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Paradox of simple limiter control
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Chaos control by simple limiters is an easy-to-implement and effective method of stabilizing irregular
fluctuations. Here we show that applying limiter control to a state variable can significantly shift its mean
value. In many situations, this is a countereffective as well as unexpected result, when the aim of control is also
to restrict the dynamics. We discuss this effect on the basis of a model of population dynamics and conclude
that it can have severe implications for the management of pest species and epidemic spread.

DOI: 10.1103/PhysRevE.73.052901 PACS number�s�: 87.23.Cc, 05.45.Gg
The control of chaotic systems is an ongoing topic of
research in physics as well as in related fields of practical
applications—e.g., in mechanical systems, electronic sys-
tems, chemical systems, neural networks, or heart tissue
�1,2�. One method of chaos control is simple limiters, which
restrict the evolution of a state variable in a certain direction
�3,4�. Due to their simplicity, they need neither detailed
knowledge of the system’s state nor time-consuming genera-
tion of a control signal, which makes them especially suit-
able for high-speed systems �3–6�. They have also been
suggested for regulating cardiac rhythms �7�, adaptive dy-
namics �8�, arithmetic computations �9�, commodity markets
�10,11�, neuronal systems, and smart matter applications �re-
viewed in Ref. �12��. Theoretical investigations can be found
in Refs. �13–16�. Here we report that the application of lim-
iters may have counterintuitive effects. We illustrate this
paradoxic effect by means of the quadratic map as a simple
model of population dynamics and show that well-intended
management measures for the control of stock farming, pest
species, or epidemics may be countereffective. For instance,
implementing an upper level for the population dynamics
may result in a boost of population size �rather than in a
reduction as one may expect at first sight�.

Chaos is composed of an infinite number of unstable pe-
riodic orbits. By applying a limiter on a single, fixed level,
the dynamical range of a chaotic oscillator can be bounded.
Thus, one of the unstable periodic orbits can be stabilized
with only small control perturbations. The properties of lim-
iter control are fully described by one-parameter one-
dimensional flat-topped maps �13�. For a one-dimensional
discrete map f�xn� with xn denoting the state variable at time
n, the control scheme with a limiter value h is implemented
by

xn+1 = min�f�xn�,h� . �1�

In a series of classical papers in the mid-1970s, May
�17–19� showed that the quadratic map

f�xn� = r�1 − xn�xn, �2�

with x0� �0,1�, as well as other difference equations arising
in population biology, has a rich dynamical structure includ-
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ing chaos. He thus introduced the ideas of nonlinear dynam-
ics to a broader spectrum of science and to ecology in par-
ticular �for recent monographs see Refs. �20,21��. Equation
�2� can be regarded as a model of density-dependent growth
for a population with nonoverlapping generations. The pa-
rameter r� �0,4� describes the intrinsic growth rate, and the
carrying capacity has been scaled to unity. Increasing r as a
control parameter, the quadratic map undergoes the well-
known cascade of period-doubling bifurcations leading to
chaos.

The concept of chaos control is also of relevance in biol-
ogy �some examples are reviewed in Ref. �22��. Actually,
constant feedback control, which was introduced by
Parthasarathy and Sinha �23� into the physics literature, had
already been applied in an ecological context by McCallum
�24�, who found that the chaotic population dynamics
changes to simple cyclical behavior in a wide parameter
range if a simple constant of external recruitment is added.
This recognition was picked up by Stone �25�, who showed
that a small perturbation is enough to break down the period-
doubling route to chaos. Applications of constant feedback
control in ecological models �usually interpreted as migra-
tion, reservoir, harvest, or depletion� can also be found in
Refs. �26–32�. Doebeli �33� applied certain adjustments to
the growth rate, thus driving the population to a stable state.
The proportional feedback method �34� has been investigated
in the context of metapopulations �35� as well as in
continuous-time and individual-based models of population
dynamics �36�. Various control schemes have been explored
by Gamarra et al. �37�. Desharnais et al. �38� developed
another control scheme based on “hot-spot” regions in the
state space �measured by the Lyapunov exponent� and ex-
perimentally applied it to a laboratory population of the flour
beetle Tribolium castaneum.

In biological terms, the application of a simple limiter to
the quadratic map corresponds to control measures such as
culling of a stock population, hunting or catching of a man-
aged population and stock, eradicating pest species, or treat-
ing infectious diseases. Figure 1 shows the bifurcation dia-
gram of the quadratic map in the chaotic range, when a
limiter is applied. For h=1, the dynamics is uncontrolled and
chaotic, but already for any slightly smaller h�1 the oscil-
lations become periodic �7,15,39�. At first, there are many

cycles, but then the number of cycles reduces. At around
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h=0.9 there appears a two-cycle, which amplitudes decrease
with h and vanish at h=0.75. There, the limiter value coin-
cides with the nontrivial fixed point. For smaller limiter val-
ues h�0.75, the dynamics is simply forced to the limiter.

