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Abstract

This paper analyzes the valuation of monthly Physical Transmission Rights (PTRs) on
the German-Dutch interconnector. From a �nancial perspective, PTRs are exchange
options written on the German and Dutch day-ahead electricity price. We extend
the famous exchange option model by Margrabe (1978) and include jumps in the
underlying prices. We develop a quasi closed-form solution for our exchange option
model and compare its pricing performance to the basic model without jumps for
all monthly PTRs between 2001 and 2008. Our results show that the inclusion of
jumps signi�cantly reduces the Root Mean Squared Error (RMSE) between model
and market prices. We further show that the inclusion of de-spiked prices into both
models also improves their pricing performance. Overall, the empirical results show
that monthly PTR options are clearly undervalued compared to model prices and
even strictly cheaper than the corresponding futures contracts.
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1 Introduction

In 1996, the liberalization of European electricity markets started with the adoption

of the European Commission�s Directive 96/92/EG. Ever since, cross-border electricity

�ows have continuously been increasing in size and therefore in relevance. In 2007, 12.6%

of the total electricity consumption in all UCTE countries was delivered cross-border.1

As the international electricity markets exhibit distinct sources of risk, the growing

internationalization also increases the demand for an adequate risk management capable

of coping with these unique characteristics.2

The risks associated with cross-border electricity markets can generally be separated,

analogous to other commodity markets, into a physical and a �nancial component.

Financial risk is concerned with unexpected unfavorable price movements. Although

�nancial risk is inherent in basically all �nancial and commodity markets, it is consider-

ably more important in electricity markets due to the extreme erratic price �uctuations

compared to other markets. Physical risk in electricity markets comprises the ability

to deliver on time. Although physical risk is also apparent in other commodity mar-

kets, it is of special interest for electricity due to its unique characteristics. Here, two

main attributes are of particular importance. First of all, electricity is in general not

considered to be storable at a reasonable cost. Although electricity can be indirectly

stored via pumped storage facilities, these are currently not available on a large scale

and therefore only of minor relevance.3 Due to the non storability of electricity, shocks

in demand and supply cannot be dampened by existing inventory resulting in the typi-

cal erratic trajectory of electricity prices. Second, electricity is grid bound, i.e. delivery

is only possible via an existing power grid. In addition, electricity immediately spreads

across the entire grid, once it is injected into the system. Therefore, a simple point to

point delivery in the electricity market is not feasible and even congested cables not

initially intended to carry a load could hamper electricity �ows. Although this prob-

lem is evident in both, national and international electricity markets, it is more severe

in cross-border connections as the respective capacities are scarcer. While the limited

transportation possibilities of electricity in international electricity markets clearly in-

volve physical risk, congestion and the resulting price di¤erence in neighboring countries

1The Union for the Co-ordination of Transmission of Electricity (UCTE) is the association of all trans-
mission system operators (TSO) in the continental European area. The UCTE currently comprises 29
TSOs from 24 countries.
2Armstrong and Galli (2005) as well as Zachmann (2008) discuss the ongoing process of connecting
European electricity markets.
3One exception might be Norway where over 90% of total electricity production is generated by hy-
dropower plants. See Von der Fehr et al. (2005) for a discussion of the relevance of hydropower in the
Nordic electricity market.
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introduce additional �nancial risk to market participants.

In order to manage the risk in cross-border electricity markets, Physical Transmission

Rights (PTRs) have been introduced in Europe.4 PTRs are option contracts that secu-

ritize capacity of cross-border power grid interconnections for a speci�c period of time.

Therefore, these contracts allow for the transmission of electricity between two markets.

This right inherent in PTRs o¤ers the chance of buying electricity in one region A and

selling it in another region B. PTRs therefore allow for pro�table transactions in the

case of diverging regional prices. From a �nancial perspective, this transaction results

in the exchange of two electricity prices. Thus, the payo¤ of a PTR can be written as

PTR = max [B � A; 0] :

Based on this result, PTRs can be considered as exchange options. Margrabe (1978)

was the �rst to discuss the valuation of exchange options. He develops a closed-form

solution for this type of option in case both assets follow Itô processes.5 The Margrabe

model has since been applied extensively to the valuation of various contracts. Gay and

Manaster (1984) state, for example, that the quality option implicit in wheat futures

at the Chicago Board of Trade (CBOT) can be viewed as an exchange option which

the authors price using the Margrabe model. Hemler (1990) shows the same for the

delivery option of U.S. treasury bond futures at CBOT and Johnson and Tian (2000)

value indexed executive stock options based on the Margrabe formula. Albizzati and

Geman (1994) extend the Margrabe formula to include stochastic interest rates and use

their model for the valuation of the surrender option inherent in life insurance contracts.

Besides the discussed implicit exchange options, Fu (1996) applies the Margrabe formula

to value explicit options to exchange two interest rates.6

In addition to the application of the Margrabe formula, several authors extend the

underlying model. Carr (1988) considers sequential exchange options where exercise

induces further exchange options and proposes a closed-form solution. Grinblatt and

Titman (1989) extend the Margrabe model to the three asset case and Gerber and Shiu

(1996) develop a solution for the valuation of perpetual exchange options. In case of

4Besides PTRs, Financial Transmission Rights (FTRs) as well as Contracts for Di¤erence (CfDs) have
been introduced in Europe to hedge solely �nancial risk. See Kristiansen (2004) for an overview of
various risk management products in cross-border electricity markets and Marckho¤ and Wimschulte
(2009) for a detailed discussion of CfDs.
5Note that at the same time as Margrabe, Fischer (1978) derives an identical formula for the valuation
of exchange options. Throughout this paper, however, we refer to the exchange option formula as the
Margrabe model.
6See Gastineau (1993) and Margrabe (1993) for further applications of the Margrabe exchange option
model.
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non-normal distributions of the underlying assets Cherubini and Luciano (2002) use

copula functions for the valuation of exchange options. Another approach follows Li

(2008). He uses a multivariate Gram-Chalier approximation in order to derive the value

of an exchange option in case of non-normal asset distributions.

