (2)

where aX , aZ , bX , bZ > 0.

The producers’ supply depends positively on the expected price. Using linear supply curves and

assuming that producers have naïve expectations, Et−1[Pt] = Pt−1, the supply of a single producer
is either

SX,t =
PX,t−1 − cX

dX
, (3)

or

SZ,t =
PZ,t−1 − cZ

dZ
, (4)

respectively, where cX , cZ ≥ 0, dX , dZ > 0. In the following we assume aX > cX , aZ > cZ .1 Note
that naïve expectations entail a supply response lag, i.e. the supply in period t depends on the

realized price in period t − 1. The market clearing conditions (1) yield the laws of motion of the
two prices

PX,t = aX − bX
dX
NWX,t(PX,t−1 − cX), (5)

PZ,t = aZ − bZ
dZ
NWZ,t(PZ,t−1 − cZ). (6)

1Note that such a minimum requirement represents a necessary condition for demand DX,t and supply SX,t (resp.
DZ,t and SZ,t) to be strictly positive for any t.
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It is useful to remember what happens if the producers permanently split evenly across the market,

i.e. WX,t =WZ,t =W = 0.5. Then the evolution of prices is driven by two independent first-order

linear difference equations. The unique fixed point, e.g. of market X, is

PX =
aXdX + 0.5NbXcX
dX + 0.5NbX

(7)

and it is globally asymptotically stable if ¯̄̄̄
NbX
2dX

¯̄̄̄
< 1. (8)

Stability of the steady state requires a certain relation between the slopes of the demand and supply

curves2. If (8) is true, then the law of motion (5) of the system under fixed fractions generates

temporary up and down price oscillations around the long-run equilibrium price (7) (the same holds

for the law of motion (6) of market Z).

However, our goal is to study endogenous interactions between markets X and Z, which result

from time varying fractions, depending on the markets’ past relative profitability. At the beginning

of each period, producers decide which market they will enter. The producers are boundedly

rational in the sense that they tend to select the market which would have been more profitable

for them in the last period. We assume that the profitability of the two markets in period t is

identified by the realized profits πX,t and πZ,t, defined as follows

πX,t = PX,tSX,t −CX(SX,t), πZ,t = PZ,tSZ,t − CZ(SZ,t),

where CX(SX) and CZ(SZ) are the cost functions of goods X and Z, respectively. Consistent

with the assumption of linear supply curves, we will assume that the producers face quadratic cost

functions of the type (we omit subscripts) C(S) = cS + eS2. Appendix A1 discusses in detail the

relationship between the parameters of the supply curves and those of the cost functions, assuming

expected utility maximizing risk-averse producers.3 Here we simply note that the case of risk-averse

producers is characterized by d > 2e, while the extreme case d→ 2e corresponds to risk neutrality.4

Assuming a high number of producers, fractionsWX,t andWZ,t can be determined via a discrete

choice model (see, e.g. Brock and Hommes 1997, 1998). The fractions of producers selecting market
2Note that in the case of equal proportions, the quantities −1/bX and N/(2dX) represent the slopes of the demand

curve and the aggregated supply curve, respectively, so that (8) turns out to be the familiar condition for stability of
the classical cobweb model.

3Given the assumption of risk averse producers, a perhaps more reasonable measure of profitability should consider
also a risk-adjustment term. However, for the sake of simplicity we follow Brock and Hommes (1997, 1998), and
assume that agents only take realized profits into account. We leave the case of risk adjusted profits for future
research. On the other hand, as also noticed by Brock and Hommes (1998), from a practical viewpoint realized
profits may be what agents care most about.

4Dieci and Westerhoff (2008) explicitly focus on the case in which agents are risk neutral, under general demand
and cost functions. In this framework it is possible to extract some additional results, in particular when the markets
are asymmetric.
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X and Z in period t are given, respectively, by

WX,t =
exp(fπX,t−1)

exp(fπX,t−1) + exp(fπZ,t−1)
, (9)

WZ,t =
exp(fπZ,t−1)

exp(fπX,t−1) + exp(fπZ,t−1)
= 1−WX,t, (10)

where the realized profits can be expressed as

πX,t−1 = (PX,t−1 − cX)SX,t−1 − eXS2X,t−1, πZ,t−1 = (PZ,t−1 − cZ)SZ,t−1 − eZS2Z,t−1,

with eX , eZ > 0. Note that the higher the profitability of a market, the more producers will enter

that market. The parameter f > 0 is the intensity of choice and measures how sensitive the mass

of producers is to selecting the most profitable market. An increase in f may be interpreted as

an increase in the (bounded) rationality of the agents. For f = 0, the agents do not observe any

profit differentials between the two markets. As a result, WX,t =WZ,t =W = 0.5 for any t and we

are back to the fixed fraction model. The case of independent markets can then be recovered as

a particular case for f = 0. On the other hand, the higher f , the more producers enter the more

profitable market in the following period. In the extreme case f →∞ , all producers switch to the

market with the higher profitability in the preceding period.

3 The dynamical system

Note that by substituting (9)-(10) into (5)-(6), the model is expressed by a system of two nonlinear

second-order difference equations in the prices, in that πX,t−1 (πZ,t−1) turns out to depend both
on PX,t−1 and on PX,t−2 (PZ,t−1 and PZ,t−2). The system can be rewritten as a 4-dimensional

dynamical system in the dynamic variables PX , PZ , SX , SZ . In the following analysis, we normalize

the total number of producers to N = 1.5 Moreover, in order to simplify the dynamic analysis, we

define the difference of fractions6 Ωt :=WX,t −WZ,t, which can be rewritten as

Ωt = tanh

·
f

2
(πX,t−1 − πZ,t−1)

¸
,

with −1 < Ωt < 1, where Ωt → 1 corresponds to WX,t → 1 and Ωt → −1 corresponds to WZ,t → 1.

Note also that fromWX,t+WZ,t = 1 one immediately obtainsWX,t = (1+Ωt)/2,WZ,t = (1−Ωt)/2.
The resulting 4-D dynamical system is thus the following

PX,t =
aXdX − gX(1 + Ωt)(PX,t−1 − cX)

dX
, (11)

PZ,t =
aZdZ − gZ(1− Ωt)(PZ,t−1 − cZ)

dZ
, (12)

5Which is equivalent to rescaling the parameters bX and bZ in (5) and (6), respectively.
6The same change of variable is used by Brock and Hommes (1997, 1998).
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SX,t =
PX,t−1 − cX

dX
, (13)

SZ,t =
PZ,t−1 − cZ

dZ
, (14)

where gX := bX/2, gZ := bZ/2. Ωt is itself a function of the state variables at time t− 1:

Ωt = tanh

½
f

2

£
(PX,t−1 − cX)SX,t−1 − eXS2X,t−1 − (PZ,t−1 − cZ)SZ,t−1 + eZS2Z,t−1

¤¾
. (15)

Before we start the dynamic analysis, we add a few remarks about certain simplifying as-

sumptions behind our setup, and briefly discuss their impact on the dynamic structure of model

(11)-(14).

