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Abstract. Motivated by empirical evidence, we construct a model where heterogeneous, boundedly-
rational market participants rely on a mix of technical and fundamental trading rules. The rules are
applied according to a weighting scheme. Traders evaluate and update their mix of rules by genetic
algorithm learning. Even for fundamental shocks with a low probability, the interaction between the
traders produces a complex behavior of exchange rates. Our model simultaneously produces several
stylized facts like high volatility, unit roots in the exchange rates, a fuzzy relationship between news
and exchange-rate movements, cointegration between the exchange rate and its fundamental value,
fat tails for returns, a declining kurtosis under time aggregation, weak evidence of mean reversion,
and strong evidence of clustering in both volatility and trading volume.
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1. Introduction

Since the development of real-time information systems and the decline of transac-
tion costs following the liberalization of capital markets in the mid 80s, both daily
foreign- exchange turn-over and the volatility in exchange rates have increased
sharply. More and more the trading volume reflects very short-term transactions,
indicating a highly speculative component (BIS, 1999). Surprisingly, when the
market participants determine their speculative investment positions, rather simple
technical and fundamental trading strategies are applied (Taylor and Allen, 1992).

The chartists-fundamentalists approach is a research direction that focuses
on explaining such speculative transactions (Frankel and Froot, 1986; Kirman,
1993; Brock and Hommes, 1997). Of crucial importance in this class of mod-
els is the behavior of the so-called chartists and fundamentalists, because the
interaction between these two groups has the potential for generating interest-
ing non-linear dynamics. Recently, some multi-agent models in the spirit of the
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chartists-fundamentalists models have emerged (LeBaron, 2000). Since these mod-
els allow for many interacting heterogeneous agents, the exchange-rate behavior
becomes even more elaborate. The significance of these models is based upon their
ability to match basic stylized facts of the empirical data.

LeBaron (2000) argues that multi-agent models have advantages and disadvan-
tages. On the one hand, these artificial markets allow agents to explore a fairly
wide range of possible forecasting rules. On the other hand, due to the inherent
complexity it is often very difficult to pin down the causalities acting inside the
market. Our paper tries to alleviate this criticism by following a suggestion of
Mandelbrot (1997). According to Mandelbrot, a good model of price variation is
one that mimics a great number of empirical facts within a simple framework.

Hence, this paper aims to develop a simple exchange-rate model in the vein
of multi-agent systems to get a deeper understanding of the forces that drive
foreign-exchange markets. Rather than deriving results from a well-defined utility
maximization problem, details are used from the market microstructure and psy-
chological evidence. We construct a model with heterogeneous, boundedly rational
market participants relying on a mix of technical and fundamental trading rules.
The rules are applied according to a weighting scheme. Traders evaluate and update
their mix of rules from time to time. The selection process is modeled by a genetic
algorithm, which has proven to be a useful tool for describing learning behavior
(Dawid, 1999).

Our main result is that the interaction of the trading rules generates a complex
behavior for exchange rates. For instance, the simulated time series resemble a
stochastic trend (unit roots) in the first moments. Further, simulations of the model
produce high volatility. Even though the relationship between news and exchange-
rate movements is fuzzy in the short run, the exchange rate and its fundamental
are cointegrated over longer time periods. The returns of the generated exchange
rates show a high kurtosis that declines under time aggregation. Fat tails are also
identified by the scaling behavior of the returns, which roughly follow a power
law. In addition, weak evidence of short-run mean reversion and strong evidence
of clustering in both volatility and trading volume are found. All these features are
typically observed in the foreign exchange market.

The paper is organized as follows: Section 2 presents a genetic-algorithm
exchange-rate model. Section 3 discusses some simulation results. The last section
offers conclusions and possible extensions.

2. A Genetic Algorithm Exchange Rate Model

2.1. DESCRIPTION OF THE MARKET

The starting point for our approach is the observation that most of the trading
volume in the foreign-exchange market is due to short-term speculative trading.
To model the foreign-exchange market in a realistic perspective, we use empirical
evidence to describe the speculative behavior of the traders.
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The story of our model is as follows: The foreign-exchange market is ruled
by a limited number of large traders (BIS, 1999). Each trader has a collection of
strategies to determine his speculative investment positions. The set of applied rules
is limited and common knowledge. The rules can be subsumed under technical and
fundamental analysis (Taylor and Allen, 1992). Typically, they persist for a long
period of time, just like the famous Dow-theory. However, the agents may alter the
importance of each of the rules they follow. The decision about the mix of rules is
made at the beginning of each trading period.