In this paper, we propose an extension to the Margrabe formula by including jumps

in both underlying asset prices. Following Cartea and Figueroa (2005), we propose a

mean-reverting jump-di¤usion model and derive a quasi closed-form solution for the

valuation of exchange options based on Merton (1976). We use our model for the val-

uation of monthly PTR options on the German and Dutch interconnector, i.e. options

on the spread between the German and Dutch electricity price. We analyze the pricing

performance of our model compared to the standard case without jumps. As electricity

prices are highly erratic, including jumps in order to match distributional and trajecto-

rial characteristics of electricity prices signi�cantly improves the model performance.7

However, since jumps in electricity prices generally fade within a few days, their im-

pact on the valuation of monthly electricity options is not unambiguous.8 In addition

to the incorporation of jumps in the exchange option model, we further test the e¤ect

of jumps in the underlying electricity prices when those prices serve as input factors to

the valuation model. Due to the high mean-reversion speed in electricity markets, prices

exhibit only a loose intertemporal connection. Thus, today�s electricity prices are only

a vague indicator of future prices and the inclusion of observed electricity prices could

distort resulting option values. This e¤ect is particularly prevailing in the case of jumps

in the underlying prices. We therefore analyze the pricing performance of both models,

i.e. di¤usion and jump-di¤usion model, using only de-spiked electricity prices.

Our dataset includes all 96 monthly PTR options between 2001 and 2008 in addition

to daily baseload prices for Germany and the Netherlands. Daily prices are available for

all 2,922 days between January 1, 2001 and December 31, 2008 and are mainly used

for the estimation of our model parameters and latent state variables. For estimating

the empirical (or physical) parameters, we refer to the method of Markov Chain Monte

Carlo (MCMC). This method of estimation is widely used for equity models and, among

others, applied by Eraker et al. (2003) as well as Eraker (2004) and more recently by

Rodrigues and Schlag (2009).

This paper contributes to various aspects of recent research. First, we derive a quasi

closed-form solution for the valuation of exchange options in the case of jumps in the

7See Bierbrauer et al. (2007) for a comparison of various models for German electricity prices.
8Dempster et al. (2008), for example, propose a two factor di¤usion model for the valuation of long term
spread options in commodity markets.
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underlying assets. Second, we empirically investigate the pricing performance of the

extended Margrabe model for monthly PTR contracts. Third, we analyze the impact

of de-spiked prices on the valuation of both exchange option models, i.e. di¤usion and

jump-di¤usion. Finally, we o¤er a detailed analysis of the pricing of monthly PTR

options on the German and Dutch interconnector. Our �ndings show that the inclusion

of jumps signi�cantly improves the pricing performance of the exchange option model.

In addition, the usage of de-spiked prices leads to a further improvement of the pricing

performance. Although the �rst e¤ect is more pronounced, the latter is still signi�cant.

Overall, our empirical results show that monthly PTR options are generally underpriced.

This con�rms the prior �ndings of Dieckmann et al. (2008).

In the course of our analysis, we start with a short discussion of the national electricity

markets of Germany and the Netherlands as well as their cross-border interconnection.9

Afterwards, we introduce our exchange option model and derive the closed-form solution

for the di¤usion model and a quasi closed-form solution for the jump-di¤usion model

respectively. We then describe the estimation of our empirical and risk-neutral parame-

ters and also shortly explain the process of de-spiking the underlying electricity prices.

The following section presents and discusses the results of our analysis before the last

section concludes.

2 German-Dutch Electricity Market

2.1 National Electricity Markets

In Germany and the Netherlands, the exchange based electricity markets are separated

into a spot and a derivatives market. In Germany, both are organized by the European

Energy Exchange (EEX).10 The spot market is basically a day-ahead market, where

electricity is auctioned on each working day for every hour of the next day or days in

case of a holiday or a weekend. The derivatives market at the EEX consists of options and

futures contracts, whereof the latter are by far more liquidly traded. Futures contracts

are further divided into physically and �nancially settled contracts. The derivatives

market is signi�cantly larger compared to the spot market. While the trading volume

of the spot market in 2007 was about 124 TWh, the derivatives market had a volume

1.150 TWh. The Dutch electricity market is comparable concerning its exchange based

9See Marckho¤ and Muck (2009) for a more detailed discussion of the German and Dutch national
electricity markets as well as their respective cross-border market.

10In January 2008, the French electricity exchange Powernext and the EEX founded the EEX Power
Derivatives GmbH intended to constitute a joint platform for derivatives trading in both countries.
While the EEX owns an 80% stake in the new compony, Powernext holds the remaining 20%.
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trading. The market also distinguishes between spot and derivatives trading. The spot

market is organized by the Amsterdam Power Exchange (APX) and also mainly consists

of a day-ahead market.11 The set up of the derivatives market is basically identical to the

German one, however, it is organized separately by the European Energy Derivatives

Exchange (ENDEX). The spot market volume at APX in 2007 was about 21 TWh

compared to a derivatives market volume of 101 TWh.

Despite similarities in the exchange based market set up, the German and Dutch elec-

tricity markets di¤er signi�cantly concerning their physical electricity markets. While

in the Netherlands, as one of the largest natural gas producers in the world, gas power

plants contribute considerably to the power generation mix, other fuels only play a mi-

nor role in electricity production.12 Germany in contrast, exhibits a more diversi�ed

mix concerning its power generation. Although coal (both hard and lignite) as well

as nuclear power plants constitute the major share in German electricity production,

natural gas and renewables also contribute signi�cantly to the power generation mix.

Therefore, the Dutch electricity market exhibits a more convex supply curve resulting

in generally higher and more erratic electricity prices. Figure 1 shows the logarithm of

daily baseload prices, i.e. the arithmetic mean of the 24 hourly prices, for Germany and

the Netherlands between 2001 and 2008. We refer to the logarithm of prices as these

constitute the basis for our model.