• The model incorporates market interactions only from the supply side and neglects demand

side effects. As a result, demand in a market is supposed to be a function of its own good’s

price solely. Introduction of cross-dependencies would complicate dynamic equations (11) and

(12), thus rendering analytical results more difficult. Our assumption represents, of course,

a rather strong premise.7 We consider this as a working assumption, that enables an initial

understanding of the effect of interactions between cobweb markets, in comparison with the

case of independent markets. The results we obtain are also robust enough, as can be seen

from Section 4.3, where we explore numerically the case of more general demand functions,

with positive or negative cross-elasticities (substitutes or complements goods).

• We assume that profitability of the two markets in a certain period is identified by realized
profits. This raises two caveats.8 First, it naturally requires every supplier to be informed

about profitability in both markets, which may be regarded as a strong assumption. However,

the existence of publicly available fitness (profitability) measures for each ‘strategy’ represents

a quite common assumption in this branch of literature, that may be justified by assuming that

agents talk to each other about their activities. Alternatively, realized profits may be inferred

from observed prices (note that e.g. πZ,t−1 is uniquely determined by PZ,t−1 and PZ,t−2 ).
Second, our simplified setup abstracts from economies of scale and scope that might play a

role, in particular, for agricultural markets and commodities. Note that the weights WX,t

and WZ,t could also be interpreted as fractions of outputs X and Z, respectively, produced

by one representative agent. If we adopt this view, the parallel production of - say - rye and

wheat, should be modelled as a combined production process, and thus the cost functions, as

well as realized profits of the two goods, would no longer be independent.

• For the sake of simplicity, we adopt the assumption of naïve expectations. A more general

starting point would be the cobweb model with an adaptive price expectation scheme à la

Nerlove (1958). This would introduce, however, two additional dynamic variables into the
7With this assumption, a possible interpretation of the model is that it depicts a situation where markets are

geographically separated because of prohibitively high transportation costs, i.e. consumers in one market cannot go
to the other market. We thank an anonymous referee for having suggested this interpretation.

8We are grateful to an anonymous referee for having raised such remarks.
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model, namely, the expected prices of goods X and Z, without substantially modifying the

qualitative nature of the results.

The following subsections explore the steady state properties of the model.

3.1 Steady state

Let us now derive the stationary states of the model. The steady states of the system are obtained

by setting (PX,t, PZ,t, SX,t, SZ,t) = (PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) = (PX , PZ , SX , SZ) in the dy-

namical system (11)-(14). The system admits a unique steady state, as stated in the following

Proposition 1 There exists a unique steady state of the nonlinear dynamical system (11)-(14).

The steady state distribution of producers across markets, Ω, is implicitly defined by the equation

Ω = tanh

½
f

2

·
(dX − eX)(aX − cX)2
(dX + gX(1 + Ω))

2 −
(dZ − eZ)(aZ − cZ)2
(dZ + gZ(1− Ω))2

¸¾
, (16)

while the stationary prices and supply levels are given by

PX =
aXdX + gX(1 + Ω)cX

dX + gX(1 + Ω)
, PZ =

aZdZ + gZ(1− Ω)cZ
dZ + gZ(1−Ω)

, (17)

SX =
PX − cX
dX

=
aX − cX

dX + gX(1 + Ω)
, SZ =

PZ − cZ
dZ

=
aZ − cZ

dZ + gZ(1− Ω)
. (18)

The proof is contained in Appendix A2. We add here a few important remarks, that follow

from Proposition 1. Note first that the steady state cannot be computed explicitly in general and

that the stationary levels of the state variables depend on the intensity of choice f . Note also that

the steady-state profits πX = (PX − cX)SX − eXS2X , πZ = (PZ − cZ)SZ − eZS2Z can be rewritten
as

πX = (dX − eX)S2X =
(dX − eX)(aX − cX)2¡
dX + gX(1 + Ω)

¢2 , (19)

πZ = (dZ − eZ)S2Z =
(dZ − eZ)(aZ − cZ)2¡
dZ + gZ(1−Ω)

¢2 , (20)

which are part of the right-hand side of (16). Of course, the case of independent markets, f = 0,

results in Ω = 0, and steady states of the two markets are as in the traditional cobweb. We denote

by P
0
X , P

0
Z , S

0
X , S

0
Z , π

0
X , π

0
Z , respectively, quantities (17)-(20) computed for Ω = 0. They represent

steady state prices, quantities, and profits of the two markets considered in isolation. We can then

compare the steady state of the model with interacting markets with that of the case of independent

markets. If we denote by Q(Ω) the righ-hand side of (16), it follows from the proof of Proposition

1 that Ω > 0 (resp. Ω < 0) if and only if Q(0) > 0 (resp. Q(0) < 0), that is to say, if and only

if π0X > π0Z (resp. π0X < π0Z). Put differently, market X (market Z) attracts a larger fraction

of producers at the steady state if and only if its steady state profit (in isolation) is higher. For
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π0X > π0Z we also easily obtain PX < P
0
X , SX < S

0
X , πX < π0X , and vice versa, for π

0
X < π0Z we

obtain PX > P
0
X , SX > S

0
X , πX > π0X .

As far as local stability properties of the steady state are concerned, they cannot be easily derived

for the general case of asymmetric markets. Analytical study is possible, however, in the particular

case where markets are symmetric, i.e. their parameters are identical. This case is explored in

the next section. On the other hand, one can easily check by means of numerical experiments

(performed in Section 4.2) that the dependence of the local asymptotic stability properties on the

key parameters in the general case is qualitatively much the same as in the case of symmetric

markets.

3.2 Symmetric markets

In this section we focus on the case where the two markets are symmetric, i.e. their parameters

are identical, aX = aZ := a, gX = gZ := g, cX = cZ := c, dX = dZ := d, eX = eZ := e. Such

an assumption is not crucial for our results. The symmetric case just represents an analytically

tractable ‘reference’ case9, and the local stability results that we obtain in this case (in particular

the existence of two types of bifurcations) admit a straightforward economic interpretation in terms

of the parameters. In addition, this case proves very useful in order to compare the dynamics under

the assumption of interacting markets (f > 0) with the dynamics in the case of independent markets

(f = 0). The results we obtain in the symmetric case are also quite robust and will be confirmed

(though via numerical simulation only) for the general model (see Section 4.2).

Symmetric markets obviously possess the same equilibrium prices. Since the profitability of the

two markets is equal in equilibrium, the producers are evenly divided between the two markets, i.e.

Ω = 0. The steady state then turns out to be defined by PX = PZ = P , SX = SZ = S, where

P :=
ad+ cg

d+ g
, S :=

P − c
d

=
a− c
d+ g

.

