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We seek to develop a novel asset pricing model with heterogeneous traders. Fundamen-
tal traders expect that asset prices converge towards their intrinsic values, whereas chart
traders rely on both price and volume signals to determine their orders. To be precise, the
larger the trading volume, the more they believe in the persistence of the current price
trend. Simulations of our nonlinear deterministic model reveal that interactions between
fundamentalists and chartists may cause intricate endogenous price fluctuations. Con-
trary to the intuition, we find that chart trading may increase market stability.

1. Introduction

As shown by the chartist-fundamentalist approach, asset prices are at least partially driven
by an endogenous nonlinear law of motion. Complex (chaotic) price dynamics may arise
due to interactions between speculators who rely on technical and fundamental trading
rules to determine their investment positions. Technical analysis is a trading method that
aims to identify trading signals from past price trends. A common belief is that such
positive feedback rules tend to drive prices away from fundamentals. By contrast, funda-
mental trading tends to push prices towards fundamentals. The concept of fundamental
analysis is in fact based on the premise that the gap between prices and fundamentals will
decline over time.

We briefly review some important models which have been developed in the literature
so far. Day and Huang [6, 12] present a setup in which fundamentalists use a nonlinear
trading rule. The larger the distance between the price and its fundamental value, the
more strongly the fundamentalists bet on mean reversion. If prices are close to funda-
mentals, then the chartists destabilize the market. With increasing mispricing, however,
stabilizing fundamentalists dominate the market. A strong feature of this model is that it
is able to produce irregular motion between bull and bear markets. Contributions which
also explore nonlinear trading rules include, for example, [4, 5, 9, 13].

Another interesting framework has been proposed by de Grauwe et al. [7]. They
argue that fundamentalists are heterogeneous with respect to their perception of the
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fundamental value. If the price is equal to its fundamental value, then half of the fun-
damentalists underestimate the fundamental value and the other half overestimate the
fundamental value. The net demand of fundamentalists is therefore zero. But as the dis-
tance between the price and its fundamental value grows, the net position of the funda-
mentalists becomes larger and larger, implying that eventually the destabilizing behavior
of the chartists is countered.

Profits are presumably what speculators care about most. In [2, 3], agents switch be-
tween cheap naive and expensive sophisticated predictors. Their behavior is rational in
the sense that they tend to prefer predictors which have been profitable in the past.
Note that when prices are close to fundamentals, costly fundamental predictors perform
poorly. As a result, cheap technical trading is then rather popular. On the other hand,
fundamental analysis tends to outperform technical analysis when prices are far away
from fundamentals. Since the market impact of the strategies varies over time, erratic
price fluctuations may arise.

Within the models of Lux [14, 15], speculators also select between technical and fun-
damental trading rules based on the rules’ past profit differentials. But Lux furthermore
considers social interactions between the agents, such as herding behavior. Influenced by
the majority opinion, the mood of the chartists may turn optimistic or pessimistic. Buf-
feted with noise, this setup has the power to produce price dynamics which closely match
the stylized facts of financial markets (Lux and Marchesi [16]).

The goal of this paper is to describe a novel, yet quite natural, mechanism which may
lead to endogenous price motion. (A thorough understanding of the possible origins of
price fluctuations is, of course, quite important. For instance, it may help regulators to de-
sign more efficient markets [19].) As reported in many manuals about technical analysis
(e.g., Murphy [17]), trading volume is an important confirmation signal of price action:
the larger the trading volume is, the more trustworthy a given price trend is. Guided by
such evidence, we develop a simple deterministic asset pricing model in which chartists
pay attention to price-volume signals. Since the chartists condition their orders jointly
on prices and volume, their trading rule is nonlinear. As it turns out, our model has the
power to produce complex price dynamics. Simulations reveal that the price circles in an
intricate way around its fundamental value without any apparent tendency to converge.
Moreover, we find that technical trading may improve market efficiency. If fundamental-
ists trade very aggressively, the existence of a limited number of chartists may ensure the
stability of financial markets.

The rest of this paper is organized as follows. In Section 2, we present a deterministic
asset pricing model with chartists and fundamentalists. In Section 3, we discuss the dy-
namics of our model. In Section 4, we test the robustness of our results by modifying the
behavior of the chartists. In Section 5, we conclude the paper and summarize our main
findings.

