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9.1 Introduction

In this paper we investigate how a simple expectations mechanism modi-
fies the basic dynamical structure of the multiplier-accelerator model due to
Samuelson (1939). Consumption depends on the expected value of present
income rather than lagged income. National income is determined as a non-
linear mix of extrapolative and reverting expectations formation rules (pro-
totypical predictors used in recent literature on financial markets). The total
level of economic activity depends endogenously on the proportion of agents
using the predictors.

The very simplicity of Samuelson’s descriptive macroeconomic model
makes it an excellent candidate for studying the effects of introducing expec-
tations without changing the emphasis of the formalization. That is, agents’
expectations are not part of an optimization problem and the resulting frame-
work remains in the class of descriptive models. (For bibliographical refer-
ences of past and recent extensions to Samuelson’s model see Westerhoff
(2005) and the bibliographies in other chapters of this volume.)

The expectations hypotheses follow in the style of Kaldor. Some desta-
bilizing force exists for values near the equilibrium but the economy neither
explodes nor contracts indefinitely due to a global stabilizing mechanism
that is activated when the economy deviates too much from its equilibrium.
These interacting forces permit a greater variety of attracting sets including
point equilibria above and below the (unique) Samuelsonian equilibrium and
closed curves on which lie both quasiperiodic and periodic cycles. More-
over, under realistic values for the multiplier and coefficient of acceleration,
a larger area of the parameter space is characterized by stable limit sets and
much of that is dominated by solutions with persistent fluctuations.
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The remainder of the paper is organized as follows. Section 2 reconsid-
ers Samuelson’s business cycle model. In section 3, we discuss the hypothe-
ses introduced to describe expectations formation and aggregation rules. In
section 4 we study the properties of the model using the local linear approx-
imation. In section 5 we use analysis and numerical simulations to study the
global properties of the model. In section 6 conclusions are offered.

9.2 The multiplier and the accelerator

Samuelson’s seminal model incorporates the Keynesian multiplier, a multi-
plicative factor that relates expenditures to national income and the accel-
erator principle whereby induced investment is proportional to increases in
consumption. An increase in investment therefore leads to an increase in
national income and consumption (via the multiplier effect) which in turn
raises investment (via the accelerator process). This feedback mechanism
repeats itself and may generate an oscillatory behavior of output. It may also
lead to explosive oscillation, monotonic convergence to an equilibrium point
or monotonic divergence, depending on the values of the marginal propsen-
sity to consume and the acceleration coefficient (See Gandolfo 1996 for a
complete treatment of the dynamics over parameter space).

The assumptions are well-known. Consumption in period t depends on
national income in period t − 1

Ct = bYt−1 0 < b < 1 (1)

where b is the propensity to consume out of previous period income. Invest-
ment is partly autonomous and independent of the business cycle, denoted
Ia, and partly induced, proportional to changes in consumption with accel-
eration coefficient, k:

It = Ia + k(Ct − Ct−1) k > 0. (2)

The equilibrium condition for a closed economy is

Yt = Ct + It. (3)

Combining (1), (2) and (3), we obtain a second-order linear difference
equation, in the income variable:

Yt = Ia + b(1 + k)Yt−1 − bkYt−2. (4)
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That is, current national income depends on autonomous investment and on
the output of the previous two periods. The fixed point of (4), the long-run
equilibrium output, is determined as

Ȳ =
1

1 − b
Ia (5)

with 1/(1 − b) the multiplier. It follows from (1) and (2) that the other
equilibrium values are C̄ = bȲ and Ī = Ia. It can be shown that stability of
the fixed point requires

b <
1
k
. (6)

It can also be shown that no improper oscillations occur and that the flutter
boundary, between monotonic and oscillatory solutions, is b = 4k/(1 +
k)2. With only two parameters the dynamics over parameter space are easily
determined. Damped oscillations occur only in the area with b < 1/k and
b < 4k/(1 + k)2. In that case temporary business cycles arise due to the
interplay of the multiplier and the accelerator, increased investment increases
output which, in turn, induces increased investment.