Note that the steady state coordinates are independent of parameter f in this particular case. The

same parameter instead plays an important role in the local asymptotic stability of the steady

state. Before discussing such conditions, in order to appreciate the effect of f on the stability, we

remark once again that under the case f = 0 (independent symmetric markets) the equilibra of the

two markets are stable if the slopes of demand and supply satisfy

0 < gX/dX = gZ/dZ = g/d < 1. (21)

As we shall prove, in the case of interacting markets, i.e. for f > 0, we obtain more restrictive

conditions with regard to the slopes of the demand and supply curves. The stability conditions

and the possible local bifurcations are summarized in the following

9 If the symmetry assumption were to be interpreted in a strict sense, this would imply cost functions identity and
thus, essentially, the modelling of a single good. In Section 4.2, among other experiments on the dynamics of the
asymmetric model, we also remove cost identity via bifurcation analysis.
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Proposition 2 The steady state in the case of symmetric markets is locally asymptotically stable
in the region of the space of parameters where the following inequality is satisfied

g

d
< min {uF , uNS} , (22)

where uF := 1/(1 + 2efS
2
), uNS := 1/[f(d − 2e)S2], and S = (a − c)/(d + g). In addition, if

g/d < uF < uNS and one of the parameters is varied so that g/d becomes larger than uF , then a

Flip bifurcation takes place. If g/d < uNS < uF and one of the parameters is varied so that g/d

becomes larger than uNS, then a Neimark-Sacker bifurcation takes place.

The proof is left to Appendix A3. Since min {uF , uNS} < 1 for f > 0, it follows that the

conditions on the slopes of the demand and supply curves needed to ensure local stability are

stricter than in the case where producers do not switch between markets. That is to say, if agents

are allowed to select the most profitable market, this has a ‘destabilizing’ effect on the equilibrium

prices. Note also that the higher f , the smaller the region of the space of parameters where condition

(22) is fulfilled10, while for f → 0 the same condition is obviously reduced to g/d < 1 (and stability

can only be lost via Flip bifurcation). In our model with linear demand and supply, therefore,

the existence of supply-side interactions between markets, whose ‘strength’ depends on f , brings

about the possibility of complex eigenvalues and Neimark-Sacker bifurcation. A further important

remark concerns the relationship between the bifurcation structure and the risk, or the risk aversion

of the producers. As shown in Appendix A1, if producers are risk-neutral or they perceive zero risk

(d = 2e), then uNS → ∞ and the Neimark-Sacker bifurcation scenario is absent: in this extreme

case stability can only be lost via Flip bifurcation. This fact deserves a further comment. As

implied by the derivation of supply curves in Appendix A1, the quantity (d− 2e) (inversely related
to uNS) can be interpreted as a kind of ‘risk premium’ required by producers, positively related

to their risk aversion coefficient and perceived risk. Our local results then suggest that when risk

aversion / perception is sufficiently small, the steady state will typically lose stability via a Flip

bifurcation, with market prices jumping up and down alternately around their equilibrium levels,

while the Neimark-Sacker bifurcation scenario, characterized by fluctuations of different nature, will

prevail when risk aversion / perception is large enough.11 This is further illustrated numerically

in the next section. The range of possible dynamic outcomes is then substantially enriched by the

explicit introduction of market interactions, and turns out to be qualitatively related to producers’

risk attitudes and risk beliefs.
10 In the sense that, if f2 > f1, the stability region (22) for fixed f = f2 is strictly included in the stability region

for f = f1.
11 In fact, this result is a testable implication of our model. For instance, for regional agricultural markets char-

acterized by machinery syndicates that pool the risk of investments in expensive equipment and fixed capital - thus
reducing individual risks - we should expect a prevailing Flip bifurcation scenario. For regions characterized by a more
scattered structure of farmers we would expect higher risk, i.e., a prevailing Neimark-Sacker bifurcation scenario. We
thank an anonymous referee for suggesting this interesting possible application to real world phenomena.
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4 Computational analysis

Now we are ready to numerically explore the global12 dynamics of the model. We are especially

interested in the question of whether simple interactions between cobweb markets may generate

cyclical or more intricate price movements, in understanding the role of the key parameters on the

nature of such fluctuations, and in exploring the dynamics of some straightforward generalizations

of the model. In order to perform this task, in the next subsection we focus first on the case where

the two markets are symmetric. In subsection 4.2 we introduce asymmetries in either demand or

supply parameters, and explore their impact on both the local bifurcations of the steady state and

the global dynamical behavior of the system. Finally, subsection 4.3 contains numerical simulations

on a number of possible extensions of the model.

4.1 Global dynamics for symmetric markets

In the case of symmetric markets, the local stability analysis carried out in the previous section

has shown that the steady state may become unstable via both Neimark-Sacker bifurcation and

Flip bifurcation. Numerical analysis confirms the existence - under different sets of parameters -

of an attracting closed curve generated by the Neimark-Sacker bifurcation and an attracting orbit

of period 2 generated by the Flip bifurcation. The Flip bifurcation scenario is typical in cobweb

models and essentially comes from producers’ overreaction to price changes. Here we focus mainly

on the long-run price fluctuations generated by the Neimark-Sacker bifurcation, which appear to

be strictly related to combined effect of market interactions and risk, as discussed in the previous

section.

We use the following parameter setting for our simulation analysis: a = 20, b = 6, c = 2, d = 8,

e = 1. For f = 0.17, Fig. 1 shows from top to bottom time series for the price in market X, the

profitability of market X, the price in market Z, the profitability of market Z and the distribution

of producers across markets (remember that WZ,t = 1 −WX,t). As can be seen, prices, profits

and suppliers’ proportions fluctuate in both markets in an intricate way around their long-run

equilibrium values.

––– Figure 1 goes about here –––

What is driving the dynamics? Suppose that supply in market X is low in period t. As a result,

consumers will pay a high price for good X. Market X is therefore quite profitable in period t. In

the next period, producers update their market entry decision. Given the profitability of market

X, some producers may migrate from market Z to market X. A lower supply in market Z will,

however, lead to a price increase of good Z. Simultaneously, an increasing supply in market X

implies that prices will decrease here. Combined, these two effects may reverse the profit differential

in favor of market Z again. This pattern may repeat itself, yet in an intricate way.
12The term “global” refers to those dynamic phenomena that cannot be detected from the analysis of the linearized

system in a neighborhood of the steady state.
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Parameter f , i.e. the agents’ sensitivity to profit differentials, plays a crucial role in driving

the evolution of prices: higher sensitivity in general increases the amplitude of the fluctuations of

prices, profits and distribution of producers across markets. This is revealed, for instance, by the

phase space plots represented in Fig. 2 for the cases f = 0.17 and f = 0.2, respectively. For each

parameter selection considered in Fig. 2, we represent the projection of the attractor in the planes

PX , PZ and PX , SX , respectively. In particular, the projections in the plane PX , PZ reveal a strong

negative correlation between the prices of the two commodities. As already mentioned, in both

cases the time evolution of the system is characterized by quasiperiodic motion on an attracting

closed curve in the phase space, and the size of the attractor increases as f increases. Quasiperiodic

motion means that prices oscillate in a more or less harmonic manner. Note that actual commodity

price fluctuations (Borenzstein et al. (1994), Deaton (1999), Cashin et al. (2002)) are characterized

by a strong cyclical component. One can easily check that - under our base parameter selection -

the birth of the attracting curve via Neimark-Sacker bifurcation occurs when f is increased beyond

the bifurcation value f ' 0.166.13

––– Figure 2 goes about here –––

Further analysis reveals that the model is able to produce even more complex dynamic scenarios.