The evolution of the agents’ mix of rules depends on a feedback process. We
use a genetic algorithm to describe the social learning processes for the trader pop-
ulation. Learning takes place according to three different learning schemes. First,
agents whose strategies lead to relatively poor performance (profit) give up their
trading strategies and copy the strategy of a more successful market participant.
This is called learning by imitation. Second, agents meet, talk to each other about
their trading strategies and thus possibly exchange parts of each other’s behavior.
This can be interpreted as a proxy for learning by communication. Third, agents
may learn by experimentation. That is, the agents change their own trading strate-
gies slightly. Through this, new mixes of trading strategies emerge. Since the agents
are boundedly rational, mistakes in the learning process might also occur.

Such agents’ behavior is not irrational: Heiner (1983) argues that using simple
behavioral rules can result from the uncertainty of distinguishing between preferred
and less-preferred options. For example, the complexity inherent in the foreign-
exchange market can cause each agent to have a gap between his competence
in making optimal decisions and the actual difficulty of making the decisions.
The wider the gap, the more likely the agents follow a rule-governed strategy.
Thus, agents could not do much better than by following some adaptive scheme
of behavior.

Compared with the amount of speculative trading, firms’ transactions relating
to international trade and risk management play a less important role (BIS, 1999).
Since our focus is on modeling the interaction among the speculators, such ac-
tivity is assumed to be randomly distributed. Every period, the exchange rate is
determined by the market-clearing condition.

The remainder of this section formalizes the technical and fundamental trading
rules. For simplicity, only three technical and three fundamental trading rules are
allowed. Descriptions of the process for the arrival of news and the perceptions of
traders are given, and, after solving the model, the learning schemes are introduced.

2.2. TECHNICAL TRADING RULES

Technical analysis is a trading method that attempts to identify trends and their
reversals by inferring future price movements from those of the recent past.1 We
shortly introduce three technical trading rules. One of the rules is believed to
identify trends, another to spot trend reversals, and the third combines the two.
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A broader discussion of these rules is found in Murphy (1999), which is an often-
cited manual of technical analysis. Note that technical analysis is a very common
method to determine investment positions. As reported by Taylor and Allen (1992),
most foreign-exchange dealers place at least some weight on technical analysis.

Simple technical trading rules use only past movements in the exchange rate S
as an indicator of market sentiment to identify trends. The most popular technical
trading rule for trend analysis is the simple moving average. For example, demand
in period t might be expressed as

dC,1
t = αC,1[0.6(LogSt−1 − LogSt−2) + 0.4(LogSt−2 − LogSt−3)] . (1)

Equation (1) captures the typical behavior of the chartists. In general, chartists
buy (sell) foreign currency if the exchange rate rises (declines). This rule is only
applied if the actual exchange rate trend exceeds a certain threshold, say if |(St−1 −
St−2)/St−2| > 0.005. Under this rule, if the trend is too weak (less than half a
percent), the demand is zero. Since traders pay more attention to the most recent
trend, a larger coefficient is selected for the first extrapolating than for the second
term (0.6 versus 0.4). The coefficient αC,1 calibrates the relationship of the demand
under this rule to that under the other rules.

To use the chartists’ language, however, the simple moving-average rule is a
follower, not a leader. It does not anticipate, but merely reacts, to the dynamics.
The agents try to overcome this disadvantage by combining short-run and long-run
moving averages. For example, the so called double-crossover method produces a
buy signal if the shorter average crosses above the longer. The demand from this
kind of rule could be formalized as

d
C,2
t = αC,2[(LogSt−1 − LogSt−2)−

0.5((LogSt−1 − LogSt−2) + (LogSt−2 − LogSt−3))] ,
(2)

where αC,2 is again a coefficient to adjust the demand. The first bracket comprises
the fast-moving average and the second bracket the slowmoving average. With this
rule, a trading signal is generated if the actual trend of the exchange rate falls
behind the long-term trend.

When the market is not trending, because the price fluctuates in a horizontal
band, chartists often rely on oscillator techniques to spot trend reversals. Through
these rules, overbought and oversold conditions of a market are indicated. For
instance, a market is said to be overbought when it is near an upper extreme.
Thus, a warning signal is given that the price trend is overextended and vulnerable.
Momentum rules are the most popular application of oscillator analyses. Trad-
ing signals are derived by comparing the velocity (momentum) of price changes.
Demand from these rules might be written as

dC,3
t = αC,3[(LogSt−1 − LogSt−4) − (LogSt−2 − LogSt−5)] . (3)

This demand function states that the chartists expect a future increase in the ex-
change rate when the observed change between period t − 1 and t − 4 relative to
the change from period t − 2 and t − 5 starts increasing.
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Note that by (1), (2) and (3), chartists place a market order today in response to
past price changes, but price changes between period t and t − 1 are disregarded.
Such a lag structure is typical for technical trading rules, because only the past
movements of the exchange rates are taken into account (Murphy, 1999).