2. The model

In this section, we develop a stylized asset pricing model with three types of agents: mar-
ket makers, fundamentalists, and chartists. The job of the market makers is to quote prices
and to mediate transactions out of equilibrium. Depending on the excess demand E of
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the speculators in period t, they set the log of the price P for period t+ 1 as

Pt+1 = Pt +Et. (2.1)

If the excess demand is positive, the market makers supply the asset from their inventory
and increase the price. If E < 0, they accumulate inventory and decrease the price.

The excess demand of the speculators is given as the sum of the orders of the funda-
mentalists and of the chartists, that is,

Et =N
(
DF

t +DC
t

)
, (2.2)

N is a positive parameter and captures the aggressiveness of the speculators. An increase
in N may also be interpreted as an increase in the number of speculators. DF and DC

stand for the orders generated by fundamental and technical trading rules, respectively.
Clearly, the total demand submitted by fundamental (technical) traders is NDF (NDC).

Fundamental traders believe that prices move towards their fundamental values. Thus,
they buy assets that are undervalued and sell them when they are overvalued. The orders
generated by fundamental trading rules may be expressed as

DF
t =

(
F −Pt

)
, (2.3)

where F is the log of the fundamental value. Note that the demand of the fundamental
trading rule is proportional to the mispricing. In agreement with the literature, we assume
that the agents correctly perceive the (constant) fundamental value of the asset.

The basic idea of technical analysis is to exploit price trends. As reported by Day and
Huang [6], chartists enter the market when the price is high under the belief that the price
will go up, and exit the market when the price is low under the belief that the price will
go down. However, many technical traders argue that one should also take the trading
volume into account since it provides clues as to the reliability of a given trading signal
[17]. To be precise, chartists claim that high trading volume indicates a robust signal,
whereas low volume indicates a weak signal. The orders due to technical analysis may
thus be formalized as

DC
t =

(
Pt −F

)
Vt−1 (2.4)

with

Vt−1 =N
∣∣∣DF

t−1

∣∣∣+N
∣∣∣DC

t−1

∣∣∣ (2.5)

as the definition for the trading volume. Suppose, for instance, that prices are bullish
(P > F). Then, technical analysis produces a buying signal. However, the strength of the
buying signal increases with the trading volume. Note that (2.4) is a nonlinear, yet very
natural, trading rule.

Without loss of generality, we set F = 0. The recurrence relation that determines the
dynamics of the model, obtained by combining (2.1)–(2.5), is given as

Pt+1 = Pt
(
1−N + 2N2

∣∣Pt−1
∣∣), (2.6)

which is a second-dimensional deterministic nonlinear map.
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Figure 3.1. Bifurcation diagram for parameter N . Parameter N is increased from 0 to 3.3 in 500 steps.
Each time, prices are plotted for t = 1001–1100.

3. The dynamics

Since the model has only one parameter, its dynamics can easily and completely be char-
acterized with the help of a bifurcation diagram. The bifurcation diagram presented in
Figure 3.1 is constructed as follows. We increase the parameter N from 0 to 3.3 in 500 dis-
crete steps. Each time, we calculate 1100 data points. To exclude possible transient phases
of the trajectory, only the last 100 observations are plotted. Hence, Figure 3.1 displays the
dynamical outcome of our model for increasing values of N . A bifurcation diagram is
obviously a powerful graphical tool to visualize the properties of a nonlinear dynamical
system.

What are the results? We immediately see that the price converges to a unique fixed
point equal to the fundamental value F = 0 for 0 < N < 2. At N = 2, a period-doubling
bifurcation occurs. That is, the system switches back and forth between two states, one
above and one below its fundamental value. Note that as N further increases, both prices
of the period two-cycle become more distant from the fundamental value. A second bi-
furcation occurs around N = 2.8. For N > 2.8, the price dynamics is either quasiperiodic
or even chaotic. Moreover, deviations from the fundamental value also become larger. At
about N = 3.35, the system explodes.

