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ABSTRACT

Interactions in ecological communities are inherently nonlinear and can lead to com-

plex population dynamics including irregular fluctuations induced by chaos. Chaotic

population dynamics can exhibit violent oscillations with extremely small or large pop-

ulation abundances that might cause extinction and recurrent outbreaks, respectively.

We present a simple method that can guide management efforts to prevent crashes,

peaks or any other undesirable state. At the same time, the irregularity of the dynam-

ics can be preserved when chaos is desirable for the population. The control scheme is

easy to implement since it relies on time series information only. The method is illus-

trated by two examples: control of crashes in the Ricker map and control of outbreaks

in a stage-structured model of the flour beetle Tribolium. It turns out to be effective

even with few available data and in the presence of noise as is typical for ecological

settings.
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Introduction

The observation by May (1974) that simple models of population growth can generate irregular

oscillations in population abundance has made chaos of considerable interest among ecologists

(Costantino et al. 1997; Perry et al. 2000; Cushing et al. 2003; Turchin 2003; Becks et al. 2005).

Chaotically fluctuating populations may reach low densities, where their probability of extinction

must be high (Thomas et al. 1980; Berryman and Millstein 1989). In this paper we present a

method that allows to regulate chaotic population dynamics and can prevent the population from

going extinct.

We emphasize that our aim is to regulate the chaotic system rather than to control it. I.e.,

we only avoid certain unwanted fluctuations, namely those in which the population would decline

below its minimum viable size. The particularity of our approach is that the dynamics still remains

chaotic, but it is “less harmful”. Unlike methods to suppress chaos (chaos control, e.g. Ott et al.

1990), the maintenance of chaos may be desirable for various reasons. For example, chaos has been

shown to reduce the probability of global extinction in metapopulations (Allen et al. 1993; Ruxton

1994), to be an optimal regime for biological systems from an evolutionary perspective (Ferrière

and Gatto 1993) and to favor biodiversity in species communities (Huisman and Weissing 1999).

The idea of our method is quite simple. In chaotic time series one can often observe repeating

”crash patterns“. Therefore, we first collect enough data to identify certain trajectories of popula-

tion sizes that would lead to a crash. Then, we implement an intervention at these critical points

to avoid bigger crashes in the near future (cf. so-called chaos anti-control algorithms that can be

traced back to Yang et al. 1995). The advantages of the method are obvious. The only requirement

is time series information, which means that no knowledge about the underlying law of motion

is needed. Furthermore, only occasional interventions of moderate size are sufficient, and we will

show that they work well even for noisy and relatively short data sets as is typical for ecological

time series.

Belovsky et al. (1999) have demonstrated that nonlinear dynamics increases the likelihood of

extinction in experimental populations of the brine shrimp (Artemia franciscana). Investigating

time series of 758 species (including lepidopteran species, mammals, birds and fish), Fagan et al.

(2001) found that the majority of populations without immigrations or refuge mechanisms exhibit a

tendency to fluctuate severely enough to possibly go extinct. There is a variety of mechanisms that

especially threaten small populations (e.g. Soulé 1987; Lande 1988; Pimm et al. 1988): demographic

stochasticity, environmental stochasticity, natural catastrophes, genetic inbreeding, edge effects

(Lande 1987), anti-rescue effect (Harding and McNamara 2002; Hovestadt and Poethke 2006) and

the Allee effect (Allee 1931). This led to the concept of a minimum viable population, a deterministic

threshold size, below which a population is regarded to be particularly vulnerable to extinction

(Shaffer 1981; Gilpin and Soulé 1986).

As many species are increasingly threatened due to, e.g., habitat fragmentation/degradation,

biological invasions and emerging or preexisting diseases, it is important to understand the dynamics
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of small populations as well as to explore effective management measures to preserve them (Lande

1988). Conservation biologists, for instance, have developed the framework of population viability

analysis (cf. Boyce 1992) that estimates the future population size, assesses the extinction risk of

an endangered species and allows to explore appropriate management scenarios.