[Insert Figure 1 here]

Daily spot prices show a characteristic pattern. First of all, both trajectories are ex-

tremely erratic whereof Dutch spot prices are signi�cantly more erratic than German

ones. This applies for the regular variations as well as the occasional jumps. Second, elec-

tricity prices are mean-reverting, i.e. they rapidly tend back to a speci�c mean-reversion

level. This level, however, is not constant over time but rather exhibits a seasonal trend.

The trend is evident on a weekly as well as an annual basis due to seasonal patterns in

demand. In addition to the characteristics of national electricity prices, the co-movement

of both prices is also apparent. The more erratic prices in the Netherlands are explained

by the speci�c power generation mix and the co-movement is a clear sign of connect-

ing European electricity markets. Table 1 provides detailed descriptive statistics for the

logarithm of daily baseload prices in Germany and the Netherlands. Since we focus on

the valuation of monthly PTRs, we further show the monthly average of both electricity

prices.

11Since 2006, there exists an intraday market at EEX and APX, where electricity is traded continuously
for certain time blocks.

12In 2007, the Netherlands produced about 76.3 billion cubic meters of natural gas which corresponds to
almost 39% of the European Union�s natural gas production. See http://www.cia.gov for details.

5



[Insert Table 1 here]

Section A of Table 1 con�rms the observed characteristics from Figure 1. In both coun-

tries electricity prices exhibit large variations con�rmed by the high variance as well

the kurtosis. Further, prices in the Netherlands are generally above German prices and

in both countries positive jumps are more severe and observed more frequently than

negative ones as indicated by the skewness. The statistics of daily prices clearly indicate

that the distribution is far from normality. This indication is con�rmed by Jarque-Bera

values of 692 for Germany and 431 for the Netherlands respectively. Section B shows

that the monthly average of daily spot prices is not as wide spread, i.e. the minimum

increases and the maximum decreases. While the variance is also reduced, the skewness

increases and the kurtosis decreases even further. Although the Jarque-Bera values are

dramatically reduced to 60 and 64 for Germany and the Netherlands due to the smaller

sample size, prices still depart considerably from being normally distributed.13 Thus, us-

ing monthly average values does not signi�cantly shift the distributional characteristics

of prices towards the normal distribution.

2.2 The German-Dutch Cross-Border Market

The German and Dutch electricity markets are currently connected via three high-

voltage (380kV) power lines. The capacity of these interconnectors is managed solely

via PTR options. Three di¤erent contract types are distinguished which di¤er only

in terms of the length of their delivery period. These contract types comprise hourly,

monthly and yearly PTR options where every contract has a volume of 1MW. All PTRs

are auctioned explicitly by Auction BV, a 100% subsidiary of the Dutch transmission

system operator (TSO) TenneT.14 Hourly PTRs are auctioned for every hour of the

following day and cover only a single hour. Monthly PTRs are auctioned on the 10th

working day of the month preceding the delivery month and constitute a portfolio of

hourly PTRs for each hour of the delivery month. Yearly PTRs are auctioned on the �rst

working day following the 27th of September in the year preceding the delivery year.

In case of remaining capacity, there is a second auction for yearly PTRs on the �rst

working day after the 27th of November. Analogous to monthly contracts, yearly PTRs

are portfolios of hourly PTRs for each hour of the delivery year. Generally, one third of

the available capacity is reserved for each contract type. The price of the auction is zero

13The Jarque-Bera test statistics are asympotically �2 distributed with 2df. The 99% quantile of this
distribution is 9.21 and therefore signi�cantly below the estimated values.

14PTRs are auctioned seperately for each direction. Further, there are di¤erent PTRs available for the
two German TSOs RWE TSO and E.ON Netz. Throughout this paper, all analyses refer to RWE TSO
interconnections from Germany to the Netherlands as these contracts are by far more liquid.
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in case the available capacity exceeds demand and is determined by the lowest successful

bid otherwise. If several lowest bids exist, the capacity is allocated proportional to the

requested volume. Table 2 shows the descriptive statistics of all monthly PTR options

between January 2001 and December 2008.

[Insert Table 2 here]

3 Model

3.1 Di¤usion Processes

Our di¤usion model is based on the one factor model of Lucia and Schwartz (2002).

We model the logarithm of the spot price, i.e. lnPt, which can be decomposed into a

deterministic trend fP (t) and a stochastic component St. As we use identical models for

the German and Dutch electricity prices, we refrain from stating our model separately

for each country. We rather use a general notation where Pt 2 fGt; Dtg refers to the
German (Gt) as well as the Dutch (Dt) spot price at time t. Further, the stochastic

component St represents both, the German (Xt) and Dutch (Yt) stochastic component,

i.e. St 2 fXt; Ytg. This notation is also used when subscribing the deterministic functions
as well as the parameters of our model. Therefore, we can write for the logarithm of the

spot price

lnPt = fP (t) + St:

The deterministic function is used to �lter out the annual and intra-week seasonality

inherent in German and Dutch electricity prices. St therefore only contains the stochas-

tic �uctuations around the mean-reversion level of zero. In order to model the mild

�uctuation of electricity prices in the short run and the reversion to a seasonal trend in

the long run, St follows an Ornstein-Uhlenbeck process. Hence, St is governed by the

following SDE under the empirical (or physical) measure P

dSt = ��PStdt+ �PdWP (t) :

�P and �P are constant parameters, where the former is the mean-reversion speed

while the latter represents the volatility of St. The increments of the Wiener processes,

i.e. dWG (t) and dWD (t), are assumed to be correlated. In order to model the cor-

relation � between German and Dutch electricity prices, we assume that the incre-

ments of the Wiener process in Dutch electricity prices can be written as dWD =

�dWG (t) +
p
1� �2dZD (t). Here, dZD (t) is another increment of a Wiener process

independent of dWG (t). Therefore, the relation between the Wiener processes can be
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described as

E [dWG (t) dZD (t)] = 0;

E [dWG (t) dWD (t)] = �dt:

In order to derive the SDE of the spot price Pt, we apply Itô�s Lemma and obtain

dPt = �P [P (t)� lnPt]Ptdt+ �PPtdWP (t) ;

where

P (t) =
1

�P

�
1

2
�2P +

dfP (t)

dt

�
+ fP (t) :