2.3. FUNDAMENTAL TRADING RULES

Fundamental trading rules are based on the premise that the exchange rate con-
verges towards its fundamental value. They deliver a buy (sell) signal, if the
expected future exchange rate is above (below) the spot rate. However, the ex-
pected adjustment process might be formulated in different ways. We allow for
three different kinds of expectation formation.2

The first specification of the expectation formation process of the fundamen-
talists is modeled in the classical regressive manner: that is, if an exchange rate
deviates from its perceived equilibrium value SFP, it is expected to return. Hence,
we assume Et [St+1] = βSFP

t−1 + (1 − β)St−1, where β is the expected adjust-
ment speed of the exchange rate towards its fundamental. Since the expectation
formation for the trading period t has to be made in advance, the last available
fundamental value is from t − 1. The demand of fundamentalists might therefore
be written as

dF,1 = αF,1(E
F,1
t [St+1] − St)/St

= αF,1(0.85SFP
t−1 + 0.15St−1 − St)/St ,

(4)

where the demand depends on the relative distance between the expected and spot
rates, and on the reaction coefficient aF,1. We assume 0 to be 0.85, that is, the
agents expect an adjustment of 85% of the spot rate towards its fundamental.

The second specification is a variation of the first. The expectation formation is
not only regressive, but also incorporates an extrapolative component: Et [St+1] =
β1S

FP
t−1+(1−β1)(St−1+β2(St−1−St−2)), with β1 = β2 = 0.5. Thus, an agent using

this rule expects an adjustment of the exchange rate towards its fundamental of 50%
but corrects the speed of adjustment by the most recent exchange-rate movement.
The agent takes into account that the market dynamics are influenced by technical
trading rules. The demand that results is

d
F,2
t = αF,2(E

F,2
t [St+1] − St)/St

= αF,2[0.5SFP
t−1 + 0.5(St−1 + 0.5(St−1 − St−2)) − St ]/St .

(5)

In the case of larger exchange-rate movements, the extrapolating term may even
outpace the expected adjustment.

When the agents are uncertain about the fundamental exchange rate, they allow
themselves to be guided by past values when forming new expectations. These
past values act as anchors for individual judgments about the future exchange rate.
This phenomenon is called anchoring heuristics. In such periods, the formation of
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exchange-rate expectations is not only regressive but also anchored to the last few
observations of the exchange rate. As in the case of (5), the importance of the fun-
damental exchange rate is lower than in the first expectation formation hypothesis.
Assuming Et [St+1] = 0.15SFP

t−1 + 0.425(St−1 + St−2), demand becomes

d
F,3
t = αF,3(E

F,3
t [St+1] − St)/St

= αF,3[0.15SFP
t−1 + 0.425(St−1 + St−2) − St ]/St ,

(6)

where the fundamentalists now use the exchange rate in t − 1 and t − 2 as a basis
for expectation formation.

2.4. NEWS ARRIVAL PROCESS

Implicitly, we assume that the traders form their expectations of the fundamental
exchange rate on the basis of a structural model that is correct on average. The
perception of the fundamental value is due to the news arrival process and behaves
like a jump process. The logarithm of SF is given by

LogSF
t = LogSF

f−1 + pεt , (7)

where the news εt is i.i.d. Normal with mean zero and (time invariant) variance σ 2.
The random variable p is 1 with probability 0.2 and 0 otherwise. Thus, a shock hits
the market on average every 5 periods. Although the agents follow the news arrival
process very closely, they also commit temporary mistakes in news cognition. We
assume

LogSFP
t = LogSF

t + δt , (8)

where the mistakes δt are i.i.d. Normally distributed with mean zero and constant
variance.