Chaotic populations dynamics do not only exhibit very small densities, but also recurrent

peaks in population numbers. These outbreaks continue to be a problem in both aquatic (e.g. algal

blooms, Scheffer 1991; Hallegraeff 1993) as well as terrestrial ecosystems (e.g. insect outbreaks,

Berryman 1987; Dwyer et al. 2004). Similarly, forest fires in the Mediterranean are predicted to be

chaotic (Casagrandi and Rinaldi 1999) and epidemics of childhood diseases such as measles (e.g.,

Schaffer and Kot 1985; Olsen and Schaffer 1990; Drepper et al. 1994; Ellner et al. 1998) haven

been suggested to be “possibly chaotic” (Grenfell 2000, p. 49). Our method is general enough to

prevent also those peaks of pest species or, more generally, any unwanted event, i.e. undesirable

region in phase space. We exemplarily demonstrate this with a model of the flour beetle Tribolium

castaneum (Desharnais et al. 2001).

The remainder of this paper is organized as follows. First, we introduce our method by applying

it to time series data from the deterministic and stochastic Ricker map, test its robustness against

the length of the available data sets and investigate its effectiveness. Here, the aim is to prevent

species extinction. Then we confront our method with an ecologically more realistic situation,

namely with a stage-structured population of the flour beetle. The aim is now to prevent recurrent

outbreaks. Finally, we discuss the applicability of this method as well as its limitations.

The method – preventing population extinction

A typical time series of a chaotically fluctuating population is shown in Fig. 1a. It has been

obtained by iterating the Ricker (1954) map

xt+1 = xt exp
{

r
(

1 −
xt

K

)}

=: f(xt), (1)

where xt denotes population size (or density) at time t and parameters r > 0 and K > 0 describe

the intrinsic growth rate and carrying capacity, respectively. Assuming there is a minimum viable

population size, we set a threshold x∗ (dashed line in Fig. 1a) below which we regard the population

to be especially endangered. For an arbitrary value of x∗, we can see that the population in Fig. 1a

falls below this critical value eight times (marked by circles). In the long run (10,000 generations),

the proportion of these crashes is 8.7 %.

Since these crashes can be harmful, we define the interval of population states 0 ≤ xt ≤ x∗

as the undesirable (crash) region U (termed “loss region” in Yang et al. 1995). Our method starts

with finding the paths of trajectories that end in this crash region (risk trajectories). This allows

us to implement an intervention mechanism which perturbs risk trajectories slightly, so that they

follow a different path.
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Step 1: Identifying alert zones

Detecting risk trajectories in our method is straightforward: whenever the population xt

falls into the crash region U , we simply scan the time series to collect the previous m states

xt−1, xt−2, . . . , xt−m. In other words, we trace back the crash path by considering the successive

preiterates of xt. Repeating this for every crash that can be observed in the time series, we obtain

a collection of crash paths as illustrated in Fig. 1b. For each time step t − m there is a set of

population states Zm that can be interpreted as alert zones: when the population is within these

dangerous regions, the population is likely to crash in m time steps. We can observe that the

alert zones initially consist of single intervals, but are then composed of an increasing number of

smaller state intervals. Generally, for increasing m, the width of the alert zone tends to shrink in

the unstable direction (as a consequence of the exponential divergence due to chaos, cf. Yang et al.

1995).

Step 2: Implementing interventions

The identification of alert zones suggests that we proceed by fixing a value of m and intervene

each time the trajectory falls into an alert zone Zm. By way of example, we present an intervention

that takes place one time step before the identified crash (i.e., m = 1). This may be easy to imple-

ment in practice, because we note that a crash is preceded by an immediate peak in population size,

cf. Fig. 1b. In ecological terms, this reflects scramble competition between individuals. We choose

an intervention that affects directly the population state (e.g., by removing/harvesting/culling a

constant number of individuals I > 0). The corresponding mathematical description is

xt+1 =

{

f(xt − I) if xt ∈ Z1

f(xt) otherwise
. (2)

In order to assess the effect of this intervention, Fig. 1c shows a simulation of Eq. (2) in which

each intervention is marked by a point in the top. Population crashes are fully prevented; in a

long-run simulation of 10,000 time steps they do not occur a single time. This can be explained by

taking a closer look at the dynamical map that results when incorporating the interventions. Fig. 2

shows the realized map (2) in thick line, superimposed on the uncontrolled Ricker map in dashed

line. One can readily see that the map in the alert zone is replaced by a part of the map that has

been shifted from the left-hand side. As a result, the trajectory does not reach the crash region.