A major criticism of linear business cycle theory is that changes in eco-
nomic activity either die out or explode (persistent cycles only occur for a
nongeneric boundary case). In reaction to this deficiency the nonlinear the-
ory of business cycle has developed. In particular, in the seminal work of
Hicks (1950) the evolution of an otherwise explosive output path was lim-
ited by proposing upper and lower bounds for investment, so-called ceilings
and floors. These simple frameworks of Samuelson and Hicks are still used
as workhorses to study new additional elements that may stimulate business
cycles (see, besides the current monograph, Hommes 1995 and Puu, et al.
2004).

9.3 Expectations

As argued by Simon (1955), economic agents are boundedly rational in the
sense that they lack knowledge and computational power to derive fully opti-
mal actions. Instead, they tend to use simple heuristics which have proven to
be useful in the past (Kahneman, Slovic and Tversky 1986). Survey studies
reveal that agents typically use a mix of extrapolative and reverting expecta-
tion formation rules to forecast economic variables (Ito 1990, Takagi 1991).
Similar results are observed in asset pricing experiments. For instance, Smith
(1991) and Sonnemans et al. (2004) report that financial market participants
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typically extrapolate past price trends or expect a reversion of the price to-
wards its long-run equilibrium value. Indeed, the dynamics of group expec-
tations have successfully been modeled for financial markets. Contributions
by Day and Huang (1990), Kirman (1993), de Grauwe et al. (1993), Brock
and Hommes (1998) or Lux and Marchesi (2000) demonstrate that interac-
tions between heterogeneous agents who rely on heuristic forecasting rules
may cause complex financial market dynamics, as observed in actual mar-
kets.

Our goal is to investigate the importance of expectations for the variabil-
ity of output. Our main modification of Samuleson’s model is that the agents’
consumption depends on their expected current income (and not on their
past realized income). Note that Flieth and Foster (2002) and Hohnisch et
al. (2005) model socioeconomic interactions between heterogeneous agents
to explain the evolution of business confidence indicators. Both papers are
able to replicate typical patterns in the German business-climate index (the
so-called Ifo index), yet refrain from establishing a link between expecta-
tions and economic activity. We believe, however, that mass psychology,
expressed via expectations and visible in business confidence indicators, is a
major factor that may cause swings in national income. For example, new era
thinking may lead to optimistic self-fulfilling prophecies (e.g. the New Econ-
omy hype) while general pessimism may cause economic slumps (Shiller
2000).

Then, with respect to Samuelson’s hypothesis that consumption depends
on last period’s income (1), we assume that consumption depends on the
expected value of current income, which is based on information available
last period:

Ct = bEt−1[Yt] (7)

The aggregate expectation Et−1[Yt] is formed as a weighted average of ex-
trapolative (denoted 1) and reverting (denoted 2) expectations:

Et−1[Yt] = wtE
1
t−1[Yt] + (1 − wt)E2

t−1[Yt] 0 < w < 1. (8)

Expectations are formed with reference to a “long-run” equilibrium which
is taken to be the fixed point of Samuelson’s linear model, denoted in what
follows as Y = Ia/(1 − b). In the extrapolative expectation, or trend, for-
mation rule, agents either optimistically believe in a boom or pessimistically
expect a downturn. Such expectations are formalized as

E1
t−1[Yt] = Yt−1 + µ1(Yt−1 −Y) µ1 > 0. (9)
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If output is above (below) its long-run equilibrium value, Y , people think
that the economy is in a prosperous (depressed) state and thus predict that
national income will remain high (low) (a similar assumption has been ap-
plied by Day and Huang 1990).

Equilibrium-reverting expectations are formed as

E2
t−1[Yt] = Yt−1 + µ2(Y − Yt−1) 0 < µ2 < 1 (10)

where µ2 captures the agents’ expected adjustment speed of the output to-
wards its long-run equilibrium value.