2.5. ADDITIONAL TRANSACTIONS

The volume of transactions resulting from international trade and risk management
is considerably smaller than that of speculative trading positions (BIS, 1999). Since
we concentrate on speculative trading, we assume such demand to be randomly
distributed. The demand by the firms is

dT
t = χt , (9)

where χt is i.i.d. Normally distributed with mean zero and constant variance.
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2.6. SOLUTION OF THE MODEL

The market-clearing condition is given as a sum over all trading positions of the
traders and the excess demand of the firms; thus

3∑

j=1

N∑

i=1

γ C,i,jd
C,j
t +

3∑

j=1

N∑

i=1

γ F,i,j d
F,j
t + dT

j = 0 , (10)

where N is the number of traders and γ is the weight of the technical or fundamen-
tal trading rule j of trader i. Using (4) to (6) and solving (9) for the exchange rate
yields

St =

3∑

j=1

N∑

i=1

γ F,i,jαF,jE
F,j
t [St+1]

3∑

j=1

N∑

i=1

γ F,i,jαF,j −
3∑

j=1

N∑

i=1

γ C,i,j d
C,j
t − dT

t

. (11)

Since (11) precludes closed analysis, we simulate the dynamics to demonstrate
that the underlying structure gives rise to complex exchangerate behavior, as is
observed empirically.3

2.7. GENETIC ALGORITHM LEARNING

Finally, we must model the evolution of the weighting schemes of the traders. We
assume, the market is established by N = 30 traders. Before the beginning of a
trading period the trader fixes the technical and fundamental fraction of his demand
by attaching a weight to every rule (Figure 1). Through this, the demand resulting
from the technical rules and the total weight of the fundamentalists is determined.
Using the market-clearing condition (10), the exchange rate in period t equalizes
the fundamentalists demand on the one side and the chartists’ and the firms’ excess
demand on the other. After the revelation of any news, the success of the mix of the
rules is evaluated. Each trader i is totally defined by a string p

i,j
t of real numbers of

length l = 8. The first two elements encode the total weight of the fundamental and
the technical trading rules, respectively. The elements ρ

i,3
t to ρ

i,8
t define the weight

of the three fundamental and the three technical rules. The weight, for example, of
the momentum rule C3 is specified by

γ C,i,3
t = ρi,2

t · ρi,8
t , (12)

with p
i,1
t + ρ

i,2
t = 1 and

∑
ρ

i,j
t = 1. Thus, the momentum rule contributes γ

C,i,3
t ·

d
C,3
t to the total demand expressed by trader i.

After the exchange rate and the fundamental value of the exchange rate have
been revealed, the traders assess their success relative to the other traders (fitness).
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Figure 1. Time structure of the model.

The fitness is defined by the profit over the last five periods and the actual value of
the stock:4

fitness(t, i) =
4∑

k=0

(−di
t−k · St−k) +

4∑

k=0

di
t−k · St · rt , (13)

where

rt = 1 − (4,000(Log10St − Log10S
F
t )3 +

0.5(Log10St − Log10S
F
t ))/10 .

(14)

The stock is valued with the actual exchange rate St weighted by an S-shaped
risk function rt that is restricted to the interval [0.5, 1.5]. This parameter represents
the anticipation of the riskiness of the investment positions by the traders. If the
exchange rate is above (below) its fundamental, rt is smaller (larger) than 1. The
fitness values are processed by the selection procedure. Through selection, the
mixes with high fitness are joined to build up the material for the next genera-
tion. To prevent overselection and convergence in the early periods, we realize a
tournament selection (Mitchell, 1996). Every trader chooses randomly a certain
number of mixes from the current population. With probability psel = 0.75 he
copies the one with the higher fitness, thus imitating successful behavior, and with
a probability of 0.25, he sticks to his old rule mix.

Afterwards, a simple one-point crossover takes place. With probability pcross =
0.7, a trader communicates; that is, he exchanges parts of his information with
neighboring traders and incorporates rule mixes that have performed well in
other contexts. In a wider sense, this may be seen as a proxy for learning by
communication.

The traders evaluate the success of their rules every five periods and adjust
them through imitation and communication. However, after every trading period,
mutation takes place to produce a new generation of rule mixes. Due to coding with
real numbers, instead of the standard genetic-mutation operator, mutation takes
place with probability pmut = 0.04, which results in a uniformly distributed change
of [–0.5, 0.5]. A trader who is uninfluenced by other traders’ changes his rule mixes
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Table I. Parameter settings.