When deriving the risk-neutral process for St we use the Girsanov theorem, see Girsanov

(1960), to change to the risk-neutral measureQ. The risk-neutral SDE for St then follows
as15

dSt = �P

�
��P
�P
�P � St

�
dt+ �PdW

Q
P (t) :

�P indicates the constant market price of di¤usion risk which is market speci�c and

therefore di¤ers for Germany and the Netherlands. The change to the risk-neutral mea-

sure leads to an altered mean-reversion level, while the mean-reversion speed as well as

the volatility remain constant. The measure change results, after applying Itô�s Lemma,

in the following SDE for the spot price Pt

dPt = �P

h
QP (t)� lnPt

i
Ptdt+ �PPtdW

Q
P (t) ;

where

QP (t) =
1

�P

�
1

2
�2P +

dfP (t)

dt

�
+ fP (t)�

�P
�P
�P :

Since we model the logarithm of the spot price, we derive the risk-neutral process for

lnPt, which is the sum of the deterministic trend and the solution to the above stated

risk-neutral SDE for St.16 The process for the logarithm of the spot price follows as

lnPt = fP (t) + (lnP0 � fP (0)) e��P t �
�P
�P
�P
�
1� e��P t

�
+ �P

Z t

0

e�P (s�t)dWQ
P (s) :

Thus, the logarithm of the spot price is normally distributed with expectation and

15We use the super index Q to indicate the risk-neutral measure. For the empirical measure P, we omit
the super index.

16See Mikosch (1999) for a detailed discussion of the solution to the SDE.
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variance of

EQ [lnPt] = fP (t) + (lnP0 � fP (0)) e��P t �
�P
�P
�P
�
1� e��P t

�
;

V arQ [lnPt] =
�2P
2�P

�
1� e�2�P t

�
:

The risk-neutral expectation of the spot price is17

EQ [Pt] = exp
�
fP (t) + (lnP0 � fP (0)) e��P t

�
� exp

�
�2P
4�P

�
1� e�2�P t

�
� �P
�P
�P
�
1� e��P t

��
:

3.2 Option Price without Jumps

In order to determine the value of an option to exchange the German and Dutch elec-

tricity price, we �rst derive the PDE for the option price. Our approach exploits the

fact that the option price is linear homogenous in both electricity prices.18 Therefore,

we can use Euler�s theorem to write the value of the option at time t, i.e. Ct, as

Ct �
@Ct
@Gt

Gt �
@Ct
@Dt

Dt = 0:

After di¤erentiating the equation for dCt reads as

dCt �
@Ct
@Gt

dGt �
@Ct
@Dt

dDt = 0:

We �nally attain the PDE for the option price by applying Itô�s Lemma to dCt and

substituting for dCt according to the above equation. This establishes the following

PDE
@Ct
@tt

+
1

2

�
@2Ct
@G2t

G2t�
2
G +

@2Ct
@D2

t

D2
t�

2
D + 2

@Ct
@Gt@Dt

GtDt�G�D�

�
= 0:

This PDE is identical to the PDE derived by Margrabe (1978). Therefore, our solution

to the PDE is also identical since we apply the same boundary and terminal value

assumptions. The value of the option at time t to exchange the German and Dutch

17Given a log-normally distributed variable ", i.e. ln " � N
�
�; �2

�
, the expectation of " can be derived as

E
�
eln "

�
= e�+

1
2�

2

: The risk-neutral expectation of Pt is identical to the forward price with maturity
in t.

18The option value at maturity is CT =(DT �GT )+ which is linear homogenous in both electricity prices,
i.e. for any constant � 2 R+0 we have �CT =(�DT � �GT )+. The option value at time t, with t < T ,
is just the discounted value of CT and therefore also linear homogenous in both electricity prices.
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electricity price with time to maturity � = T � t; follows as19

Ct (Gt; Dt) = Dt� (d1)�Gt� (d2) ;

where � (�) denotes the cumulative normal distribution function and

d1 =
ln
�
Dt
Gt

�
+ 1

2
�2�

�
p
�

;

d2 = d1 � �
p
� ;

�2 = �2G + �
2
D � 2�G�D�:

Our solution shows that the resulting option price is independent of the drift component

and thus, the mean-reversion characteristics of the underlying electricity prices. Further,

the market price of di¤usion risk �P has also no in�uence on the resulting option price.

3.3 Jump-Di¤usion Processes

Following Cartea and Figueroa (2005), we augment the di¤usion model and include log-

normal jumps in our underlying, or more precise in the SDE of the stochastic component.

The reason for adding jumps when modeling electricity spot prices is obviously justi�ed

by the observed prices shown in Figure 1. A pure di¤usion model is not capable of

mirroring the depicted trajectory. Applying the same notation as above, the SDEs for

St and Pt read as

dSt = ��PStdt+ �PdWP (t) + ln JP;tdqP;t

dPt = �P (P (t)� lnPt)Ptdt+ �PPtdWP (t) + Pt (JP;t � 1) dqP;t;

where

P (t) =
1

�P

dfP (t)

dt
+ fP (t) :

JP;t is log-normally distributed, i.e. ln JP;t � N (�J ; �
2
J) and qP;t is a Poisson process

independent of dWP (t). In order to derive the SDE for the logarithm of the spot price,

we use Itô�s Lemma for jump-di¤usion processes according to Cont and Tankov (2003)

to calculate d lnPt: We receive

d lnPt = dfP (t) + �P ( (t)� lnPt)dt�
1

2
�2Pdt+ �PdWP (t) + ln JP;t:

19The option price formula corresponds to the case where the holder of the PTR receives the Dutch
electricity price in exchange for the German one. In order to obtain the PTR option price for the
opposite direction, the German and Dutch electricity prices simply need to be exchanged.
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Solving this SDE, we attain the following process for lnPt

lnPt =
lnP0 +�fP (t)

(1 + t�P )
+

�
�P (t)� 1

2
�2P
�
t

(1 + t�P )
+

�P
(1 + t�P )

WP (t) +
1

(1 + t�P )