For instance, one may observe the emergence of a strange attractor (which is a sign of chaotic

dynamics) from the attracting closed curve, if f is sufficiently large. Moreover, the coexistence of

an attracting 2-cycle and a strange attractor can be detected under our base set of parameters, for

instance for f = 0.64295. This case is represented in Fig. 3, which shows trajectories generated by

two different initial conditions, both very close to the repelling steady state, but each selected from

a different basin of attraction: one from the basin of the strange attractor (first panel), the other

from the basin of the attracting 2-cycle (second panel). The (projections of the) two coexisting

attractors on plane PX , PZ are represented, respectively, in the third line of panels. In this case,

complex behavior is associated to both the asymptotic dynamics on the strange attractor and the

complicated structure of the basins of attraction (bottom panel of Fig. 3 ).

––– Figure 3 goes about here –––

The bifurcation diagrams represented in Fig. 4 give an idea of how the nature of the asymptotic

dynamics depends on the key parameters. Since the markets are symmetric, it suffices to concen-

trate on one market (market X in our case). Fig. 4 contains four bifurcation diagrams for supply

parameter d (first panel), demand parameter b (second panel), cost parameter c (third panel), and

the intensity of choice (or bounded rationality) parameter f (fourth panel). The starting parameter

selection is a = 20, b = 6, c = 2, d = 8, e = 1, f = 0.17, which is characterized by quasiperiodic

motion (see Fig. 2 ). Simple visual inspection reveals that the dynamic behavior of the system

may change dramatically as the bifurcation parameter varies. A number of aspects deserve our
13For different constellations of parameters, an attracting orbit of period 2 exists around the unstable steady state,

born via Flip bifurcation. A Flip bifurcation can be observed, for instance, under the following parameter selection:
a = 20, b = 14, c = 2, d = 8, e = 1, when f is increased beyond the bifurcation value f ' 0.0496. Similar to the case
of quasiperiodic motion, the fluctuations on the attracting 2-cycle become wider for higher values of f .
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attention. First, in all four panels convergence towards a steady state is possible. For instance,

when the degree of (bounded) rationality is decreased, the slope of the demand curve is increased

(b is decreased) or the supply curve becomes more flat (d is increased) with respect to the base

parameter setting, endogenous dynamics dies out and the system settles down on its long term

equilibrium. The effect of increasing cost parameter c is qualitatively similar to that of increasing

the supply parameter d. Second, the range of parameter values that yield endogenous dynamics,

especially quasi-periodic behavior, is very wide. Third, in a similar fashion to what occurs with

regard to the local asymptotic stability, also from the point of view of the global dynamics, one

could say that the system is ‘destabilized’ when d decreases, or b increases, in the sense that the

range of the fluctuations around the unstable steady state becomes wider. Fourth, as d increases

or b decreases the steady state price increases as one would expect: however, when the underlying

system dynamics is not a steady state, this usual claim is not that clear, though a similar feature

seems to hold for the ‘average’ price.

––– Figure 4 goes about here –––

The foregoing numerical experiments, together with the local analysis developed in section 3.2,

allow us to summarize the key findings for the reference case of symmetric markets, as follows.

• Endogenous, cyclical or more complex fluctuations may arise, uniquely due to the assumed
interaction mechanism between linear cobweb markets, for sufficiently high values of the

switching parameter. Moreover, such behavior often occurs for a range of demand and supply

parameters that would be compatible with stability of both markets considered in isolation.14

• When steady state stability is lost, a strong connection exists between the nature of the
emerging fluctuations (a 2-cycle vs. more involved dynamic patterns on a closed curve) and

the implicitly assumed risk-aversion and risk perception of the producers.

• Outside the stability domain in the space of parameters, the effect of changes of the slopes of
the demand and supply curves is consistent, in a sense, with their role in steady state stability

of the traditional cobweb. That is, a ‘destabilizing effect’ with wider fluctuations and even

complex behavior emerges when the supply (demand) curve becomes more sloped (flat).

• Increasing levels of sensitivity to profit differentials (parameter f) makes the system to evolve
from convergence to steady state to fluctuations of increasing size, to more complex behaviors.

Such results have been proven for symmetric interacting cobweb markets. In addition, as already

discussed in Section 3, the model is based upon a number of simplifying assumptions. In particular,

though we allow markets to be linked from the supply side, we keep them separated from the side

of demand, by assuming demand schedules that are independent of the price of the alternative
14This represents indeed an important point that we have only briefly sketched in Section 3.2. A careful study

of the ‘destabilizing’ impact of supply-side connections between cobweb economies has been performed in Dieci and
Westerhoff (2008), under the assumption of profit-maximizing producers and general demand and cost functions.
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good. Our findings do not constitute, therefore, a general proof that connections between cobweb

markets necessarily bring about such kind of endogenous dynamics and complex behavior. Our

simplified setup has mainly been adopted, however, for the purpose of analytical tractability and

easier economic interpretation of the results. As a matter of fact, the key findings summarized

above continue to hold, and are sometimes even stronger, when some assumptions are relaxed.

Without aiming at completeness, we illustrate this via numerical examples in the next subsections.

4.2 Breaking the symmetry

Let us now consider the effect of breaking the symmetry of the interacting markets. The first

numerical example investigates the stability conditions of the steady state, and their dependence

on parameter f and on the supply parameter dZ of commodity Z. Parameter dZ incorporates, as

already remarked, both the coefficient eZ of the quadratic cost term and the risk term, so that

increasing dZ for fixed eZ means assuming higher risk perception. The two-parameter bifurcation

diagram in Fig. 5, with dZ on the horizontal axis and f on the vertical axis, highlights the effect

of various combinations of the switching parameter and the supply parameter in market Z. The

parameter setting represents a ‘perturbation’ of the symmetric case of Fig. 2 : parameters of market

X are as in Fig. 2, i.e. aX = 20, bX = 6 (and gX := bX/2 = 3), cX = 2, dX = 8, eX = 1, whereas for

market Z we choose aZ = 18, bZ = 4 (and gZ := bZ/2 = 2), cZ = 1, eZ = 2. Note first that under

the assumed parameter selection, both markets would be ‘stable’ in the absence of interactions

(in particular, steady state in market Z would be stable for the whole range of dZ considered on

the horizontal axis, 5 < dZ < 9). The white area of the parameter plane corresponds to a locally

stable steady state, the gray area to an attracting 2-cycle, while other kinds of dynamic behaviour

(including quasiperiodic motion on a closed curve) are represented in black. The phase plots in

the two smaller panels are projections in the plane PX , SX , obtained with parameter combinations

outside the stability region, for dZ = 6, f = 0.2 (two-cycle), and dZ = 8, f = 0.24 (closed curve),

respectively. The picture then shows that, when f increases, stability is lost via Flip bifurcation

only if dZ is small enough. For higher values of dZ (which means stronger risk perceptions or

more risk averse agents) the bifurcation mechanism is in fact that of a Neimark-Sacker bifurcation,

as can be checked by looking at the phase-space. Similar pictures are easily obtained by varying

parameter dX , or by changing the levels of the fixed parameters, as we have checked. This suggests

that, with regard to the local bifurcation structure, the qualitative results obtained for symmetric

markets in section 3.2 are relatively robust.