Description of parameter Symbol Value

Reaction coefficient for C1 αC,1 1.1

Reaction coefficient for C2 αC,2 2.75

Reaction coefficient for C3 αC,3 0.55

Reaction coefficient for F1 αF,1 0.3

Reaction coefficient for F2 αF,2 0.55

Reaction coefficient for F3 αF,3 0.2

Distribution of news ε N (0, 0.00005625)

Probability of news prob(p = 1) 0.2

Misperception δ N (0, 0.00005625)

Number of traders N 30

Probability of imitation psel 0.75

Probability of crossover pcross 0.7

Probability of mutation pmut 0.04

Distribution of demand of firms χ N (0, 0.00025)

randomly either by mistake or because he tries to discover new, better strategies on
his own. The update is completed by normalizing the weights, summing up to 1,
and the mix is executed in the next trading period.

3. Simulation Results

3.1. PARAMETER SPECIFICATION

In this section, we discuss the simulation results. The main parameters are dis-
played in Table I. Unfortunately, most of the parameters cannot be observed
directly. They are chosen to match some basic empirical facts. Thus, we set the
relation between the sum of the αF and the sum of the αC so that the returns
(log of price changes) remain principally in the region of 2%. Each of the αF

and αC are selected in order to ensure that the demand from each of the trading
rules contributes significantly to the transactions. In comparison, the demand by
the firms is roughly one third of the total (BIS, 1999). The development of the fun-
damental exchange rate accounts for the fact that fundamental shocks do not occur
every period. We assume that there is on average one fundamental news release
per week. The total weight of the technical trading rules is limited for every agent
to [0.25, 0.75]. As reported by Taylor and Allen (1992), only a minor fraction of
professional traders consider technical and fundamental analysis to be competing
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Figure 2. Simulated exchange-rate behavior for 300 periods. The black line is the exchange
rate, the dashed line represents the fundamental exchange rate, T = 300 observations starting
from t = 4,650.

to the point of being mutually exclusive. In general, both kinds of analysis are
regarded as complementary. The parameters concerning the genetic algorithm are
selected according to typical recommendations (Grefenstette, 1986).

3.2. EXCHANGE-RATE DYNAMICS

Figures 2 and 3 give a first impression of the resulting dynamics. Figure 2 contains
the simulated dynamics for the exchange rate (solid line) and the stochastic devel-
opment of its fundamental (dashed line) for 300 periods starting from period 4,650.
Even a low probability of fundamental shocks has sufficed to generate complex
exchange-rate movements, where the exchange rate fluctuates around the perceived
fundamental exchange rate. For some time the exchange rate stays close to its
fundamental, but this may change abruptly. Periods of lower volatility alternate
with periods of higher volatility. Furthermore, the volatility of the exchange rate is
far greater than the volatility of its fundamental.

Simplifying, the dynamics might be explained as follows. Technical trading
rules always produce some kind of buy or sell signal. On the basis of a feedback
process, a reinforcing run might emerge. But such a run cannot last because in-
vestment rules based on fundamentals work like a center of gravity. The more the
exchange rate departs from the fundamental exchange rate, the higher the demand
of the fundamentalists, until eventually their increasing net position triggers a mean
reversion. But this indicates a new signal for the chartists and directly leads to the
next phase. Extreme outliers can occur when the chartists have a clear trading sig-
nal and the influence of the fundamentalists is low. Most of the time, the dynamics
are governed by the speculative behavior of the agents. Only in calm periods does
the random demand of the firms have a more pronounced impact on exchange-rate
fluctuations. Thus, the volatility of the foreign-exchange market need not be caused
solely by exogenous shocks; it might be explained at least partially endogenously.
The trading signals needed to keep the process going are generated by the agents
themselves. This is exactly what Black (1986) calls noise trading. Black concludes
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Figure 3. Exchange rates, returns, and trading volume for 5,000 periods. The top shows the
exchange rate, the middle the returns (logarithm of price changes), and the bottom the trading
volume, T = 5,000 observations.

that the noise of a large number of small events is essential to the existence of
liquid markets. The argument is that a person who wants to trade needs another
person with opposite beliefs. To explain the high trading volume in the foreign-
exchange market, it is not reasonable to assume that differences in beliefs are
merely the result of differences in information. In our model, noise (trading signals)
is permanently produced by the agents.

Figure 3 contains the exchange-rate dynamics together with the corresponding
development of the returns and the trading volume for 5,000 periods. The exchange
rate resembles a stochastic trend. There are no clear patterns visible. The course
of the returns demonstrates that deviations from the last rate occur mainly in a
band of roughly 4%. Large returns coincide with large returns in the following
periods, small returns with future small returns. The trading volume shows a similar
clustering. These features are investigated in more detail later.