The alert zone in Fig. 2 has been determined analytically and the decisive lower bound of the exact

alert zone (2.27215...) is very close to the one estimated from 10,000 observations (2.27232).

When choosing intervention size I, we need to be careful for two reasons. First, I needs to be

sufficiently large to kick the trajectory out of the alert zone (and not into the alert zone of another

time step, either). Second, we will later see in a bifurcation diagram that too large a choice of I may

result in the suppression of chaotic dynamics, undesirable for the reasons stated in the introduction.
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As a rule of thumb, we therefore choose I slightly larger than the length of the alert zone. Because of

the exponential decay of alert zone interval lengths, the required intervention sizes become smaller

the earlier we intervene. Were it be possible to implement really long-sighted monitoring, alert

zones would become rather thin and one could exploit the sensitivity of chaotic dynamics on initial

conditions, whereby only tiny interventions would be required. However, from the applied point of

view, the unfolding of alert zones in several intervals complicates a straightforward management

rule. Moreover, the method is probably more practical with later interventions, especially because

noise might additionally perturb the intervened system in the meantime.

In principle, any intervention can be applied as long as it forces the trajectory to leave the

crash path. Alternatively, knowledge of the crash paths can also be used to induce crashes or

other phenomena (Hilker and Westerhoff 2007). For example, one could apply density-dependent

interventions, which are widely used in sustainable harvesting in fisheries and forestry (e.g. Clark

1990). In the Discussion, we will point out that other interventions do not change the qualitative

results and are also quantitatively very similar.

Effectiveness

Let us now explore the effectiveness of our intervention method in relation to the length of

the time series. Generally, the more observations and crashes are present in the available time

series, the more accurate the identification of alert zones and the less crashes are expected to occur.

Again, we synthetically generate time series of various lengths in order to estimate the effectiveness

of interventions, and perform long-term simulations with the alert zones identified. In the top row

of Fig. 3, we plot the proportion of population crashes in the simulation, based on population size

declining below the threshold value, against intervention size I. From left to right, we use 25, 50,

100 and 1,000 observations to calculate the alert zones. The results for each value of I are presented

for 20 replicates with 10,000 simulation iterations each. Since initial conditions may influence both

proportion of crashes and estimation of alert zones, we choose for each simulation different initial

conditions. Baseline scenarios are shown for comparison (I = 0 equivalent to no intervention).

When intervention size I exceeds the length of the alert zone (here approximately 0.19), the pro-

portion of population crashes reduces significantly. For already 25 observations, crash occurrences

decrease from 9.0% to only 5.4%, which corresponds to a reduction by 40%. With increasing num-

ber of observations, intervention performance continues to improve. For 50 and 100 observations,

crashes can be reduced by 69% and 82%, respectively. Interventions based on 1,000 observations

have the potential to prevent crashes almost completely.

While the control action can be adverse for subcritical interventions (I <= 0.19), it is always

beneficial for supercritical interventions (I > 0.19). In fact, the bifurcation diagram in Fig. 4

demonstrates that the undesirable region of population crashes, U = [0, x∗ = 0.05], is missing for

intervention sizes larger than I > 0.19. It also explains the poor performance around I = 0.14,
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where there is a low-period cycle with one of the population states corresponding to a crash. We

can similarly explain, why the effectiveness for supercritical interventions varies with size I. For

imperfectly estimated alert zones there appears a small line of asymptotic values below x∗ in the

bifurcation diagram (not shown here). Given that there is a periodic window around I = 0.45, the

effectiveness is not as good as for other intervention sizes.

Effect of noise

Lastly, let us examine the effect of noise. Since we are primarily interested in the dynamics of

small populations prone to extinction, we consider a demographic stochastic version of the Ricker

map that adds a random variable Et on the square root scale

xt+1 =
(

√

f(xt) + Et

)2

, (3)

with f(xt) as in Eq. (1), Et being a normal random variable with mean 0 and a constant standard

deviation (noise level) σ and E0, E1, E2, . . . being uncorrelated. In the case in which
√

f(xt) + Et

is negative, we replace it by 0 (cf. Dennis et al. 2001; Cushing et al. 2003; Domokos and Scheuring

2004).