The more the economy deviates from Y , the less weight the agents put
on extrapolative expectations. Agents believe that extreme economic condi-
tions are not sustainable. Formally, the relative impact of the extrapolative
rule depends on the deviation of income from equilibrium at the time that
expectations are formed:

wt =
1

1 +
(
γ
(Yt−1−Y

Y
))2 γ > 0 (11)

with γ as a scale factor. The percentage gap is typically less than one which,
when squared, results in a small number. Setting γ > 1 increases the weight
factor, resulting in a more realistic distribution between extrapolative and
equilibrium-reverting expectations. (For example, if γ = 10 and the per-
centage gap is 10%, the proportion of agents using E1 is 50%; the propor-
tion is 99% for γ = 1.) Extrapolative and reverting expectations are linear
functions of the previous level of national income, but the expectation oper-
ator, combining the heterogeneous expectations through a nonlinear weight-
ing function, is not. In Figure 1 wt and 1 − wt, the weights given to each
type of expectation are plotted against national income (γ = 10, b = 0.8,
Y = 5000). Close to equilibrium the trend-following expectation dominates
(and at Yt = Y , wt = 1), acting as a destabilizing force for any small de-
viation from the long-run equilibrium. Expectations are equally distributed
(with γ = 10) at a 10% gap between actual and long-run values of income.
At further distances from Y the reverting expectation dominates, acting as a
global stabilizing force.

Other weighting functions and other basic types of expectation forma-
tion rules can be found in, e.g., Brock and Hommes (1997, 1998). The for-
mer paper explores the expectation formation of heterogeneous producers
in cobweb markets while the latter paper investigates the selection of fore-
casting rules among financial market participants. However, the essential
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idea is the same. For similar states of the current economy (market) agents
have differing expectations about the future state, these expectations feed-
back through the economy (market), but the aggregate expected value is not
necessarily equal to the (deterministic) value of that future state. It is also
typically assumed that extremes will be considered unsustainable, providing
a global mechanism for stability. This new approach to modeling how agents
incorporate future uncertainty in their decision-making process breaks with
both the rational expectations hypothesis and with earlier homogeneous, ag-
gregate expectation hypotheses that R.E. criticized. Of course, assumptions
about agent’s expectations must be coherent with the particular context, but
we argue that for business cycle theory our approach may provide a reason-
able alternative.

Figure 1: Weights against national income: w extrapolative, 1−w reverting.

Substituting (2) and (7) into (3) we derive the expectations version of (4)
as

Yt = Ia + b(1 + k)Et−1[Yt] − bkEt−2[Yt−1] (12)

Then using (8)-(11) we arrive at a second-order nonlinear difference
equation Yt = f(Yt−1, Yt−2). For the analysis we introduce an auxiliary
variable Zt = Yt−1, deriving a first-order system in (Yt, Zt) (see the Ap-
pendix for full system and Jacobian)

Yt = Ia + b(1 + k)Et−1[Yt] − bkEt−2[Zt−1]
Zt = Yt−1

(13)
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with Jacobian matrix

J(Y,Z) =

(
b(1 + k)dEt−1[Y]

dYt−1
−bk dEt−2[Zt]

dZt−1

1 0

)

9.4 Local dynamics

In this section we consider fixed points and the conditions for which local
stability is lost. It can be shown that the equilibrium value for Samuelson’s
multiplier-accelerator model is also an equilibrium for the modified model.
At Y the trend followers are predicting perfectly, w1 = 1 and the Jacobian,
calculated at that value, simplifies to:

J(Y) =
(

b(1 + k)(1 + µ1) −bk(1 + µ1)
1 0

)
(14)

with trace trJ = b(1 + k)(1 + µ1) and determinant detJ = bk(1 + µ1).
We can use the stability conditions for a two-dimensional system to help
understand how the equilibrium might lose its local stability:

1 + tr J(Y) + det J(Y) > 0 (i)
1 − tr J(Y) + det J(Y) > 0 (ii)

1 − det J(Y) > 0. (iii)

The first condition holds always and we should not expect to see flip
bifurcations. The second condition and third conditions, which reduce to,
respectively:

b <
1

1 + µ1
and b <

1
k(1 + µ1)

(15)

are not necessarily satisfied, leaving open the possibility of both fold and
Neimark-Sacker bifurcations. The parameter assumptions are simply that
µ1, k > 0 and the binding inequality is condition (ii) if k < 1, condition
(iii) if k > 1.