––– Figure 5 goes about here –––

Let us now consider a parameter range for which the steady state is unstable and the dynamics

are characterized by quasiperiodic fluctuations. Again, we allow the slope of the supply curve

in market Z (inversely related to parameter dZ) to vary, with all other parameters remaining

unchanged. In the top panels of Fig. 6 we perturb the symmetric case in the base parameter

selection of Figs. 1 and 2 (with f = 0.17) by decreasing dZ from 8 to 6. The top-left panel in

Fig. 6 represents the symmetric case, the top-right panel the asymmetric case. We can observe
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a ‘destabilizing’ effect, namely wider fluctuations along a more complex attractor than in the

symmetric case. This is also revealed by the corresponding price time paths, in the second line

of panels. On the contrary, a ‘stabilizing’ effect (fluctuations of reduced amplitude) is obtained

by increasing parameter dZ , as one can easily check. The effect of this symmetry breaking on the

asymptotic dynamics, for dZ ranging in the interval [6, 10], can be appreciated from the bifurcation

diagrams in the third line of panels in Fig. 6. A similar destabilizing (stabilizing) effect is obtained

by increasing (decreasing) the demand parameter bZ , which governs the slope of the demand curve

in market Z. See the fourth line of panels. Finally, the diagrams on the bottom line show the effect

of increasing the cost parameter cZ .15 From this exercise we can conclude the following: The effects

of changing demand and supply parameters in the asymmetric scenarios are qualitatively similar

to what we observe in the symmetric scenarios (compare Fig. 6 with Fig. 4 ), both with respect

to the stability/instability of the steady state and the amplitude of the fluctuations. In addition,

when symmetry is broken there is a tendency towards more irregular fluctuations and increasing

complexity, as suggested by the top panels in Fig. 6.

––– Figure 6 goes about here –––

4.3 Further extensions

The present subsection is devoted to numerically explore a number of straightforward generaliza-

tions of the model. A first goal of such numerical experiments is to provide further evidence of the

robustness of our findings. A second goal is to suggest how the interaction mechanism designed

in this paper might have further interesting implications, when embedded within more elaborated

versions of the model. We consider the following extensions: (a) demand schedules depending on

both prices; (b) central authority interventions; (c) exogenous noise.

Demand depending on both prices. Assume that equations (2) take the following more general

form:

DX,t =
aX − PX,t − hXPZ,t

bX
, DZ,t =

aZ − PZ,t − hZPX,t
bZ

,

where parameters hX and hZ are positive if goods X and Z are complements, negative if the goods

are substitutes. As a consequence, the dynamic pricing equations (11) and (12) are modified,

respectively as follows:

PX,t =
1

1− hXhZ

·
aXdX − gX(1 + Ωt)(PX,t−1 − cX)

dX
− hX aZdZ − gZ(1− Ωt)(PZ,t−1 − cZ)

dZ

¸
,

PZ,t =
1

1− hXhZ

·
aZdZ − gZ(1− Ωt)(PZ,t−1 − cZ)

dZ
− hZ aXdX − gX(1 +Ωt)(PX,t−1 − cX)

dX

¸
,

whereas equations (13), (14), and (15) remain unchanged.

Fig. 7 (top panel) reports the results of a simple numerical experiment carried out in the

symmetric case, with the same parameter setting used for Fig. 1 (and Fig. 2, top panels). The
15This shows, in particular, that assuming different cost functions (which implies that commodities X and Z are

in fact two different goods) does not alter qualitatively the dynamics.
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bifurcation parameter is hX = hZ := h. The case of our basic model, where hX = hZ = 0, is exactly

in the middle of the diagram. Two remarks seem important. First, the effect of substitute goods is

destabilizing (wider fluctuations), while the converse is true for complement goods (reduced size of

fluctuations and even stabilization to steady state). The larger the modulus of h, which is related

to the cross elasticity of demand, the stronger the destabilizing / stabilizing effects. Second, for a

certain range of the parameter around h = 0, the qualitative behavior of the model with demand-

side interdependencies is similar to that of independent demands. In particular, the emergence of

price fluctuations, for sufficiently large f , is observed for the case of both substitute and complement

goods. This strengthens our findings about the impact of the switching parameter. Similar results

can be obtained by repeating this experiment in the asymmetric case.

Policy implications. The effect of central authority interventions may be an important issue

within the market model developed in this paper. A first obvious remark concerns the difficulties

to assess correctly the overall effect of a policy measure addressed to one of the two interacting

markets, when prices fluctuate due to producers’ entry and exit decisions. For instance, the top

panels of Fig. 6 represent the effect, on the dynamics of market X, of an exogenous change of the

supply parameter in market Z. More important, simple policy measures could yield unexpected

effects when combined to the interaction mechanisms described in this paper. This is illustrated in

the following example, where we suppose that a central authority tries to support prices in market

Z by buying KZ units of commodity Z at each time step. The market clearing equation (1) in

market Z would become, in this case, KZ +DZ,t = NWZ,tSZ,t, or

(KZbZ + aZ)− PZ,t
bZ

= NWZ,tSZ,t. (23)

By comparing equation (23) with (1)-(2), we observe that such a strategy is equivalent to an

increase in the parameter aZ . Fig. 7 (bottom panels) reports bifurcation diagrams of the two

prices versus parameter KZ . Parameters are as in Figs. 1 and 2, with f = 0.15. What can be

observed is that the central authority succeeds in supporting price Z (and also price X). However,

if the intervention is too strong, the overall effect may be that of destabilization of the whole system

of interacting markets (via Neimark-Sacker bifurcation). It is remarkable that if markets were not

connected (f = 0), such a measure would simply shift upwards the demand schedule in market Z,

without changing its slope and therefore preserving the stability properties of the steady state. In

contrast, in the case of interdependent cobweb markets, steady state stability may be lost.

––– Figure 7 goes about here –––

Exogenous noise. As is well known, the interaction of nonlinear deterministic dynamical sys-

tems with simple exogenous noise processes can considerably enrich the range of possible dynamic

scenarios of the models, and give rise to realistic patterns for the time evolution of the relevant

economic variables (see e.g. Brock and Hommes (1998), Hommes and Rosser (2001)).