The proportion of population crashes observed for different noise levels is shown in separate

rows in Fig. 3. First of all, we observe that interventions appear to be always beneficial – contrary

to the deterministic case even for subcritical intervention sizes (I < 0.19). Once more, we see that

the number of population crashes can already be effectively reduced based on 25 observations. For

small noise (σ = 0.01), the general pattern looks very similar to the deterministic case: (i) With a

greater number of observations, the method becomes increasingly effective. (ii) There is a critical

intervention size that approximately corresponds to the width of the alert zone. However, the

lengths of alert zones become wider in the stochastic case. As a consequence, the sharp transition

observed around I = 0.19 in the deterministic scenario becomes more fuzzy. Moreover, there

is a larger variability in the effectiveness, but interventions remain to be always beneficial for

supercritical I. For intermediate noise levels (σ = 0.05), the clear distinction between super- and

subcritical intervention sizes vanishes. Intervention effectiveness seems to scale exponentially with I

(for long observations). In the presence of strong noise (σ = 0.1), crashes appear to decrease more

linearly with intervention size. However, since alert zones become wider and wider with increasing

noise variability, even large intervention sizes might fail to kick the trajectory out of the alert

zone. Consequently, the “linearly” distributed effectiveness observed for large noise is the initial

part of the scaling that in fact decreases more exponentially with I (not shown here). Interestingly,

intervention effectiveness appears to become less dependent on the number of observations available

for stronger noise.
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Application to a stage-structured insect population – preventing outbreaks

In this section, we apply the previously described method to a well-parameterized and investi-

gated three-dimensional population model of the flour beetle Tribolium castaneum (e.g. Costantino

et al. 1997; Cushing et al. 2003; Costantino et al. 2005). The model is stage-structured and distin-

guishes between feeding larvae (Lt), nonfeeding larvae, pupae and callow adults (Pt) and sexually

mature adults (At). Model equations with demographic stochasticity, henceforth called LPA model,

read (Desharnais et al. 2001)

Lt =
(

√

bAt−1 exp (−cELLt−1 − cEAAt−1) + E1t

)2

, (4)

Pt =
(

√

Lt−1 (1 − µL) + E2t

)2

, (5)

At =
(

√

Pt−1 exp (−cPAAt−1) + At−1 (1 − µA) + E3t

)2

, (6)

where b describes the number of larval recruits per adult and µL and µA mortality of larvae and

adults, respectively. The parameter cEL describes cannibalism of eggs by adults, cEA describes

cannibalism of eggs by adults, and cPA describes cannibalism of pupae by adults. The vector

Et = (E1t, E2t, E3t)
′ is made up by random noise terms with joint normal probability distribution

with a mean vector of zeros and a variance-covariance matrix Σ. The deterministic version of

system (4-6) can be obtained by setting Σ = 0 or, equivalently, E1t = E2t = E3t = 0. For a

certain range of parameter values the deterministic model shows chaotic oscillations that have also

been obtained experimentally (Costantino et al. 1997). Fig. 5a shows the chaotic attractor of the

deterministic LPA model, including distinct recurrent peaks of all state variables.

T. castaneum is a significant agricultural pest. Therefore, we aim to prevent it from attaining

those ranges of the chaotic attractor that correspond to mass outbreaks. In contrast to the previous

section, the undesirable regions are now large, instead of small, population sizes. However, we

similarly confine desirable areas of the attractor by setting appropriate thresholds for the observable

state variables. By way of example, we arbitrarily choose A∗ = 100 and define system states

(Lt, Pt, At) with At > A∗ as outbreaks. The next step in our method is to learn the paths that lead

to an outbreak, i.e. to identify alert zones. Alert zones are now embedded in a three-dimensional

state space. They actually turn out to be small bands of moderate length as shown in Fig. 5b for

the deterministic case.

A point where intervention can be applied is the time step that immediately precedes the next

outbreak, because the alert zone is very compact. We model the intervention by adding a certain

number I of adult individuals. This technique to manipulate laboratory populations has been used

in the experiments by Desharnais et al. (2001). In order to assess the impact and effectiveness of this

intervention, we again use the LPA model (4-6) to simulate the dynamics and record the resulting

fraction of outbreaks. Results are shown in Fig. 6 for time series of various lengths. Without

any interventions, an average of 12 % of measurements correspond to outbreaks of the flour beetle.

This fraction declines significantly already for few available observations. Surprisingly, our method
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already works for as few as 25 data points and can on average halve the number of mass outbreaks

for 100 observations. For 1,000 observations, outbreaks can be consistently reduced to a third. In

particular, control actions generally lead to an improvement. The longer the time series available

for estimating the alert zone, the less variable and thus more reliable the interventions.