In Samuelson’s linear model the stability conditions are satisfied always,
except for the third which requires b < 1/k. In the linear case, of course,
there is only one equilibrium set and it is a fixed point, so that when stability
is lost the system itself is unstable. In the nonlinear case a fixed point may
lose stability at the parameter value for which some other limit set becomes
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an attractor or there may be co-existing attractors which are limit sets for
different collections of initial conditions. In the case of the Neimark-Sacker
bifurcation, when the third condition is broken, global stability may continue
in the form of an attractor which is a sequence of points lying on a closed
curve. If attracting (and we see below that they are), these sequences rep-
resent endogenous fluctuations which are a generic feature of the dynamics
(rather than the particular case of constant amplitude oscillations in Samuel-
son’s model).

If the accelerator coefficient is less than unity, the breaking of the second
condition leads to a pitchfork bifurcation, that is, as Y loses stability 2 new
(stable) fixed points appear. These are determined by returning to the second
order difference equation (12) which, setting Yt−1 = Zt−1 = Ȳ becomes

Ȳ = Y + b(Ȳ − Y)
(
w̄(µ1 + µ2) + 1 − µ2

)
(16)

with equilibrium weight

w̄ =
Y2

Y2 + γ2(Ȳ −Y)2
.

Expanding and simplifying (16) gives

(Ȳ − Y)2 =
Y2
(
b(1 + µ1) − 1

)
γ2
(
b(µ2 − 1) + 1

) . (17)

These two fixed points are complex-valued for b < 1/(1 + µ1) and become
real and equal in value to Y at the critical value b = 1/(1 + µ1) . For
b > 1/(1 + µ1) there are two positive, real equilibria determined by (17),
one larger and one smaller than Y , respectively Ȳ1, Ȳ2, each attracting over
a given basin, a situation of bi-stability. With these basics in mind we now
turn to a study of the global dynamics using a combination of analysis and
numerical simulations.

9.5 Global dynamics

Consider first a comparison of the dynamics over the parameter space (k, b).
In Figure 2, left, Samuelson’s linear model is characterized by a single fixed
point, stable to the left of the stability frontier b = 1/k, unstable to the right.
At the boundary crossing the fixed point is a focus, adjacent to the left are
damped oscillations (in gray), adjacent to the right explosive fluctuations (in
black). The existence of any kind of persistent fluctations is guaranteed only
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for those combinations of parameter values that are on the stability frontier
itself, that is for bk = 1.

In Figure 2, right, we have the same parameter space for the expecta-
tions version of the multiplier-accelerator with standard constellation µ1 =
µ2 = 0.5, Ia = 1000, γ = 10, (Y0, Z0) = (4000, 4000) and infinity set
at 1010, transients at 5000 with maximal period 24 and precision epsilon
set at 1. This and all following plots were produced with the open-source
software iDMC - Copyright Marji Lines and Alfredo Medio, available at
www.dss.uniud.it/nonlinear.

Figure 2: Parameter space (k, b): left, linear model; right, with expectations.

The black area again represents the lack of any attracting finite limit set,
and the gray area on the left again represents stable fixed points. The lighter
area in the middle section is characterized by quasi-periodic or high-order
periodic fluctuations, in white, and cycles of the given periods in grays. For
both the original and the expectation models higher values of the multiplier
and the accelerator lead to instability. An economy with high demand re-
sulting from spending most of its income on consumption encourages en-
trepreneurs to invest in order to keep up the supply of these goods and ser-
vices. As a consequence the economy heats up. The acceleration coefficient
is a reaction parameter, how strongly investment responds to changes in de-
mand. It can also be interpreted as the capital-output ratio, how much new
capital will be necessary to produce the increased output. When Samuel-
son was modeling the interaction between the multiplier analysis and the
principle of acceleration in the late thirties the propensity to consume was
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much lower (and not only due to the Great Depression but also to spend-
ing habits), as was the captial-output ratio. Consumption out of income in
the United States today has almost reached the upper bound of b = 1, cre-
ating growth not only in the US but in the economies that supply it with
goods and services such as China and India. Of course there are other issues
involved, but if these interactions are fundamental and their dynamics are
well-approximated by the models, the sustainability of the current situation
in the U.S. is doubtful.