NtX
i=1

ln JP;i;

where �fP (t) = fG (t)�fG (0) and Nt indicates the number of jumps in lnPt until time
t. Since we need the risk-neutral process in order to value the option, we use the Girsanov

theorem as applied before.20 While the measure change for the di¤usion part has the

same e¤ect as discussed above, for the jump component, the jump intensity as well as

the mean jump size are altered under the risk-neutral measure. In turn, the variance of

the jump size remains unchanged, i.e. �QJ = �J . Assuming a Poisson distributed jump

process and normally distributed jump sizes, the risk-neutral jump intensity �Q and

mean jump size �QJ are

�Q = �e�J
e�P+0:5e�2P �2J ;

�QJ = �J +
e�P�2J :

e�P is the market price of jump risk. Using the aforementioned transform we can write

the risk-neutral SDEs as

dSt = �P (fP (t)� lnPt)dt+ �PdWQ
P (t) + ln J

Q
P;tdq

Q
P;t;

dPt = �P (
Q
P (t)� lnPt)Ptdt+ �PPtdW

Q
P (t) + Pt

�
JQP;t � 1

�
dqQP;t;

where

QP (t) =
1

�P

dfP (t)

dt
+ fP (t)�

�P
�P
�P :

Under the risk-neutral measure Q, qQ is still a Poisson process but with intensity �Q

and ln JQ � N
�
�QJ ; �

2
J

�
. We see that the SDEs for St as well as Pt are almost identical

across measures. The only di¤erences are the new mean-reversion level, the altered mean

jump size and jump intensity. The SDE for lnPt follows analogously to the empirical

case and we therefore refrain from stating it again. Under the risk-neutral measure, the

process for lnPt is

lnPt =
lnP0 +�fP (t)

(1 + t�P )
+

�
�P

Q (t)� 1
2
�2P
�
t

(1 + t�P )
+

�P
(1 + t�P )

WQ
P (t) +

1

(1 + t�P )

NQ
tX

i=1

ln JQP;i:

20See Benth et al. (2008) for a discussion of the Girsanov transform for Poisson processes.
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3.4 Option Price with Jumps

Due to the inclusion of jumps, the logarithm of the underlying spot price is not normally

distributed anymore and we cannot refer to the above derived option price formula.

However, since the jump component is log-normally distributed, we can write the distri-

bution of lnPt conditional on the occurrence of n jumps analogously to Merton (1976)

as

lnPT jn Jumps � N
 
lnPt +�fP (�) +

�
�P

Q (�)� 1
2
�2P
�
� + n�QJ

(1 + ��P )
;
�2P � + n�

2
P;J

(1 + ��P )
2

!
;

where again � = T � t and �fP (�) = fG (T ) � fG (t). Therefore, the logarithm of

the spot price conditional on the occurrence of a jump is again normally distributed.

Thus, we can write the value of an option to exchange the electricity prices Gt and

Dt; allowing for jumps in Gt and Dt; as the weighted sum of the option values without

jumps. We only need to adjust the corresponding variances.21 The option price at time

t with maturity in T can then be written as

Ct (Gt; Dt) =
1X
n=0

e��
Q
Gt
�
�QGt
�n

n!

1X
m=0

e��
Q
Dt
�
�QDt
�m

m!

�
Dt�

�
dJ1
�
�Gt�

�
dJ2
��
;

where n (m) counts the number of jumps in Gt (Dt) and the fractions correspond to the

Poisson probabilities of a jump given the jump intensity �G (�D) : Finally, the values of

dJ1 and d
J
2 are given by

dJ1 =
ln
�
Dt
Gt

�
+ 1

2
�2�

�
p
�

;

dJ2 = dJ1 � �
p
� ;

�2 =
�2G + n�

2
G;J

(1 + ��G)
2 +

�2D +m�
2
D;J

(1 + ��D)
2 � 2�

q�
�2G + n�

2
G;J

� �
�2D +m�

2
D;J

�
(1 + ��G) (1 + ��D)

:

4 Parameter Estimation

4.1 Deterministic Function

In order to estimate the parameters of the stochastic component, we �rst need to �lter

out the deterministic function fP (t). We use a combination of a piecewise constant

function and a sinusoidal function. Our deterministic function is based on those of

21Although the incorporation of jump also a¤ects the mean value of lnPT , we neglect its adjustment
since it has no impact on the value of a PTR option.
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Bierbrauer et al. (2007) and Seifert and Uhrig-Homburg (2007) and can be stated as

f (t) = �+ � � t+ d �Dday + s1 sin

�
(s2 + t)

2�

365

�
:

Here, t indicates the number of days (counting from 1 to 2,922). Further �; �; s1; s2 are

constant parameters , where s1 and s2 model the annual trend in electricity prices. d is

a vector of seven parameters (dMon � dSun) to model the weekly seasonality. Dday is a

vector of seven dummy variables (DMon �DSun) where each entry takes the value of 1

if t is the corresponding day of the week and 0 otherwise. We estimate all parameters

using the least-squares method and perform the following calculation

min
�;�;s1;s2;d

TX
t=1

(lnPt � fP (t))2 :

The estimated values for the German and the Dutch electricity prices are shown in

Table 3. All parameters refer to the logarithm of the spot price, where we only consider

parameters which are signi�cantly di¤erent from 0 at the 95% con�dence level.

[Insert Table 3 here]

Table 3 shows the annual and intra-week seasonality of electricity prices which are

comparable for both countries. While prices for weekdays are above average, with a peak

around Tuesday through Thursday, weekend prices are below average, where prices on

Sunday are the lowest. This pattern is intuitive and corresponds to intra-week demand

patterns. The annual sinusoidal function is also comparable for both countries. Prices

are generally higher during the fall and lower during the spring. This e¤ect is more

pronounced for the Netherlands but also apparent for Germany.

Having calculated the deterministic function, we receive the stochastic residual as the

di¤erence between the log spot price and the deterministic function.22 This stochastic

component is used to estimate the parameters and latent state variables, i.e. jump times

and jump sizes, of our model.