A well-known stylized fact is that exchange-rate time series have a unit root
(Goodhart et al., 1993). The Augmented Dickey-Fuller (ADF) unit root testing pro-
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cedure (Dickey and Fuller, 1981) tests the null hypothesis of difference stationary
against the trend-stationary alternative. In particular, one estimates the regression


St = a0St−1 +
l∑

j=1

ajSt−j , (15)

where S denotes the exchange rate and 
 the first difference. The null hypothesis
of a unit root is rejected if a0 is negative and significantly different from zero. The
lag length l can be chosen using data dependent methods. We find that for various
lag settings and simulation runs the null hypothesis cannot be rejected. This result
is often interpreted as evidence of a random walk behavior of the exchange rate
(Brownian motion).

The top of Figure 4 displays the development of the strength of the three techni-
cal trading rules over 5,000 periods; the bottom shows the demand generated by the
rules. The total weight of the chartists’ positions varies between 25 and 55%. Most
of the time they have less influence than that of the fundamental rules. Although
the simple moving-average method is the dominant technical trading rule, for some
periods the other two technical trading rules become leaders. Depending on the
market circumstances, the profitability of the rules change. Because of the internal
inertia of their adaptation process and the constrained optimization, the population
sticks to the average weighting scheme to some degree. For instance, the periods
1,260 to 1,300 are characterized by a fast zigzag-course with frequent overshooting
of the fundamental. In this environment the anchoring heuristic (F3) is the most ap-
propriate strategy among the fundamental rules because it puts the least weight on
the fundamental. But it takes up to period 1,290 before this rule replaces the double-
crossover method as the most popular rule. Its average weight increases from 5% in
period 1,250 to almost 70% in period 1,300. But even when the other fundamental
rules become more profitable, it requires 40 periods before the importance of the
anchoring heuristic falls again below the weight of the other fundamental rules.
These waves of popularity can be observed throughout the entire course.

The bottom shows the demand generated by the technical trading rule for 300
periods. Each of the rules contributes significantly to the total transactions. The
demand of the firms behaves randomly whereas the demand of the trading rules is
correlated.

Figure 5 presents the corresponding runs for the fundamental trading rules. The
influence of the fundamentalists is concentrated in the band from 45 to 75%. The
strength of the fundamental trading rules is well mixed; each of the three funda-
mental trading rules has a period of dominance. Such a mix of trading strategies is
close to what is reported in survey studies (Taylor and Allen, 1992).

The development of the power of the trading strategies in the time domain
helps understanding the complicated exchange-rate dynamics. The exchange-rate
fluctuations plotted in the Figures 2 and 3 can be classified into different regimes.
Tranquil periods, where the spot rate is close to its fundamental, alternate with ex-
tremely volatile periods. A similar phenomenon is observed in (Lux and Marchesi,
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Figure 4. Weights and demand of the technical trading rules. The weights (demand) of the
technical trading rules C1, C2, and C3 for T = 5,000 observations (T = 300 observations,
starting from t = 2,500).
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Figure 5. Weights and demand of the fundamental trading rules. The weights (demand) of the
fundamental trading rules Fl, F2, and F3 for T = 5,000 observations (T = 300 observations,
starting from t = 2,500).
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2000). Also, longer swings in the exchange rate are followed by a faster zigzag-
course. These different regimes result from the development of the mix of the
trading rules.

Most importantly, the dynamics become less stable when the weight of chartists
increases. For example, in period 4,130 to 4,150 a rise in the weight of the double-
crossover method (C2) and the momentum rule (C3) triggers extreme movements
of the exchange rate (Figures 2 and 3). They generate a self-fulfilling trend forecast
with a highly volatile sequence and a large increase in trading volume – although
almost no change in the fundamental value takes place. Because of the risky en-
vironment with permanent under- or overestimations, the most conservative of the
rules, the regressive fundamental rule, gains strength and leads the spot rate back
to the neighborhood of the fundamental value.

Moreover, each of the trading rules has a specific impact on the dynamics be-
cause of its lag structure. Depending on how the technical and fundamental trading
rules are matched, different regimes of exchangerate fluctuations emerge. Since the
agents in this model choose only from a set of six trading rules, the complexity of
the exchange rate is inherently limited. An increase in the number of trading rules
should augment the complexity of the dynamics.