Phase space plots allow us to further investigate the dynamics. In Figure 3.2, we plot
the price in period t against the price in period t− 1 for nine different values of N ((a)
N = 2, (b) N = 2.5, (c) N = 2.8, (d) N = 2.9, (e) N = 3.05, (f) N = 3.1, (g) N = 3.15, (h)
N = 3.25, and (i) N = 3.32). A transient phase of 1000 time steps is again omitted. Now,
we can clearly see that the system moves from a fixed point to a period two-cycle, then to
quasiperiodic behavior, and finally to chaotic dynamics. (Remember that a time series is
said to be chaotic if its time path is sensitive to a microscopic change in the value of the
initial conditions. Moreover, a chaotic time series typically displays complex structure in
phase space, i.e., a so-called strange attractor emerges. While the former property may be
identified by a positive Lyapunov exponent, a strange attractor results in a noninteger cor-
relation dimension (see, e.g., [18]).) Note that the panel in (i) displays a so-called strange
attractor with a correlation dimension CD = 1.422. Since the corresponding Lyapunov
exponent is L= 0.465 > 0, we can indeed conclude that the price dynamics is chaotic.



Frank H. Westerhoff 23

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2. The dynamics is phase space. Prices in period t are plotted against prices in period t− 1 for
(a) N = 2, (b) N = 2.5, (c) N = 2.8, (d) N = 2.9, (e) N = 3.05, (f) N = 3.1, (g) N = 3.15, (h) N = 3.25,
and (i) N = 3.32. A transient phase of 1000 observations has been omitted.
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As ventured by Friedman [10], profitable speculation—buying when prices are low
and selling when prices are high—will always stabilize the markets. As a result, the im-
pact of destabilizing speculators can be neglected since they will lose their money and
drop out of the market. However, Baumol [1] showed that Friedman may not necessar-
ily be right. He constructed a simple second-order difference equation model in which a
“buying low and selling high” trading strategy may increase the frequency and amplitude
of price fluctuations. The difference between the two standpoints is that Friedman’s argu-
ment takes only into account the levels of the variables, yet neglects their time derivatives.
But as demonstrated by Baumol, the price path is dependent on both. A similar finding
is reported by de Long et al. [8] in a model with fully rational speculators and positive
feedback traders. Their main argument is that fully rational speculators may exploit pos-
itive feedback traders by inducing a positive price trend. When feedback traders jump
on the bandwagon, rational speculators can sell at higher prices. More importantly, sur-
veying theoretical, empirical, and experimental evidence, Hommes [11] concludes that
both destabilizing technical and stabilizing fundamental trading rules may survive evo-
lutionary competition in financial markets, that is, neither strategy is driven out of the
market. Especially during a bubble period, technical analysis may produce significant
profits.

We clarify the role of the speculators within our setup. Suppose first that only funda-
mentalists are active, that is, DC = 0. Then, the law of motion becomes

Pt+1 = Pt(1−N). (3.1)

Obviously, prices converge to the fundamental value for 0 < N < 2 and explode for N > 2.
If fundamentalists are too aggressive, they in fact drive prices away from fundamentals.
But note that Figures 3.1 and 3.2 reveal that if both chartists and fundamentalists are
present in the market, prices do not explode in the parameter region 2 < N < 3.35. So, is
the behavior of the chartists stabilizing? Suppose now that only chartists are active, that
is, DF = 0. Then, prices evolve according to

Pt+1 = Pt
(
1 +N2

∣∣Pt−1
∣∣). (3.2)

Since the expression in the bracket is always larger than 1, prices run away from funda-
mentals. The behavior of the chartists is thus destabilizing. To sum up, even if the isolated
behavior of fundamentalists and chartists is destabilizing, their joint impact may be stabi-
lizing. This puzzling finding furthermore points out that it is important to study models
with heterogeneous interacting agents.

Now, we inspect the workings of the model in more detail. Figure 3.3 illustrates the
dynamics in the time domain for N = 3.32. The panels in (a), (b), (c), and (d) present
a sequence of 50 observations of the price in period t, the orders of the fundamen-
talists in period t − 1, the orders of the chartists in period t − 1, and the trading vol-
ume in period t − 2, respectively. As visible in (a), the price hovers erratically around
its fundamental value without any apparent tendency to converge. The trading signals
needed to keep asset prices in motion are generated by the agents themselves. Clearly, it
is the interaction between traders that creates endogenous dynamics. Since there are no
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fundamental shocks (the fundamental value is constant), volatility and trading volume
are excessive.