When there are enough observations to estimate the alert zones accurately, it is possible to

identify a critical value for intervention size around I = 2, above which intervention effectiveness

reaches a plateau. Again, this critical intervention size is a good approximation to the interval

length of the A-component in the estimated alert zones.

Discussion

Chaotic fluctuations in population abundance may threaten ecosystem integrity by driving

populations down (leading even to population extinctions) or up (corresponding to mass outbreaks

with a multiplicity of possibly adverse effects). Controlling this situation seems to be intricate

due to the erratic aspect of chaotic dynamics, but it is well-known that even complex dynamics

obey some simple rules (e.g., Schaffer 1985; Schaffer and Kot 1986; Rinaldi et al. 2001a). We have

presented an easy-to-implement method that can prevent both population crashes and outbreaks,

or, more generally, any undesirable region of a chaotic attractor. This method consists of two

steps. First, a time series of the population is analyzed to identify paths that lead to crashes or

outbreaks. This elucidates and defines alert zones: whenever population abundance reaches one of

these areas, it is very likely to attain an undesirable size within the near future. The second step

is to manipulate population abundance to force it out of the dangerous path that would otherwise

lead to the harmful state. We found that there is a critical intervention size in the order of the

alert zone length, above which control actions substantially improve the desired performance.

Robustness

Our method has been tested in intensive numerical simulations of a general one-dimensional

population model (Ricker map). It turns out to be also very effective in a more realistic and

complicated model of the flour beetle that has been well parameterized in the laboratory. The

intervention effectiveness depends on both the number of available data and the intervention size.

While the former is important for the approximation of alert zones, the latter determines how well

the system can be forced to leave risk trajectories. We also investigated the impact of noise on

intervention performance. On the one hand, it plays a constructive role in widening the alert zones.

This minimizes the risk that potential crash paths are not identified. On the other hand, larger

intervention sizes are required to push the system out off the alert zone.

The control policy presented in this paper consists of removing/adding a constant number of

individuals. However, we recognize that many sustainable harvesting strategies in the ecological
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literature make use of state-dependent control policies (e.g., Clark 1990). We therefore tested our

method with the stochastic Ricker model and three alternative interventions (only applied if the

population is situated in the alert zone):

xt+1 = f(xt − E1xt) if xt ∈ Z1 ,

xt+1 = f(xt) exp (−E2xt) if xt ∈ Z2 ,

xt+1 = f(xt) exp (−E3) if xt ∈ Z2 ,

where E1 and E2 are measures for both the catching (harvesting) effort and catchability. E3 is

a similar control variable used in a model by Piccardi and Ghezzi (1997). The second and third

control policies are implemented after population reproduction and are thus based on alert zones

estimated two time steps ahead. It turns out that the results are qualitatively identical and also

quantitatively very similar to Fig. 3. This is actually not surprising, since the intervention is only

applied when the system is in the alert zone and the important mechanism is then just to generate

a perturbation of sufficient size. We find the usage of a constant intervention size instructive, since

it clearly demonstrates that the control has to be chosen in the size of the alert zone length.

The results have also been checked for lognormal multiplicative noise in the Ricker map, in

order to account for environmental rather than demographic stochasticity (cf. Brännström and

Sumpter 2006). Our findings are robust to this modification as well.

Limitations

In this paper, we have considered data from the one-dimensional Ricker map and the low-

dimensional LPA system (which can in fact be described by a close to one-dimensional motion in a

phase space reconstruction, cf. Takens (1981)). Many, or even most, ecological systems in nature

are, however, high-dimensional which greatly increases the demand of available observations. In

those systems, our method will probably be difficult to apply due to a lack of data. Nevertheless,

we have demonstrated that our method works for a complex system such as described by the LPA

model of the flour beetle Tribolium, that could be tested in laboratory experiments.