The following simple numerical experiment highlights the way exogenous noise interacts with

the nonlinear deterministic switching mechanism of our model. Namely, our goal is to assess the
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impact of noise relative to that of parameter f , the latter affecting directly the size and nature of

deterministic fluctuations. We introduce i.i.d normally distributed noise in equation (12) of the

time evolution of price Z, which thus becomes

PZ,t =
aZdZ − gZ(1−Ωt)(PZ,t−1 − cZ)

dZ
+ σ²e²Z , (24)

where e²Z ∼ N (0, 1), and σ² > 0. This is equivalent to assuming, for instance, a noisy component

of the aggregate supply in market Z.16 In Fig. 8, the top-left panel depicts the behavior of

price X versus time, under the same parameter selection of Fig. 1 (beyond the Neimark-Sacker

boundary of the stability region) and σ² = 0.2. The effect of noise seems negligible and doesn’t

alter qualitatively the deterministic pattern. The price behavior is mainly driven by the underlying

deterministic dynamics on a closed orbit (the latter represented in the top panels of Fig. 2 ).

Similar results are observed from experiments with higher f and/or higher σ², that all produce

price patterns qualitatively similar to the corresponding deterministic cases. To achieve a clearer

picture of the effect of the noise on the size of price fluctuations, the top-right panel plots the

standard deviation of price X versus the standard deviation σ² of the noise process, and shows

that noise has no (or even ambiguous) effects for small σ², whereas the average size of fluctuations

tends to increase starting from about σ² = 0.2. A more clear-cut and much stronger effect can be

observed, instead, in the range of parameter f for which the steady state is locally asymptotically

stable. An example of a noisy price trajectory is provided in the bottom-left panel, for f = 0.12

and σ² = 0.2. Apart from the smaller range of oscillations, the qualitative price pattern with stable

underlying deterministic dynamics resembles that of the previous case, where parameter f was

outside its stability range (f = 0.17). The bottom-right panel represents the joint effect of noise

and parameter f , in the stability range of the deterministic system. It turns out that for fixed f

the standard deviation of price X is approximately proportional to the standard deviation of the

noise process impacting on market Z. However, a fixed noise level is increasingly amplified by the

intensity of choice f , so that the standard deviation of price X seems to grow exponentially with f .

This shows that the combined effect of such exogenous and endogenous sources of price fluctuations

may not be trivial.

––– Figure 8 goes about here –––

5 Conclusions

Suppose that farmers observe that the price of rye increases. The classical cobweb scenario then

predicts that farmers will start to expand their production of rye. However, when the supply

becomes too high, the price for rye will decrease again. Farmers will consequently leave the market.
16More precisely, if σξeξZ , σξ > 0, eξZ ∼ N (0, 1), is the assumed noise on the aggregate supply, NWZ,tSZ,t, the

resulting noise impacting on price Z turns out to be −bZσξeξZ , that is, the noise component in equation (24), with
σ² := bZσξ. Note also that assuming shocks on individual supply functions would be somewhat problematic both in
terms of their aggregation and due to their effect on realized profits (and thus on the quantity Ωt in equation (15)).
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Note that cobweb models do not explore what the farmers do when their rye production is low.

They will most likely increase their production in another market, say, the wheat market.

The goal of this paper is to investigate such market interactions. To make matters as simple

as possible, we stick to the classical cobweb world as far as possible. While the supply function

of an individual producer increases linearly in the (expected) price, the total supply is a nonlinear

function. The aggregated supply depends on how profitable a market was in the last period.

If a market was relatively profitable, it attracts more producers and the total supply increases.

Analytical investigation and numerical simulations of our nonlinear model indicate that such market

interactions may add to the cyclical behavior of commodity prices captured by the classical cobweb

model, and become a further source of instability and complexity. Indeed, from the point of view

of the local asymptotic stability of the stationary state, we have proven that the introduction of

market interactions can - at least in the symmetric case - destabilize an otherwise stable equilibrium.

Moreover, there is a strong connection between the types of local bifurcation of the steady state

and the underlying assumptions about risk attitudes / perceptions of producers.

Global inspections have shown that when the agents react more sensitive to profit differentials,

interactions become stronger and more complex dynamic scenarios emerge. Market interactions

are also quite important from a policy perspective. For example, it is clear from our framework

(and it has been shown via numerical simulation) that any regulatory intervention that affects the

profitability in one market, may have unexpected effects on the markets’ relative performance and

thus on the whole system of connected commodity markets.

The model proposed in this paper is a very stylized one and could be developed in a number of

directions, some of which have been preliminary investigated by means of numerical experiments.

First, the model should be generalized so as to allow demand functions to depend on prices of

both goods. This would lead to establish more general results about the steady state and its local

stability properties.

Second, a generalization to adaptive expectations schemes seems necessary, in order to assess

to what extent the introduction of some ‘inertia’ in expectation formation can exerce a stabilizing

effect on price fluctuations. Further generalizations could allow for some heterogeneity across agents

in their beliefs about next period prices.

Third, apart from the introduction of time-varying fractions of producers who may switch

between two markets, we have followed the classical linear cobweb model as far as possible: a more

realistic framework should consider further sources of nonlinearity - following recent literature on

cobweb models - e.g. nonlinear demand curves, time-varying second moment beliefs, etc.

Fourth, the analysis of the global effect of various kinds of regulatory interventions within our

simple framework of interacting markets would be an interesting and challenging task.
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Appendix A1. Derivation of the supply curve for risk-averse producers

In this Appendix we show how the producer’s supply curve can be derived within a standard

one-period mean-variance framework (see also Boussard (1996), Chiarella et al. (2006)). The same

framework allows the derivation of a relationship between parameters dX and eX , dZ and eZ . In

the following, we remove subscripts X and Z in order to simplify the notation.

Consider a single risk-averse producer with exponential utility function

u(x) = − exp(−γx), (25)

where γ > 0 is the (constant) absolute risk aversion. In period t − 1 the producer forms his/her
beliefs about the expectation and the variance of the price in period t, which we denote by Et−1[Pt]
and V art−1[Pt], respectively. Assume, for simplicity, naïve expectations and constant second-

moment beliefs, Et−1[Pt] = Pt−1, V art−1[Pt] = σ2P . Assume also a quadratic cost function, C(S) =

cS + eS2, where S denotes the quantity to be supplied in period t. For a given output decision St,
the random profit in period t is given by

πt = PtSt −C(St) = (Pt − c)St − eS2t ,

while conditional expectation and variance of the profit are given by

Et−1[πt] = (Pt−1 − c)St − eS2t (26)

and

V art−1[πt] = S2t σ
2
P , (27)

respectively.
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Then the risk-averse producer solves17

max
St
Et−1[u(πt)]. (28)

Under the utility function (25) and other standard assumptions (conditional normality of the profit

in agent’s beliefs18), the problem (28) can be reformulated as:

max
St

n
Et−1[πt]− γ

2
V art−1[πt]

o
,

i.e. using (26) and (27):

max
St

n
(Pt−1 − c)St −

³
e+

γ

2
σ2P

´
S2t

o
. (29)

By setting

d = 2
³
e+

γ

2
σ2P

´
, (30)

the solution of the expected utility maximization problem (29) becomes

St =
Pt−1 − c

d
,

where d > 2e because both γ and σ2P are positive in (30). Note that the extreme cases of risk

neutrality, γ → 0, or zero (perceived) risk, σ2P → 0, imply that d→ 2e.