The dashed line in Fig. 1 corresponds to the mean value
of the state variable in the uncontrolled chaotic regime, while

the gray line gives the mean values xn̄ of the controlled dy-

namics. For high values of h close to 1, deviations of xn̄ from
the uncontrolled mean value are relatively small. This is
probably due to the fact that the oscillations still have many
cycles which range almost over the entire unit interval. At

the other end of the limiter values—i.e., h�0.75—xn̄ trivi-
ally decreases linearly with the limiter value. The most inter-

esting part is the range in between, in which xn̄ significantly
increases—up to a maximum of 150% at h=0.75. The extent
of this boost depends on the number and location of the cycle
points and their branches. Obviously, the number of cycles in
this range is smaller than for high limiter values. Further-
more, it should be noted that the smallest point of the cycles
increases faster with decreasing h than the largest one gets

smaller. This particularly explains why xn̄ increases in the
range of the two-cycle.

Limiter control is effective in stabilizing chaotic orbits,
but the jumping mean value of the controlled state variable
may be in many applications an unexpected and undesirable
effect. Imagine, for example, you are a stock farmer and
wish to limit your population—e.g., in order to avoid losses
due to overcrowding, increased intraspecific competition, or
disease spread. This is effective only for a very small range
of control perturbations with limiter values being nearly
unity. In contrast, for the vast majority of limiters, the mean
population size boosts and exhibits an unintended outbreak.
The aim of limiting the population growth is apparently
countereffective. Hence, management decisions can thus
have strongly opposite impacts. We call this effect the para-
dox of limiter control.

An intuitive explanation of this paradox is given in Fig. 2.
The well-known cobwebbing algorithm is applied to both the
quadratic map and its limiter-controlled variant. The algo-
rithm starts at x0=0.5, because from there the maximum of
the logistic map is reached. This allows the dynamics to be

FIG. 1. Paradox of simple limiter control. Limiters force the
chaotic dynamics of the quadratic map �1�, �2� with r=4 to periodic
cycles or stable fixed points. The mean of the asymptotic state vari-
ables �gray line� is for a wide range of limiter values larger than the
mean of the quadratic map without limiter control �dashed line�.
mapped back to the descending branch intersecting the ab-
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scissa and illustrates that the whole interval �0,1� can be
reached. �It should be noted, however, that for nonzero solu-
tions r has to be slightly changed or that small perturbations
around xn=0.5 are necessary.� Conversely, in the limiter-
controlled model the mapping cannot explore the whole de-
scending branch, because the top is cut off. The dynamics is
thus restricted to a much smaller interval. The differences in
possible densities are highlighted in thick gray. One can eas-
ily see that the missing lower interval is a larger one than the
missing upper interval. This means that the state interval is
“shifted up,” which explains the larger mean density. We

FIG. 3. Unimodel maps with a descending branch that becomes
convex after a turning point have a wide range where they asymp-
totically approach zero. Cutting off the top does not prevent the
dynamics from reaching small values. There is almost no restriction
of possible state space at the lower interval �contrary to the qua-
dratic map in Fig. 2�, because of which the paradoxic effect
of limiter control cannot be observed. This example is the Ricker
map f�xn�=xnexp�r�1−xn�� with parameters r=3.5, h=3.15, and

FIG. 2. The limiter control cuts off the top of the quadratic map
�thin line�, thus forcing the dynamics to remain within a restricted
state interval �thin diagonal�. The nonaccessible lower interval is
larger in extent than the nonaccessible upper interval �both in gray
lines�, which helps to explain the paradox of limiter control by a
“shift-up” of the possible state space. The cobwebbing is displayed
in respective dashed lines. Parameters: r=4, h=0.9, and x0=0.5.
x0=0.3.
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expect the paradox of limiter control to occur in flat-topped
unimodel maps, the descending branch of which does not
turn around �as, for example, in the tent map�. In turn, maps
with a turning point and a convex segment asymptotically
approaching zero for large state variables will presumably
not show this paradoxic effect. As an example, this is illus-
trated for the Ricker map �40� in Fig. 3. Since the convex
branch exhibits small mapping values for all larger xn, the
image xn+1 can be mapped back again also to the center of
the mapping’s top. Consequently, there is almost no restric-
tion for small values of the state variable. As highlighted by
the gray line, the controlled dynamics cannot access an upper
part of the state interval, but simulations indicate that the
means of the controlled and uncontrolled versions do not
differ much from each other.

The paradox of limiter control as exemplified with the
quadratic map has important consequences for the manage-
ment of populations. As a conclusion, we warn against the
naive application of unreflected measurement programs.
Well-intended perturbations �limiting a population stock� can
be highly countereffective �population outbreak�. Similar

paradoxic effects are known in the ecological literature. E.g.,
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an increase of the carrying capacity destabilizes the popula-
tion towards densities prone to extinction �paradox of enrich-
ment� �41�, a predator mediates the coexistence of competing
prey species which otherwise would go extinct �42�, and the
eradication of invaders that were threatening endemic spe-
cies causes a much greater harm to the latter �mesopredator
release� �43,44�.

The caveat of limiter control may be of relevance in the
control of pest species, biological invasions, and the spread
of infectious diseases as well. For example, Eq. �2� arises in
standard discrete-time epidemiological models of SI-
�susceptible→ infected� and SIS-type �as SI but with recov-
ery of infected to the susceptible state again�, where xn de-
scribes the infected part of a population �45�. Limiting the
disease spread—e.g., by medical treatment or quarantine—
could thus increase the prevalence of infection. There are
also many other fields of applications for the quadratic
map—e.g., in genetics, economics, or social sciences �see
Ref. �19� and references therein�. Hence, the lesson from this
study is once more that decision makers should carefully
assess possible control methods. Moreover, modeling can be

a helpful and powerful tool in this process.
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