There are two other possible limitations of our method. First, the available data need to

contain a certain amount of crashes or outbreaks, so that one can identify a sufficient number of risk

paths. The less frequent those events are, the longer the time series needs to be. To overcome this

difficulty, one might modify risk threshold definitions or implement a stronger perturbation. Second,

the implementation of this method will also face the problem of determining exact abundance or

imperfect application of an intervention. In multi-species systems, for example, not all species

might be accessible for observation or intervention.
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Efficiency

Ideally, the alert zone estimated from time series would be as large as necessary (to cover all

potential risk paths) and as small as possible (to minimize the number of perturbations, e.g. for

economical or conservationist reasons). The aim of our method is to prevent extinction or undesir-

able events such as outbreaks. We do not take into account the costs of intervention here, since we

assume that the undesirable scenarios are invaluable, catastrophic or irreversible (species extinction,

biodiversity loss, ecosystem disturbance, harvest disappearance, socio-economic consequences). An

intervention size of I = 0.2 can be highly efficient in preventing entire population crashes; this

corresponds to less than 10% of the lower bound of the alert zone. In the flour beetle system,

adding two adults prevents the system from boosting to over 100 adults. Possible extensions of the

presented method could consider a benefit-to-cost ratio and aspects from optimal control theory.

Chaos Maintenance

The presented approach is not only highly effective in avoiding undesired events, but can

also confine rather than control the chaotic dynamics. However, the maintenance of chaos is not

guaranteed for all intervention sizes, i.e., the dynamics might get stabilized to a periodic oscillation

or fixed point. Though this can be beneficial in some situations, this might be undesirable in

others as described in the introduction. A simple refinement might solve this problem: varying

intervention size over time so that the system maintains chaotic dynamics. Therefore we outline

two possible research directions. First, environmental and demographic noise could be used to

smooth out sharp dynamical transitions and may induce chaos in parameter regions where there is

no chaos otherwise (Crutchfield et al. 1982). Lai et al. (2003) have shown that there is a critical

noise level above which there is an intermittent behavior with the trajectory visiting an unstable

chaotic saddle that coexists in a periodic window. Second, there is a number of algorithms that

can be used to sustain chaos (In et al. 1995; Nagai and Lai 1995; Parmananda and Eiswirth 1996)

and that might be utilized for the current situation. However, to apply them to practical ecological

situations, they should be adapted to perform with small data sets only and to require neither any

knowledge of the system dynamics nor the existence of certain dynamical regimes.

Applicability and related approaches

The applicability of our intervention in the flour beetle system, i.e. addition of adult individu-

als, has already been experimentally demonstrated by Desharnais et al. (2001). These authors were

interested in the general effect of perturbations and identified “hot regions” of the attractor by

calculating the local derivates of the model equations – information that is usually hardly available

in practice. In contrast, the method presented here just needs sampled abundances. Experimental

addition of adults, however, turned out to dramatically dampen the oscillations. Further empirical
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evidence for successful interventions affecting population cycles has been provided recently in large-

scale field experiments. The reduction of a certain amount of vertebrate predators (by live-trapping

and removal of nest sites) prevented crashes of small rodents in Finland (Korpimäki and Norrdahl

1998). Similarly, the elimination of parasites in red grouse (by treatment with anthelminthics)

prevented population crashes in northern England (Hudson et al. 1998).

Theoretical work that is related to this study is by Yang et al. (1995) and Dhamala and Lai

(1999) as well as Shulenburger et al. (1999). Their attention, however, was focused on the case of

transient chaos, i.e., when the chaotic attractor has actually lost its stability. Piccardi and Ghezzi

(1997) analyzed attractor confinement of the Ricker map from an optimal control perspective. Other

approaches include peak-to-peak dynamics, applied to a forest-pest model, (Rinaldi et al. 2001b)

and symbolic time series analysis, applied to an epidemic problem (Piccardi 2004). However, the

results presented here are, to our knowledge, the first systematic investigation in an ecologically

applicable context. In particular, we take into account the amount of available data as well as

varying intervention sizes. Our method is robust in the presence of noise and does not require any

knowledge of the system equations. We ought to mention that all model equations appearing in

this paper are only used to generate time series and to simulate the effect of interventions. Thus,

they only serve illustration purposes, but they are not necessary for the presented concept itself.

Prospects

Notably, as little as 25 observations can yield sufficient information of the system to implement

adequate interventions aimed to reduce flour beetle outbreaks. This amount of information is

typically available in ecological time series. Full population viability analyses of endangered species,

in contrast, continue to demand datasets that are only rarely available (e.g. Coulson et al. 2001).