4.2 Discrete Processes

4.2.1 Di¤usion Model

In order to estimate the parameters for our model, we �rst need to discretize the SDE

of the stochastic component. Assuming �t = 1, we use the Euler discretization, i.e.

22We test the stationarity of the stochastic component using the Augmented Dickey-Fuller test. The
existence of a unit root is rejected at the 1% level for German as well as for Dutch residuals. The
corresponding t-value for the �rst is -8.8727 while for the latter the t-value is -9.2379.
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dSt = St � St�1.23 Therefore, we can write the discrete processes of the stochastic
component for our di¤usion model as

St = (1� �P )St�1 + �P "P (t) ;

where "P (t)
iid� N (0; 1), for St 2 fXt; Ytg and Pt 2 fGt; Dtg. Thus, St has a conditional

normal distribution, i.e.

St jSt�1 � N
�
(1� �P )St�1; �2P

�
:

Based on the above stated conditional distribution, we can write the joint likelihood of

S = fStgTt=1 as

p (Sj�) =
TY
t=1

p (StjSt�1;�) ;

where � = (�P ; �2P ; �) is the vector of parameters. Thus, the joint likelihood is just the

product of the densities of St for all t = 1; :::; T .

4.2.2 Jump-Di¤usion Model

When discretizing the SDE for the jump-di¤usion model, we use the same Euler dis-

cretization as before. However, of special interest is the discretization of the jump com-

ponent. In order to discretize the Poisson process, we use a series of Bernoulli distributed

elements, i.e. qt � Bernoulli ('t), where 't is the Bernoulli probability. Thus, the dis-
cretized process for St is governed by

St = (1� �P )St�1 + �P "P (t) + ln JP;tqP;t;

where "P (t)
iid� N (0; 1). For the ease of notation we use Nt = ln Jt henceforth. The

conditional distribution of St is

St jSt�1; Nt; qt � N
�
(1� �P )St�1 +NP;tqP;t; �2P

�
;

which is still normal conditional on the occurrence of a jump. Since we condition on the

appearance of a jump with known size, we do not need to adjust the variance but only

the mean of the distribution of St. The joint likelihood of St hence reads as

p (Sj�; N; q) =
TY
t=1

p (StjSt�1;�; Nt; qt) ;

23Eraker et al. (2003) show that the discretization bias is neglegible when using daily data.
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where N = fNtgTt=1 and q = fqtgTt=1 : Here, the vector of parameters additionally
includes the mean and variance of the jump size as well as the jump intensity, i.e.

� =
�
�P ; �

2
P ; �P;J ; �

2
P;J ; �P;�

�
.

4.3 Parameter Estimation

4.3.1 MCMC Method

For the estimation of the parameters and latent state variables of our model, we use

Markov Chain Monte Carlo (MCMC) estimation. Using MCMC we need to �nd the

joint posterior distribution of our parameters and state variables, i.e. p (�; V jS ), where
� comprises all relevant parameters and V represents the latent state variables, i.e.

jump time and jump size in case of the jump-di¤usion model. With this joint posterior

distribution, we perform a Monte Carlo simulation in order to estimate the relevant

parameters and state variables. As, however, the joint posterior distribution is in gen-

eral not known, we make use of the Cli¤ord-Hemmersley theorem. It states that the

complete conditional distributions, i.e. p (� jS; V ) and p (V jS;�), fully describe the
joint posterior. Therefore, instead of drawing from the joint posterior, we can sample

from the complete conditionals instead. If drawing from the complete conditionals is

also not feasible, the Cli¤ord-Hemmersley theorem can be reapplied until each para-

meter is sampled separately. The same holds for the complete conditional of the latent

state variables. Drawing all relevant parameters and latent state variables iteratively

we attain a Markov chain that eventually converges to the target posterior distribution.

Using the chain of sample drawings, the point estimates of the parameters and latent

state variables are obtained as the arithmetic mean of all Monte Carlo draws. We dis-

card the �rst 10,000 iterations in order to allow the Markov Chain to reach a stationary

distribution and use additional 10,000 iterations for estimating our parameters, thereby

stabilizing our point estimates.24

MCMC is essentially based on the theory of Bayes. Applying Bayes rule, we can de-

compose the posterior distribution of parameters and state variables into the product

of the joint likelihood, as stated above, the distribution of the state variables, p (V j�) ;
and the prior distribution of the parameters, p (�). Since we only need a proportionality

relation, the posterior distribution can be expressed as

p (�; V jP ) / p (P j�; V ) p (V j�) p (�) : (1)

24For a textbook treatment of MCMC and Bayesian theory see Gamerman and Lopes (2006). Johannes
and Polson (2003) provide a comprehensive discussion of the application of MCMC estimation for
�nancial models.
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If we can directly sample from the above stated product, we use the so called Gibbs

steps and randomly draw a new parameter sample for our Monte Carlo simulation.

The ability to use a Gibbs step heavily depends on the chosen prior distribution of the

parameters and state variables. Through adequate choices of the prior distributions, we

mainly use Gibbs steps for both of our models.25 If the above stated product cannot be

sampled directly, we need to refer to a Metropolis-Hastings step. Here, the product of the

densities only needs to be evaluated numerically. In this case, a new sample candidate

is drawn from a proposed density and then it is decided whether to accept this one as

a draw from the target posterior according to a given acceptance criterion. We use the

Metropolis-Hastings step when drawing samples for the correlation � in both models.

4.3.2 Di¤usion Model

When estimating the parameters of our models, we again refer to St 2 fXt; Ytg and
Pt 2 fGt; Dtg since for both countries the estimation procedure works identically. The
only exception states the correlation � where we need information from the German as

well as the Dutch likelihood.26 Note that for the di¤usion model we do not have latent

state variables.