Appendix A2. Existence and uniqueness of the steady state
The steady states are obtained by setting (PX,t, PZ,t, SX,t, SZ,t) = (PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) =

(PX , PZ , SX , SZ) in the dynamical system (11)-(14). This leads to the following system of equa-

tions

PX =
aXdX + gX(1 + Ω)(cX − PX)

dX
, PZ =

aZdZ + gZ(1− Ω)(cZ − PZ)
dZ

, (31)

SX =
PX − cX
dX

, SZ =
PZ − cZ
dZ

, (32)

where Ω is given by

Ω = tanh

½
f

2

h
(PX − cX)SX − eXS2X − (PZ − cZ)SZ + eZS2Z

i¾
, (33)

and where (PX − cX)SX −eXS2X := πX and (PZ− cZ)SZ− eZS2Z := πZ represent the steady state

profits.

First, note that from (31)-(32), PX , PZ , SX , and SZ can be expressed as functions of Ω,
17Under the assumed utility function, the problem (28) is obviously equivalent to maximising expected utility of

wealth, Et−1[u(Yt)], where Yt denotes producer’s random wealth at time t, defined recursively as Yt = Yt−1 + πt.
18 In order to stick to the mean-variance framework (which preserves analytical tractability) we assume that pro-

ducers treat the price as a random variable drawn from a normal distribution, whose mean and variance they are
seeking to learn.
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yielding (17) and (18), i.e.

PX =
aXdX + gX(1 + Ω)cX

dX + gX(1 + Ω)
, PZ =

aZdZ + gZ(1− Ω)cZ
dZ + gZ(1−Ω)

,

SX =
aX − cX

dX + gX(1 +Ω)
, SZ =

aZ − cZ
dZ + gZ(1−Ω)

.

Second, note that for both market X and market Z (we omit the subscripts for simplicity) the

following relations hold:

(P − c)S = (P − c)2
d

, eS
2
= e

(P − c)2
d2

=
e

d

(P − c)2
d

,

and therefore we obtain for the steady-state profit

π = (P − c)S − eS2 = d− e
d

(P − c)2
d

= (d− e)S2.

Substituting into (33), one obtains nonlinear equation (16), i.e.

Ω = tanh

½
f

2

·
(dX − eX)(aX − cX)2
[dX + gX(1 + Ω)]

2 − (dZ − eZ)(aZ − cZ)
2

[dZ + gZ(1− Ω)]2
¸¾
,

that implicitly defines the steady-state distribution of producers across markets, Ω. It is easy

to prove that equation (16) admits a unique solution for Ω ranging in [−1, 1]. Indeed, under

our assumptions about the parameters (aX > cX , aZ > cZ , dX > eX , dZ > eZ), the right-

hand side of (16) is a strictly decreasing function of Ω - let us denote it by Q(Ω) - and therefore

−1 < Q(1) < Q(−1) < 1, due to the fact that −1 < tanh(x) < 1 for any x. It follows that a

solution to the equation Ω = Q(Ω), Ω ∈ [−1, 1], exists and that it is unique. Denoting this solution
by Ω, the equilibrium prices and quantities PX , PZ , SX , SZ are thus given by (17) and (18). Note

that the steady state cannot be explicitly computed in general, due to the fact that (16) cannot be

solved analytically.

Appendix A3. Local stability conditions in the symmetric case
In the symmetric case, the time evolution of the dynamical system is driven by the iteration of

the following nonlinear map (where the symbol 0 denotes the unit time advancement operator)

T :


P 0X = F1(PX , PZ , SX , SZ) = a− g

d(1 + Ω)(PX − c)
P 0Z = F2(PX , PZ , SX , SZ) = a− g

d(1− Ω)(PZ − c)
S0X = G1(PX) =

1
d(PX − c)

S0Z = G2(PZ) =
1
d(PZ − c)

,

where

Ω = tanh

·
f

2
(πX − πZ)

¸
, πX = (PX − c)SX − eS2X , πZ = (PZ − c)SZ − eS2Z .
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In order to compute the Jacobian matrix we first determine the partial derivatives of Ω =Ω(PX , PZ , SX , SZ)

with respect to the state variables. We obtain

∂Ω

∂PX
=

½
1− tanh2

·
f

2
(πX − πZ)

¸¾
f

2
SX ,

∂Ω

∂PZ
=

½
1− tanh2

·
f

2
(πX − πZ)

¸¾µ
−f
2
SZ

¶
,

∂Ω

∂SX
=

½
1− tanh2

·
f

2
(πX − πZ)

¸¾
f

2
[(PX − c)− 2eSX ] ,

∂Ω

∂SZ
=

½
1− tanh2

·
f

2
(πX − πZ)

¸¾
f

2
[−(PZ − c) + 2eSZ ] .

The partial derivatives of F1 and F2 are the following

∂F1
∂PX

= −g
d

·
∂Ω

∂PX
(PX − c) + (1 +Ω)

¸
,

∂F1
∂PZ

= −g
d

∂Ω

∂PZ
(PX − c), ∂F1

∂SX
= −g

d

∂Ω

∂SX
(PX − c), ∂F1

∂SZ
= −g

d

∂Ω

∂SZ
(PX − c),

∂F2
∂PZ

=
g

d

·
∂Ω

∂PZ
(PZ − c)− (1− Ω)

¸
,

∂F2
∂PX

=
g

d

∂Ω

∂PX
(PZ − c), ∂F2

∂SX
=
g

d

∂Ω

∂SX
(PZ − c), ∂F2

∂SZ
=
g

d

∂Ω

∂SZ
(PZ − c),

while the derivatives of G1 and G2 are

dG1
dPX

=
dG2
dPZ

=
1

d
.

In order to evaluate the Jacobian at the steady state q∗ = (P,P , S, S), where P = (ad+cg)/(d+g),
S = (P − c)/d = (a− c)/(d+ g), we note that the steady-state profits can be rewritten as

πX = πZ = (d− e)S2 = (d− e) (a− c)
2

(d+ g)2
.

The Jacobian matrix is thus given by

DT (q∗) =


−g f2S

2 − g
d g f2S

2 −g f2 (d− 2e)S
2

g f2 (d− 2e)S
2

g f2S
2 −g f2S

2 − g
d g f2 (d− 2e)S

2 −g f2 (d− 2e)S
2

1
d 0 0 0

0 1
d 0 0

 ,

Tedious computations allow the factorization of the characteristic polynomial of DT (q∗) as follows
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P(λ) = λ
³g
d
+ λ

´"
λ2 +

³
gf S

2
+
g

d

´
λ+

gf(d− 2e)S2
d

#
=

λ
³g
d
+ λ

´
P1(λ).