A noticeable difference in the model dynamics is that the area of attrac-
tors is much larger for the expectations version and that there is a significant
area of attractors characterized by fluctuations (a pertinent issue for business
cycle models). On the other hand, the area for which Y is stable (below the
second condition, the line b = 0.6̄6, and to the left of the third condition,
b = 0.66̄/kns) is smaller than that of Samuelson’s model. In both models
there is some trade-off between the accelerator coefficient and the propen-
sity to consume out of income for maintaining stability, and high values are
de-stabilizing for both. The extreme simplicity of the dynamics in the linear
version (Y is stable or unstable) is replaced by more challenging dynamics,
but Y (through its stable and unstable manifolds) remains crucial to their
explanation.

For b < 0.66̄ stability of Y is lost through a Neimark-Sacker bifurcation.
Fixing b a constant and increasing k so as to cross through the curve of
the stability frontier at bns = 0.66̄/k, we have Y changing from a stable
focus to an unstable focus as, simultaneously, an invariant closed curve is
created (denoted, generically, as Γ). As k is further increased the periodic or
quasiperiodic limit sets on Γ continue to be attracting over a large interval
until the stability frontier for Γ is reached, after which no attractors exist.

For b ∈ (0.66̄, 1), stability of Y is lost through a pitchfork bifurcation
at the critical value bp = 0.66̄ which has been traced in Figure 2, right to
separate the subspace characterized by stable fixed point Y from that charac-
terized by stable fixed points Ȳ1, Ȳ2. The bifurcation scenario moving right
from the upper sub-space is more relevant for economics as a typical range
for the propensity to consume out of expected income is b ∈ (0.75, 1). For
small k there are the two co-existing fixed points which are attractors, each
with its own basin of attraction, B(Ȳ1), B(Ȳ2) (that is, initial conditions de-
termine on which point the trajectory comes to rest). These lose stability
as k is increased and a region of periodic or quasiperiodic attractors gives
way to no attractors at all for larger values of the acceleration coefficient.
Using the standard constellation the (k, b) combination at which Ȳ1 and
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Ȳ2 lose stability due to a Neimark- Sacker bifurcation can be calculated as
k(1.5b− 3+ 2

b ) = 1. These critical values are represented in Figure 2, right,
by the curve extending from (1, 0.66̄7) to (2, 1).

Let b = 0.8. Given the standard parameter values, local properties of the
fixed points can be calculated. First, Y is a saddle point and remains so for at
least up to k = 5, let λ1 > 1 and λ2 < 1. The two equilibria of the pitchfork
bifurcation also exist and we have, increasing from k = 0: Ȳ1, Ȳ2 are stable
nodes, then (near k = 0.3) they become stable foci. These fixed points lose
stability through a Neimark-Sacker bifurcation at k = 1/bΦ ≈ 1.43.

Figure 3: Above, bifurcation diagram; below, Lyapunov exponents.

Numerical simulations of the dynamics of the economy, with these pa-
rameter values, are provided in Figure 3; the single parameter bifurcation
diagram for k ∈ (1, 2.6), above; the Lyapunov exponents over the same
interval, below. Both figures suggest that there are three basic types of long-
run dynamics and that for trajectories beginning at (4000, 4000) the changes
occur at around k = 1.26 and k = 2.13. For small values of the acceleration
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coefficient the economy experiences bi-stability. The weight in the economy-
wide expectation operator is not a function of k and, for the given parameter
values, 75% expect the trend to continue while 25% expect reversion. The
economy moves toward one of the two fixed points, far from the Samuel-
sonian equilibria, and switching between high and low equilibrium values
increases with k. Over the next interval, approximately k ∈ (1.26, 2.13) the
economy is characterized by persistent fluctuations over a range of values
symmetrical around Y . For some values the recurrent behavior seems cycli-
cal (cycles of 10 are evident), but for most the motion is quasiperiodic or
periodic of order greater than 24. The last type of behavior is found in the
tentacles of the octopus, period-8 cycles that cover a wider span of national
income than the invariant cycle that preceded it. The periodic cycle loses
stability at around k = 2.55 after which no attractor exists.

There are 3 puzzles to explain in this bifurcation scenario: the increased
switching between Ȳ1 and Ȳ2; the attracting curve appearing before the criti-
cal value; the period-8 cycle which does not seem to derive from frequency-
locking.

The switching behavior of the economy occurs because of the pitchfork
bifurcation and bi-stability that exists for k small. The switching between
long-run behavior increases because as k changes the separtrix, the bound-
ary separating basins of attraction, becomes increasingly entwined. This
phenomena can be seen in Figure 4 which presents the basins of attraction
for the fixed points in the state space Y ∈ (4000, 6000) under the standard
constellation.