Starting with the mean-reversion speed of the electricity prices �P ; the conditional

posterior, assuming a normal prior, i.e. p (�P ) � N (mP ; s
2
P ), is

p (�P j���P ; S) / p (Sj�) p (�P ) :

���P denotes the vector of parameters excluding �P . For the variance of the electricity

prices we assume an inverse gamma prior, i.e. p (�2P ) � IG (�P ; �P ), in order to ensure
non-negativity of the variance. The conditional posterior follows as

p
�
�2P
�����2P ; S� / p (Sj�) p ��2P � :

Finally, we need to derive the conditional posterior of the correlation �. Since the corre-

lation connects German and Dutch spot prices, the posterior of � depends on the joint

likelihood of both spot prices. Thus, the conditional posterior of �; assuming a uniform

prior, i.e. p (�) � U (�min; �max) is

p (�j���; X; Y ) / p (X;Y j�) p (�) :

25In order to perform a Gibbs step, the prior distributions need to be conjugate to the likelihood. This
means that the resulting posterior distribution is of the same family as the prior. For example, in case we
assume an inverse-gamma prior and a normal likelihood, the resulting product is again inverse-gamma
distributed from which we can directly smaple.

26We refer to the Appendix A.1 for details on the posterior distributions of the di¤usion model.
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Since we cannot draw directly from this density, we use a random-walk Metropolis-

Hastings step to draw samples for �. Here, we only need to evaluate �
�
�g+1

�
=�
�
�g
�
,

where �g is the g
th sample drawing of � and �

�
�g
�
is the posterior distribution of �g.

With random-walk Metropolis-Hastings, we draw a new candidate �g+1, where g + 1 is

the next iteration drawing with �g+1 = �g + " and " � N (0; �2") : This draw is accepted

with probability � given by27

� = min

�
� (�g+1)

� (�g)
; 1

�
:

If �g+1 is rejected as a draw from the target posterior distribution, we set �g+1 = �g.

In Table 4 we present the parameters of the prior distributions (so called hyperpara-

meters) alongside the starting values and estimation results for the di¤usion model.

Starting values are obtained as random draws from the prior distributions. We also

provide information on the 95% con�dence interval of estimated parameters given in

brackets.

[Insert Table 4 here]

Results in Table 4 con�rm the erratic behavior of electricity prices. The variance is

relatively large compared to �nancial or other commodity markets and slightly higher

in the Netherlands than in Germany. This result is in line with the di¤erences in the

power generation mix discussed above. The mean-reversion speed shows the short-term

characteristics of jumps in electricity prices. Jumps generally fade within four days,

where the mean-reversion speed is also higher for Dutch prices compared to German

ones. Further, the correlation is also relatively high due to the ongoing convergence of

electricity markets in Europe. The standard errors are rather small in relation to the

parameter values indicating a fast convergence of our MCMC algorithm. Overall, the

parameter values in Table 4 are in line with our expectations and the distributional

characteristics shown in Table 1 and Figure 1.

4.3.3 Jump-Di¤usion Model

In order to estimate the parameters and latent state variables for the jump-di¤usion

model we start with constructing a vector of jump times, i.e. qt 2 f0; 1g for t = 1; :::; T .

27Generally, the acceptence criterion also contains the proposal densities of the correlation. However,
since we use the random-walk Matropolis-Hastings step, the proposal distributions cancel out and we
refrain from including them in the acceptance criterion.
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Each element of this vector be Bernoulli distributed, i.e.28

qtjSt�1;�; Nt; qt � Bernoulli ('t) :

't is the Bernoulli probability, i.e. the probability of a jump at time t. Using this vector

of jump times, we draw the new jump intensity �P : We assume a beta prior for the

jump intensity, i.e. �P � Beta (��; ��), to ensure that the intensity is bounded by 0
and 1. Moreover, the beta prior allows us to apply a Gibbs step for �P . The posterior

distribution follows as

p (�P jq ) / p (q j�P ) p (�P ) :

We omit indices for jump times and jump sizes in case we refer to the entire vector. This

is applicable to the posterior distributions of the parameters. When drawing the state

variables, however, we apply indices as we sample each element of the vector separately.

Following the jump intensity, we need to generate a vector of jump sizes N . Since every

element of this vector is normally distributed, i.e. Nt � N (�J ; �
2
J), we can write the

conditional posterior as

p (Nt j�; St; St�1; qt ) / p (StjSt�1;�; Nt; qt) p (Ntj�) :

Since the product is also normally distributed, we again use a Gibbs step when drawing

the vector of jump sizes. Having completed the draws for the jump times and jump

sizes as well as the jump intensity, we continue by drawing all remaining parameters.

First, we sample the mean jump size �J assuming a normal prior, i.e. �J � N
�
m�; s

2
�

�
.

Therefore, the posterior distribution is

p (�J j�; N; q ) / p (N j�) p (�J) ;

which again is normal and thus, we also apply a Gibbs step. For the variance of the

jump size we assume, in line with the variance of the di¤usion process above, an inverse-

gamma prior, i.e. �2J � IG (�J ; �J). The posterior distribution is also inverse-gamma
and follows as

p
�
�2J j�; N; q

�
/ p (N j�) p

�
�2J
�
:

The posterior distributions for the other parameters, i.e. mean-reversion speed, di¤u-

sion variance and correlation are obtained analogously to the di¤usion model. We only

condition each parameter on the vector of jump times and jump sizes. We refrain from

stating the posterior distributions again and refer to the appendix.

28We refer to Appendix A.2 for details on the posterior distributions of the jump-di¤usion model.
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All prior distributions and hyperparameters for the jump-di¤usion model are presented

in Table 5. We also state the starting values, which are again drawn as random samples

from the prior distributions. The starting vector for the jump sizes is constructed based

on observed market data. Further, the estimated values for the parameters as well as

their 95% con�dence intervals (given in brackets) are shown.

[Insert Table 5 here]

Table 5 displays quite similar results for Germany and the Netherlands. The mean-

reversion speed as well as the di¤usion variance signi�cantly decrease compared to Table

4 due to the inclusion of jumps. The mean jump size is slightly negative for both

countries, however negligible in relation to the large variance of the jump size. The jump

intensity indicates around 35 jumps in Germany and 45 in the Netherlands on average

per year. The higher jump intensity as well as the higher jump size variance observed

for Dutch electricity prices are in line with the power generation mix discussed above.