It follows that two eigenvalues of DT (q∗), say λ1 and λ2, are λ1 = 0, λ2 = −g/d, respectively,
while the remaining two eigenvalues, say λ3 and λ4, are the roots of

P1(λ) := λ2 +
³
gf S

2
+
g

d

´
λ+

gf(d− 2e)S2
d

.

Hence a sufficient condition for the steady state q∗ to be locally asymptotically stable is provided
by the following set of inequalities19

g

d
< 1, (34)

P1(1) > 0, P1(−1) > 0, P1(0) < 1. (35)

In particular, conditions (35) give a necessary and sufficient condition for the eigenvalues λ3 and

λ4 to be of modulus smaller than unity (see e.g. Medio and Lines (2001)). Condition P1(1) > 0 is

always true under our assumptions about the parameters; condition P1(−1) > 0 can be rewritten
as

g

d
<

1

1 + 2efS
2 := uF , (36)

while condition P1(0) < 1 becomes

g

d
<

1

f(d− 2e)S2
:= uNS . (37)

Note first that uF < 1, provided that f > 0, which implies that condition (34) is redundant.

This means that - at least for the symmetric case at hand - the stability conditions in the case of

interacting markets are stricter than the stability condition (21), which holds in the case of two

independent markets. The stability conditions (34)-(35) are thus equivalent to the following

g

d
< min {uF , uNS} .

Furthermore, if it happens that g/d = uF < uNS, then one of the two eigenvalues λ3 and

λ4 is equal to −1 (whereas the other still is smaller than one in modulus) and stability is lost via
Flip-bifurcation if g/d becomes larger than uF under a small parameter change. On the other hand,

when g/d = uNS < uF , then λ3 and λ4 are complex conjugate with modulus equal to one, and

stability is lost via Neimark-Sacker bifurcation if g/d becomes larger than uNS . Note also that in

the extreme case f → 0, markets are no longer interdependent and the stability conditions reduce
19We recall that g and d are positive parameters.
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to g/d < 1, as one would expect. Moreover, in the extreme case d→ 2e, condition (37) is fulfilled

for any selection of parameters, which means that a Neimark-Sacker bifurcation cannot occur in

this case.

Figure captions

Figure 1
Interacting cobweb markets. The panels show from top to bottom the price in market X, the

profitability of market X, the price in market Z, the profitability of market Z and the distribution

of producers. Parameter setting is a = 20, b = 6, c = 2, d = 8, e = 1, f = 0.17, characterized by

quasiperiodic motion on an attracting closed curve in the phase space, born via Neimark-Sacker

bifurcation.

Figure 2
Phase space plots. The panels show the dynamics in phase space, after omitting a transient

phase, of the case of symmetric markets for a = 20, b = 6, c = 2, d = 8, e = 1, f = 0.17 (top

panels), f = 0.20 (bottom panels). The motion takes place on an invariant closed curve in the

phase space. The left panels represent projections on the plane PX , PZ , the right panels show

projections on the plane PX , SX .

Figure 3
Coexistence of attractors in the symmetric case, for a = 20, b = 6, c = 2, d = 8, e = 1,

f = 0.64295. The two top panels represent the dynamics of PX versus time, after omitting a

long transient phase, in the case of two different initial conditions, both selected very close to the

repelling steady state, but belonging to different basins of attraction: one trajectory converges to

a strange attractor (first panel, initial condition PX,0 = P − 0.1, PZ,0 = P +0.1, SX,0 = SZ,0 = S),
the other to an attracting 2-cycle (second panel, initial condition PX,0 = P −0.05, PZ,0 = P +0.05,
SX,0 = SZ,0 = S). The third line of panels represents the projections of the coexisting attractors

on the plane PX , PZ . The two basins of attraction, along the two-dimensional section of equation

SX = SZ = S, are represented with different greytones in the bottom panel.

Figure 4
Bifurcation diagrams in the case of symmetric markets. The base parameter set is a = 20,

b = 6, c = 2, d = 8, e = 1, f = 0.17. The panels show from top to bottom, bifurcation diagrams

for parameters d, b, c and f , respectively. These parameters are increased in 600 discrete steps, as

indicated on the axis.

Figure 5
Two-parameter bifurcation diagram for dZ and f , showing the existence of two kinds of local

bifurcations also in the case of asymmetric markets. The remaining parameters are aX = 20,

bX = 6, cX = 2, dX = 8, eX = 1, aZ = 18, bZ = 4, cZ = 1, eZ = 2. The two smaller

panels, representing projections of the attractors in the plane PX , SX , correspond to parameter
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combinations outside the stability region, with dZ = 6, f = 0.2 (two-cycle), and dZ = 8, f = 0.24

(closed curve), respectively.

Figure 6
Asymmetric markets. Effect of perturbations of the symmetric case, obtained by varying pa-

rameters of market Z. Apart from those parameters that are varied from time to time, we adopt

our base selection for the symmetric case (top panels of Fig. 2 ), i.e. aX = aZ = 20, bX = bZ = 6,

cX = cZ = 2, eX = eZ = 1, dX = dZ = 8, f = 0.17. The first two lines of panels consider the effect

of decreasing supply parameter dZ in market Z. The panels of the first line are phase plots in the

plane PX , SX , for dX = dZ = 8 and dX = 8, dZ = 6, respectively. The panels of the second line

represent the corresponding trajectories in the time domain. The panels of the third line summarize

in bifurcation diagrams the asymptotic behavior of prices PX and PZ versus parameter dZ . The

same is done in the two bottom lines of panels for parameters bZ and cZ , respectively.

Figure 7
Deterministic extensions. Top panel: A bifurcation diagram showing the effect on price X of

the introduction of cross-elasticities in demand functions. Case h = 0 corresponds to our model

with the same parameter selection of Fig. 1. For positive h the two goods are complements, for

negative h they are substitutes. Central and bottom panels: Bifurcation diagrams showing the

effect on prices X and Z of an exogenous demand component KZ for commodity Z by a central

authority. Parameters are as in Figs. 1 and 2, except for f = 0.15.

Figure 8
Effect on priceX of exogenous i.i.d. normally distributed noise impacting on market Z. Top-left

panel: A noisy trajectory of price X with parameters as in Fig. 1 and standard deviation of noise

on price Z σ² = 0.2. Top-right panel: Standard deviation of price X versus standard deviation of

noise on price Z. Bottom-left panel: A noisy trajectory of price X, with σ² = 0.2 and parameters

as in the top-left panel, except for f = 0.12. Bottom-right panel: Standard deviation of price X as

a function of various combinations of parameter f and standard deviation σ². Parameters are as

in the previous panels, with σ² ranging from 0 to 0.5 and f ranging from 0 to 0.16.
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