Moving clockwise from upper-left k increases through 0.2 (Ȳ1, Ȳ2 stable
nodes), 0.9, 1.1, 1.255 (Ȳ1, Ȳ2 stable foci). Recall that initial conditions used
in Figure 2 are (4000, 4000), the lower-left hand corner of the basin plots.
The other dynamical puzzles are not so clear. In fact, on the basis of local
evidence and the single and double parameter bifurcation diagrams alone,
we cannot explain the large curve Γ appearing at a value of k less than the
critical value of the Neimark-Sacker bifurcation of Ȳ1, Ȳ2 and the origin of
the period-8 cycle, lying as it does outside the bounds of the invariant circle.
The global bifurcation scenarios that answer these questions are described
by Agliari, Bischi and Gardini in Chapter 1, to which we refer the reader
(see, also, the business cycle application by Agliari and Dieci in Chapter 8).
We consider each of these puzzles in turn.

From foci to invariant curve. An important point to note is that, although
over the interval of interest the Samuelsonian fixed point has already lost
local stability through a pitchfork bifurcation, the saddle point Y is still a
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significant factor in the global dynamics through its stable and unstable man-
ifolds. In fact, it is the stable manifold ws(Y) (associated with λ2) that plays
the role of separatrix for the basins of attraction of the stable foci Ȳ1, Ȳ2.
The unstable manifold wu(Y) (associated with λ1) has two branches, each
exiting Y and connecting to either Ȳ1 or Ȳ2 until the basins become disjoint.

Figure 4: Basins of attraction in state space as k increases.

Another point is that when there are co-existing attractors and global
changes in the dynamics, bifurcation diagrams calculated on the basis of a
single initial condition cannot tell the whole story. In Figure 5 we use a
series of simulations of the state space to help describe what is happening
over the interval k ∈ (1.25, 1.43), moving clockwise as k increases, k =
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1.25, 1.27, 1.35, 1.42. Again both axes are Y ∈ (4000, 6000), symmetric
around Y = 5000, and the initial conditions used in Figure 3 simulations are
in the lower axes’ intersection. In the upper-left figure the separatrix ws(Y)
separates the state space into basins of attraction forȲ1, Ȳ2. The convolutions
of the stable manifold form a ring of entwined basins around the fixed points
where, increasing k, an attracting invariant closed curve appears. At the
creation of the attracting curve, call it Γs, a second curve, Γu, also appears
which is enclosed in the first and repelling. The latter forms the separatrix
between collections of initial conditions with trajectories tending to one or
other of the stable foci and initial conditions with trajectories tending to the
attracting Γ. As k is further increased the radius of Γs increases while that
of Γu decreases and the basins of Ȳ1, Ȳ2 contract. Between upper and lower
right the basins become disjoint through a homoclinic bifurcation. Finally,
the subcritical Neimark-Sacker bifurcation for Ȳ1, Ȳ2 occurs for a value of k
just beyond that in Figure 5, lower left, and the basins disappear altogether.

There are a number of global bifurcations involved in this interval. First,
and most mysterious, is the creation of the attractor Γs, which comes to
co-exist with the stable foci, and the separatrix Γu defining its basin of at-
traction. The likely sequence leading to the formation of Γs is that proposed
in Chapter 1, Section 7 which we summarize as follows. In the vicinity of
the tightly woven basins, where the stable manifold is coiled like yarn on
a spindle, at a certain parameter value (in this case around k = 1.259) a
saddle-node bifurcation leads to a saddle cycle of high period along with a
node cycle of the same period. The periodic points of the node immediately
become repelling foci. In quick succession, over a narrow interval of k, we
have the following changes. The periodic points are joined through a saddle
connection of the outwards branches of stable manifolds of point i and un-
stable manifolds of point j forming an unstable saddle-focus connection Γu

surrounded by an attracting invariant curve Γs. Γu is destroyed as a second
heteroclinic loop forms from the connection of the inward stable branches of
point j and the inward unstable branches of point i and this unstable saddle-
focus connection becomes Γu, the separatrix in Figure 5.