The panels in (b), (c), and (d) further explain the trading behavior of the two groups.
Remember that for N = 3.32, prices would explode in the absence of chartists. Funda-
mentalists are overreacting to mispricings and thus their orders trigger a too-strong price
adjustment. However, if both groups are active, the positions of the fundamentalists are
partially countered by the demand of the chartists. In fact, the two groups always trade in
different directions. Note that as the fundamentalists drive the price away from its fun-
damental value, the trading volume tends to increase. As a result, the chartists believe
more strongly in their trading signals and submit larger orders. Technical trading orders
eventually offset the orders of the fundamentalists and the system temporarily produces
smaller price changes. But then the pattern repeats itself, yet in an intricate manner. (In
[20], it is demonstrated that if one adds dynamic noise to the system equations, then
the model has the power to mimic some important stylized facts of financial markets. In
particular, the model may simultaneously generate bubbles and crashes, excess volatil-
ity, fat tails for the distribution of the returns, uncorrelated price changes, and volatility
clustering.)

4. Robustness

We finally explore whether our findings are robust. According to (2.4), chartists believe
in the persistence of bull and bear markets. When the price is above (below) its funda-
mental value, they assume that the price will continue to climb (descend). Although their
demand is positively correlated with price changes, the behavior of the chartists is of-
ten directly modeled as trend extrapolative. An alternative specification of the technical
trading rule may thus be

DC
t =

(
Pt −Pt−1

)
Vt−1. (4.1)

Now, the chartists base their orders on the most recent (log) price change. The larger the
price trend, the stronger the trading signal appears. Such behavior is indeed quite popular
among chartists (Murphy [17]).

If markets do not display lasting price trends, then technical traders prefer oscillator
analysis [17]. De Grauwe et al. [7] suggest, for instance, the following double crossover
method to describe the behavior of chartists in foreign exchange markets:

DC
t =

{(
Pt −Pt−1

)− 0.5
(
Pt −Pt−2

)}
Vt−1. (4.2)

The first term of the right-hand side of (4.2) stands for a short-term moving average
(i.e., a one-period price change), while the second term stands for a longer-term moving
average (i.e., a two-period price change). For instance, a buying signal is generated when
the short-term moving average crosses the long-term moving average from below.

Figure 4.1 checks whether our findings are robust with respect to different technical
analysis trading rules. The panel in (a) shows a bifurcation diagram for our model in
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Figure 3.3. The dynamics in the time domain for N = 3.32. The panels in (a), (b), (c), and (d) show a
sequence of 50 observations of the price in period t, the orders of the fundamentalists in period t− 1,
the orders of the chartists in period t− 1, and the trading volume in period t− 2, respectively.



Frank H. Westerhoff 27

0.05

0

−0.05

1.8 2.025 2.25 2.475 2.7

P

N

(a)

0.03

0

−0.03

1.9 2.0425 2.185 2.3275 2.47

P

N

(b)

Figure 4.1. Robustness of the dynamics. The panel in (a) shows a bifurcation diagram for the model
with the technical trading rule (4.1). In (b), the technical trading rule (4.2) is used. The parameter N
is increased as indicated on the axis. The remaining setup is as in Figure 3.1.

which we have substituted (2.4) by (4.1). The panel in (b) shows the same, except that we
now use (4.2) to approximate technical analysis. In both cases, we first observe that the
price converges towards its fundamental value (0 < N < 2). For N > 2, a period two-cycle
arises, and if N is sufficiently large, even more complex price motion emerges. Overall,
we are tempted to conclude that the nonlinear mechanism proposed in this paper is able
to produce endogenous price fluctuations and that the behavior of chartists may not be
bad for market efficiency per se.

5. Conclusions

Financial markets are excessively volatile and frequently display severe bubbles and
crashes. Models with interacting heterogeneous speculators have proven their ability in
explaining complex asset price behavior. The aim of this paper is to investigate a novel,
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yet quite natural, nonlinear mechanism that arises from the fact that chartists typically
condition their price signal on the trading volume. In other words, technical traders trust
the current price trend more strongly if it is supported by a high trading volume. For
simplicity, the behavior of the fundamentalists and of the market makers is expressed
in linear terms. We find that our simple setup is able to generate endogenous complex
price motion, that is, prices fluctuate in an intricate manner around their intrinsic val-
ues. Furthermore, we find that the behavior of the chartists may stabilize the markets. If
fundamentalists overreact to mispricings, chartists counterbalance part of their transac-
tions so that market makers adjust the prices less strongly. Especially when prices are on
the verge of instability—a situation in which trading volume is high—chart-generated
orders calm down the market.
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