According to (Goodhart, 1988), the empirical evidence indicates that the re-
lationship between news and exchange-rate movements is rather fuzzy. Both
systematic under- and overreaction to news are reported. For minor news, there
is often no reaction at all. However, large price movements unrelated to any news
are also apparent. Figure 6, showing the news arrival process (top) and the return
dynamics (bottom), provides a first explanation for these findings: The amount and
the frequency of extreme events in the simulated exchange-rate returns is much
higher than in the incoming news. In general, one finds a relationship between the
news arrival process and the returns. The traders anticipate this correctly, espe-
cially when a larger shock hits the market. Nevertheless, news is not incorporated
immediately in the price. For minor shocks, the reaction can be quite contrary. As
mentioned above, in period 4,130, the returns begin to fluctuate strongly without
apparent reason. The explanation for these phenomena is rather simple: trading
signals generated by technical trading rules can easily enforce or overcompensate
the news effect.

Figure 6 also reveals that the model produces excess volatility. Guillaume et al.
(1997) suggest to compute volatility as

ν = (1/T )

T∑

t=1

|LogSt − LogSt−1| , (16)

where T is the number of observations. Hence, the volatility is given as the average
absolute logarithmic price change. In the same way, one can measure the volatility
implied by the news process
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Figure 6. The relationship between news and returns for 300 periods. The top of the figure
shows the news arrival process, the bottom the return dynamics, T = 300 observations,
starting from t = 4,000.

νF = (1/T )

T∑

t=1

|LogST
t − LogSF

t−1| . (17)

Excess volatility can then be defined as

eν = (ν/νF ). (18)

For our data set (5,000 observations), the volatility of the exchange rate is more
than five times higher than the volatility of its fundamental (eν = 5.18).

A cointegration test checks if the exchange rate tracks its fundamental. The test
consists of two steps (Engle and Granger, 1987). Cointegration requires that the
variables to be integrated are of the same order. The first step is thus to determine
the order of integration of the exchange rate and its fundamental. In our case, the
ADF test should reveal that both variables are integrated of order 1 (unit roots!).
Further, variables are cointegrated if there exists a linear combination that is sta-
tionary. Hence, the second step is to estimate the long-term equilibrium relationship
between the variables. For this, one has to regress

SF
t = aSt + ut , (19)

and to apply the ADF test on the residuals


uF
t = a0ut−1 +

l∑

j=1

aj
ut−j , (20)

If the residuals are stationary, one can conclude that the series are cointegrated.
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Table II. Estimated kurtosis under time aggregation.

Time aggregation 1 5 10 25 50

Kurtosis 25.45 15.69 9.11 5.29 3.12

T = 100,000 observations, kurtosis for Normal distribution
for all lags is 3.

We have used the following experiment to test for cointegration: The first 5,000
observations of the exchange rate and its fundamental have been split into 10
subsamples each of length 500. For each subsample, the exchange rate and its
fundamental have been found to be integrated of the order 1. The critical value for
stationary residuals at the 1% level is given by –3.73. Since the estimated t-values
are in the range [–10.10, –8.54], we conclude that both time series are cointegrated.

Is the foreign-exchange market efficient or not? The answer to this question is
not obvious. Our artificial market displays some mispricing, since the price fluc-
tuations are only partially caused by the arrival of new information. Moreover, the
interaction between the traders produces excess volatility (risk). Both phenomena
typically have a negative impact on international trade. But in the long run, the
exchange rate tracks its fundamental. The mispricing does not accumulate into
lasting distortions.

3.3. RETURN DYNAMICS

A lot of empirical work describes the distribution of the returns. It is an important
stylized fact that the distribution of the returns has fat tails (Guillaume et al., 1997).
Relative to a Normal distribution, one finds a stronger concentration around the
mean, more probability mass in the tails of the distribution, and thinner shoulders.
Estimations of the kurtosis reveal the fat-tail property. Furthermore, the empirically
observed kurtosis declines under time aggregation. Table II displays estimates of
the kurtosis under time aggregation for 100,000 simulated exchange rates. The
kurtosis of a Normal distribution is 3. Note that stronger outliers occur not only as
a consequence of random shocks. If, for instance, a medium demand by chartists
occurs with a low weight for fundamentalists, the price reaction is also strong.

An alternative way to identify fat tails is to determine the tail index. Empirical
studies indicate that the distribution of large price changes roughly follows a power
law (Guillaume et al., 1997; Lux and Marchesi, 1999; Farmer, 1999). Figure 7
compares the distribution of the returns and the scaling behavior for the simulated
data with Normally distributed returns (with the same variance). The tail index α,
given as F(|return| > x) ≈ cs−a , is estimated from the cumulative distribution of
the positive and negative tails for normalized log-returns. The returns are normal-
ized by dividing by the standard deviation. A regression on the largest 30% of the
observations indicates a significant tail index of 3.38, which is in agreement with
results obtained from the empirical data. The tail index for a Normal distribution, as
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Figure 7. The distribution of the returns and the scaling behavior. The top left shows the
distribution of the returns and the top right the scaling behavior of the cumulative distribution
of the positive and negative tails for normalized log-returns, T = 100,000 observations, the
bottom displays the same as before but for Normal distributed returns with identical variance.

seen for the slope in the right part of Figure 7, is clearly higher and less significant
(the r-squared drops from 0.99 to 0.81).