All initial conditions outside of Γu are attracted to the invariant curve and
any economy beginning from these values (or after being disturbed to them)
is destined to a recurrent fluctuation, even though there are three equilibria
within the closed curve, two of which are stable. Only trajectories with initial
conditions on the inside of Γu, a small area of the state space, tend to Ȳ1 or
Ȳ2 with damped oscillations. Looking back at Figure 3 it can be observed
that at this bifurcation the Lyapunov exponents separate, the largest at 0,
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Figure 5: Basins from upper-left, clockwise: k = 1.244, 1.27, 1.35, 1.42.
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representing motion on the invariant curve, the other negative, representing
the attracting property of the curve.

In Figure 6, left k ∈ (1.258, 1.2595), the exponents are calculated over
500 iterations. There seems to be some evidence of chaotic transients, as we
would expect for the saddle connection, but these disappear before reaching
5000 iterations (the time range used in Figure 2). The next change occurs

Figure 6: Lyapunov exponents: left, k ∈ (1.258, 1.2595); right, k ∈
(2.15, 2.156).

between upper right and lower right, in which a homoclinic bifurcation of
Y gives rise to a double homoclinic loop and Γu breaks into two repelling
curves forming the disjoint basin boundardies B(Ȳ1), B(Ȳ2). In this bifurca-
tion, over a narrow interval of parameter values a homoclinic tangency (in
which wu(Y) comes to touch ws(Y)) is followed by a transversal crossing
of the manifolds and a second homoclinic tangency (wu(Y) is tangent on
the opposite side of ws(Y)). Recall that the stable manifold is the separatrix
for the basins of Ȳ1 and Ȳ2. The unstable manifold branches of wu(Y) are
provided in Figure 7 for the standard parameter constellation and k = 1.289,
above; k = 1.29, below. Between these values wu(Y) becomes tangent, then
crosses, and becomes tangent again to ws(Y). After the homoclinic bifurca-
tion, trajectories with initial conditions close to Y converge to Γs rather than
Ȳ1 or Ȳ2. That is, economies starting close to the Samuelsonian equilibrium
move away and fluctuate around it.

Finally, the two loops of Γu shrink around Ȳ1 and Ȳ2 as k is increased
until, at k = 1.429 (just beyond the value used in Figure 5, lower left), the
fixed points lose stability through subcritical Neimark-Sacker bifurcations as
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Figure 7: Unstable manifold of Y: above, k = 1.289; below, k = 1.29.

the modulus of the complex, conjugate eigenvalues reaches one. From this
value until just before k = 2.13 all attractors lie on the increasing amplitude
invariant curve, Γs, to which all initial conditions are attracted.

From invariant curve to period-8 cycle. The last type of periodic behavior
becomes visible at around k = 2.13. We describe the scenario with reference
to Figure 8, where the basins of attraction are simulated as k increases, start-
ing upper-left and moving clockwise: k = 2.128, 2.13, 2.15, 2.17. The state
space has been enlarged with respect to previous figures to Y ∈ (0, 10, 000),
as the invariant curve has blown up considerably. The initial conditions for
Figure 2 are slightly southwest of center. A saddle-node bifurcation takes
place between k = 2.128 and k = 2.13. In the upper-left there is still
the single attracting invariant curve on which all trajectories eventually lie.
After the bifurcation, upper-right, Γs is still attracting for all initial condi-
tions within in it, but most others are attracted to a period-8 cycle which has
appeared around the invariant circle. The basin pieces for the cycle B(C)
expand, the basin B(Γs) shrinks until, by k = 2.17, the invariant curve has
disappeared and all further attractors are periodic. For the propensity to con-
sume out of expected income at b = 0.8 the last attractor, a period-8 cycle,
becomes unstable around k = 2.53.