We therefore find the results of the presented approach encouraging to stimulate further refinements

and to be tested in real situations. Our method might prove useful in resource management and

contribute to improve regulation of population crashes, extinctions and outbreaks, thus aiding areas

as seemingly disparate as conservation biology, control of pest species, biological invasions and risk

analysis.
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tions. Pages 13–34 in M. E. Soulé, ed. Conservation Biology: The Science of Scarcity and

Diversity. Sinauer, Sunderland.

Grenfell, B. T., 2000. Measles as a testbed for characterising nonlinear behaviour in ecology. Pages

49–72 in J. N. Perry, R. H. Smith, I. P. Woiwod, and D. R. Morse, eds. Chaos in real

data. Analysis of non-linear dynamics from short ecological time series. Kluwer Academic

Publishers, Dordrecht.

Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase.

Phycologia 32:79–99.

Harding, K. C. and McNamara, J. M. 2002. A unifying framework for metapopulation dynamics.

The American Naturalist 160:173–185.

Hilker, F. M. and Westerhoff, F. H. 2007. Triggering crashes in chaotic dynamics. Physics Letters

A 362:407–411.



– 14 –

Hovestadt, T. and Poethke, H. J. 2006. The control of emigration and its consequences for the

survival of populations. Ecological Modelling 190:443–453.

Hudson, P. J., Dobson, A. P., and Newborn, D. 1998. Prevention of population cycles by parasite

removal. Science 282:2256–2258.

Huisman, J. and Weissing, F. J. 1999. Biodiversity of plankton by species oscillations and chaos.

Nature 402:407–410.

In, V., Mahan, S. E., Ditto, W. L., and Spano, M. L. 1995. Experimental maintenance of chaos.

Physical Review Letters 74:4420–4423.
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Fig. 1.— (a) Chaotic time series generated by the Ricker map (Eq. 1) with r = 3,K = 1, x0 = 0.1.
The dashed line marks the threshold value x∗ = 0.05. The circles indicate population crashes. (b)
Alert zones obtained from 10,000 observations (containing 867 crash paths). A crash is defined
as a drop below the threshold value. (c) Simulation of the dynamics with intervention as in
Eq. (2) with I = 0.25. Each intervention is marked by a point in the top. The alert zone is
2.27232 ≤ xt ≤ 2.46302. Other parameters as in (a).
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Fig. 2.— The intervention in the alert zone xt ∈ Z1 ≈ [2.27, 2.46] prevents the dynamics to reach
the crash region xt+1 ∈ U = [0, x∗ = 0.05]. This map has been obtained from 10,000 iterations of
Eq. (2). The dashed line corresponds to the unperturbed Ricker map. Parameters as in Fig. 1.
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Fig. 3.— Effectiveness of the direct (culling) intervention method (Eq. 2) to prevent crashes in the
general population model of the deterministic (top row) and stochastic Ricker map (Eq. 3) with
different noise levels σ. The number of observations used to estimate the alert zone is indicated.
Points give the mean effectiveness of 20 replicates and the vertical bars the standard deviation.
The dotted line is the mean of the baseline scenario without intervention, i.e. I = 0. Parameters:
r = 3,K = 1.
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Fig. 4.— Bifurcation diagram of the deterministic Ricker map with direct culling interven-
tion (Eq. 2) based on the alert zone Z1 estimated from 10,000 observations. Note the logarithmic
vertical scale for better visibility. Model parameters as in Fig. 1.
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Fig. 5.— (a) Chaotic attractor of the deterministic LPA model (Eqs. 4-6). (b) Alert zones obtained
from reconstructing outbreak paths in the state space leading to At > A∗, using 10,000 observations.
Parameter values: b = 10.45, cEL = 0.01731, cEA = 0.0131, µL = 0.2, µA = 0.96, cPA = 0.35, Et =
0, A∗ = 100.
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Fig. 6.— Effectiveness of the intervention method to prevent outbreaks of the stochastic LPA model
(Eqs. 4-6). The outbreak proportion gives the fraction of states with At > A∗. The intervention
size I represents the number of adults added. The number of observations used to estimate the
alert zone is indicated. Parameters as in Fig. 5 except Et 6= 0 with Σ11 = 2.332,Σ22 = 0.2364 and
all other entries of Σ being equal to 0 (Desharnais et al. 2001). Each of the 20 replicates has been
started with different initial condition.