Empirical results concerning serial autocorrelation of the returns of the ex-
change rates are not uniform. (Cutler et al., 1990) found that returns tend to be
positively correlated at high frequencies and are weakly negatively correlated over
longer horizons, thus exhibiting a mean reversion tendency. For other financial
data, the mean reversion tendency is much stronger. The left hand of Figure 8
displays the autocorrelation function for the first 5,000 periods. The time series re-
veals significant mean reversion, since the autocorrelation for some lags lies clearly
outside the 95% confidence intervals as given by ±2/

√
T , with T the number

of observations, and the assumption that the returns are white noise. As already
mentioned, the complexity of the exchange-rate movements is bounded because of
the limited number of the trading rules. If one allows more rules, especially with a
deeper lag structure, the autocorrelation declines.5

Since the work of Mandelbrot (1963), the high short-term autocorrelation of the
volatility and its clustering in periods of high and low volatility are well known.
Short-term autocorrelation is the result of market dynamics and not caused by a
clustered arrival of news. That is, after new information has hit the market, the
agents need some time to deal with the shock. Typically, technical traders jump on
the bandwagon and reinforce the market movement. Moreover, technical trading
rules are able to generate self-reinforcing trading signals of their own. The long-
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Figure 8. Autocorrelation function and phase space of returns. T = 5,000 observations, 95%
confidence intervals are plotted as ±2/

√
T (assumption of white noise).

Figure 9. Autocorrelation function of trading volume and absolute returns. T = 5,000
observations, 95% confidence intervals are plotted as ±2/

√
T (assumption of white noise).

run clustering may be explained by different degrees of uncertainty triggered, for
example, by an oil-price shock or a political crisis. Figure 9 shows the autocorrela-
tion function for the trading volume and the autocorrelation function for absolute
returns. Both time series exhibit strong auto correlation. The short-term autocorre-
lation of the absolute returns is due to the trend-following behavior of the chartists;
the long-term autocorrelation is a consequence of the variation in the matching of
different trading rules, which results in periods of lower and higher volatility (com-
pare also Figure 3). The volume of the trading positions of the chartists depends
on their trading signals. Whenever the technical trading signals are clustered (the
exchange rate movements are correlated), the trading volume is also clustered.

4. Conclusions

This paper presents a model where heterogeneous, boundedly rational market par-
ticipants use a mix of technical and fundamental trading rules to determine their
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speculative investment positions. The trading rules and the selection of the strate-
gies are not derived from a well-defined utility maximization problem but are based
on empirical observations.

The model is able to replicate various well-known stylized facts. In its first mo-
ments, the computed time series looks random, as indicated by the unit roots. In the
second moments, however, some (deterministic) patterns like volatility clustering
or mean reversion are observable. The sources of the dynamics are endogenous
processes, in particular the evolution of the agents’ weighting scheme, rather than
exogenous shocks.

Since we restrict our attention only to six prominent trading rules, there re-
mains a higher structure in the simulated exchange-rate time series than typically
observed in actual financial market data. This could be reduced by allowing for
more heterogeneity. However, we abstain from this to see more clearly the major
driving forces behind the foreign-exchange dynamics.

Notes
1 For a brief introduction into technical analysis see Neely (1997).
2 See Camerer (1995) or Slovic et al. (1988) for empirical surveys about such kind of expectation

formation hypothesis.
3 Note that if a low proportion of fundamentalists is confronted with a huge demand of chartists

a very large price reaction is needed in order to match the demand. But this happens also from time
to time in real financial markets. If the price reaction exceeds a certain threshold, trading is typically
interrupted for a while to calm down the market.

4 Since the model is calibrated to daily exchange rate fluctuations, this may be interpreted as a
weekly performance evaluation.

5 In addition, the technical trading rules used in this paper are to some degree similar. One reason
for this is that we only allow for time lags of maximal 5 periods. However, in reality trading rules are
more complex. Often, they are nonlinear and connected to threshold values (as for instance the head
and shoulder pattern).
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