The invariant curve Γs is destroyed and the aperiodic fluctations disap-
pear through the heteroclinic loop sequence described earlier. Starting from
coexistence in upper-right, the periodic points and associated saddle points
are very near to each other and lie on the boundaries of the basin of attrac-
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tion for the focus cycle B(C). The branches of the stable manifolds of the
saddle cycle serve as separatrix between B(C) and B(Γs). The outer branch
of the unstable manifold of the saddle leads to the focus cycle, the inner
branch leads to the invariant curve. As k is increased, the inner unstable
branch of the saddle point i becomes tangential to the inner stable branch
of nearby saddle point j, and this happens all around the cycle. This hete-
roclinic tangency starts a tangle, followed by a transversal crossing of these
branches and another heteroclinic tangency. Transversal crossings are usu-
ally associated with chaotic repellers and long chaotic transients. A hint of
this can be seen in Figure 3 as there is a slight rise in the Lyapunov charac-
teristic exponent near the bifurcation interval, There are clearly chaotic tran-
sients evident in Figure 6, right, which are calculated over 5000 iterations
and k ∈ (2.15, 2.156). At the end of the tangle the branches are switched
in position. The unstable branches of the saddle point i tend to the nearby
stable foci (to the right and left, h and j) forming a heteroclinic saddle-focus
connection that leaves no initial condition leading to Γs.

For b = 0.8 this is the end of the story. Had we fixed the propensity
to consume at some other level, slightly above or below for example (refer
again, to Figure 2, right), the sequence would have continued with another
heteroclinic saddle-focus connection forming from the outer branches of the
saddle points. This connection would be an invariant closed curve, envelop-
ing and destroying the stable focus cycle. Still higher values of b would have
avoided the period-8 cycle altogether and ended with the first invariant curve
becoming unstable.

9.6 Conclusions

Samuelson’s linear multiplier-accelerator model is a classic example of a
business cycle model based on the combined effects of the multiplier and
acclerator principles. The equations are simple and the linear dynamics are
completely understood. It is interesting to see how these dynamics change
under a simple alteration to the consumption hypothesis: expenditures are a
function of expected income rather than realized last period income and there
are two types of expections (each a linear function of last period income).
The aggregate expected income is a nonlinear combination of extrapolative
and reverting expectation rules. The equilibrium of Samuelson’s model is
also a fixed point of the extended model, but other limit sets exist. A com-
parison of the dynamics of the linear multiplier-accelerator model and the
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Figure 8: Basins from upper-left, clockwise: k = 2.128, 2.13, 2.15, 2.17.
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nonlinear expectations-multiplier-accelerator model brings to light essential
differences.

1. As regards the equilibrium of Samuelson’s model, the stability condi-
tions on Y are more restrictive in the nonlinear model.

2. However, with nonlinear expectations, local stability of a fixed point
may be lost while global stability continues in the form of:

(a) convergence to either of 2, co-existing stable fixed points

(b) a periodic or quasiperiodic sequence of points lying on a closed
curve.

3. In fact, over the parameter space (k, b) the nonlinear model has a much
larger area characterized by attractors, under reasonable values for the
extra parameters and persistent oscillations are a generic possibility in
the nonlinear model.

The last characteristic is of special importance given that the phenomenon
under study is the business cycle. Moreover this was accomplished by allow-
ing consumption to depend on expectations and expectations to be heteroge-
neous, that is, by creating a more realistic economic context.

Appendix

Substituting the expectations formation hypotheses (9) and (10), the expec-
tations weight hypothesis (11) into the aggregate expectations operator (8)
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the complete system (13) is

Yt = Ia + b(1 + k)

[(
1

1+γ2
(

Yt−1−Y
Y

)2
)(

Yt−1 + µ1(Yt−1 −Y)
)
+

+

(
1 − 1

1+γ2
(

Yt−1−Y
Y

)2
)(

Yt−1 + µ2(Y − Yt−1)
)]

−bk

[(
1

1+γ2
(

Zt−1−Y
Y

)2
)(

Zt−1 + µ1(Zt−1 − Y)
)
+

+

(
1 − 1

1+γ2
(

Zt−1−Y
Y

)2
)(

Zt−1 + µ2(Y − Zt−1)
)]

Zt = Yt−1

The Jacobian matrix calculated in either of the fixed points Ȳi i = 1, 2 is

J(Ȳi) =
(

b(1 + k)Φ −bkΦ
1 0

)

Φ =
−2Y2γ2(Ȳi − Y)2(µ1 + µ2)(Y2 + γ2(Ȳi − Y)2

)2 +
Y2(µ1 + µ2)

Y2 + γ2(Ȳi − Y)2
+ 1 − µ2
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