Further, the correlation declines compared to the di¤usion model since we now include

uncorrelated jumps in both prices. Overall, the results of our parameter estimation also

con�rm the time-series results from Table 1 and Figure 1.

4.3.4 Risk-Neutral Parameters

When deriving the risk-neutral parameters, we �rst of all only consider those parame-

ters altered when changing to the risk-neutral measure Q. Further, we only need to
change those ones that in�uence the option price. Since both option pricing formulas,

i.e. di¤usion and jump-di¤usion, are independent of the drift component, the market

price of di¤usion risk as well as the mean jump size do not a¤ect PTR option prices.

Therefore, only the risk-neutral jump intensity �QP is to be estimated. In order to do

so for the risk-neutral jump intensities for Germany and the Netherlands, we minimize,

according to Broadi et al. (2007), the squared error between model and market prices.29

Thus, we carry out the following calculation

min
�QP

NX
i=1

(Ci (Gi; Di)� PTRi)2 :

Here, Ci (Gi; Di) is the model price of the monthly PTR option, PTRi is the observed

market price and N is the number of total PTR prices available. The results of the

above indicated calculation show, that in order to minimize the squared error between

29In contrast to our approach, Broadi et al. (2007) minimize the di¤erence between model and market
Black/Scholes implied volotilities in order to prevent placing too much weight on expensive options. In
our case, however, this approach is not feasible since implied volatilites of the Margrabe model are not
available for all monthly PTR options.
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model and market PTR prices, both jump intensities tend towards zero, i.e. �QP ! 0;

for all P 2 fG;Dg.30

The e¤ect of decreasing jump intensities on PTR option prices is shown in Figure 3. It

plots the arithmetic mean of the model prices against the jump intensities of German

and Dutch electricity prices.

[Insert Figure 2 here]

Figure 2 shows that PTR prices are strictly increasing in both parameters despite the

negative mean jump size. As, however, the mean jump size does not enter into the PTR

option price but only the jump size variance, this result is intuitive. The average model

price approaches 8.80 EUR in case both jump intensities tend towards zero. Considering

the average market price of about 7.90 EUR from Table 2, Figure 2 indicates that even

without jumps in the underlying asset prices, the model overestimates the resulting

option values.

4.4 De-Spiked Process

Besides analyzing the impact of including jumps in a valuation model for monthly

PTR options, we are also interested in the extent to which underlying electricity prices

are an adequate input factor for those models. Since there is only a loose connection

between intertemporal electricity prices, using observed prices for the valuation of elec-

tricity options could lead to sizeable distortions. This risk is especially apparent in the

presence of extreme jumps in the underlying electricity prices. As electricity prices are

mean-reverting, jumps fade usually within a few days.31 For the valuation of an option

on electricity prices, or on the spread as in our case, with several days to maturity,

only the overall price level should be of interest. Thus, we analyze whether the pricing

performance of our models is improved when considering only de-spiked prices. These

are simply the observed electricity prices adjusted by extreme jumps, i.e. the di¤usion

component of the underlying electricity price.

We de-spike our process again using the method of MCMC, or rather exploiting the

already performed estimation outcome. Via MCMC we receive a vector of jump times

and jump sizes during each iteration. The corresponding vector of de-spiked prices then

simply results as the di¤erence between observed market prices and the product of

30A jump intensity of exactly zero is not feasible since the Poisson probability for a jump intensity of
zero cannot be calculated.

31Seifert and Uhrig-Homburg (2007) for example show that jumps in German electricity prices only last
about two to three days.
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jump times and jump sizes. The �nal vector of de-spiked prices is then calculated analo-

gously to the parameter estimates as the arithmetic mean of all non-discarded iterations.

Figure 3 shows the de-spiked logarithm of daily baseload prices for Germany and the

Netherlands between 2001 and 2008.

[Insert Figure 3 here]

5 Empirical Results

In this section we compare the pricing performance of the four models discussed above

regarding their ability to match observed monthly PTR option prices. Besides imple-

menting the di¤usion and jump-di¤usion model, we distinguish for each of them between

using observed or de-spiked prices. Our analysis is based on 95 monthly PTR options

between February 2001 and December 2008.32 The time to maturity of each PTR, given

in years, is calculated as the di¤erence between the day of the auction and the �rst day

of the delivery period.33 Table 6 shows the descriptive statistics and the Root Mean

Squared Error (RMSE) of the spread between model and market PTR prices. A neg-

ative di¤erence indicates a model price exceeding the respective market price and vice

versa.

[Insert Table 6 here]

The results in Table 6 show two e¤ects. First of all, including jumps in the underlying

process signi�cantly enhances the pricing performance of our model. This e¤ect is ev-

ident for the regular as well as the de-spiked price processes. Second, using de-spiked

prices also improves the pricing performance of both the di¤usion and the jump-di¤usion

model. Although the former e¤ect reduces the RMSE between model and market PTR

prices more strongly, the latter one is still signi�cant. In order to test the signi�cance of

the inclusion of jumps as well as the usage of de-spiked prices, we refer to the Likelihood-

Ratio test applied, among others, by Longsta¤ et al. (2001). We �nd that e¤ects em-

phasized in Table 6 are signi�cant at the 99% con�dence level. While the test statistics

for the comparison of the di¤usion and the jump-di¤usion model is 109.85, the corre-

sponding values for the di¤usion and jump-di¤usion model based on de-spiked prices in

contrast to observed prices are 14.44 and 47.45 respectively.34

32The January 2001 PTR option is not included in our analysis. Since there are not electricity spot prices
available for December 2000, we are not able to calculate the corresponding model price.

33Our calculations are based on a constant interest rate of 2% p.a. Due to the relatively short time to
maturity, however, the resulting option prices are highly insensitive towards changes in the interest
rate.

34As we only observe one market price per PTR option, our Likelihood-Ratio test is based on the �2

distribution with 1df.
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Using de-spiked prices leads to a decrease in overall PTRmodel prices as indicated by the

higher mean values of the spread. The largest e¤ect, however, is evident for the minimum

values of the spread between model and market PTR prices. A large negative value (in

absolute terms) indicates PTR model prices signi�cantly above observed market prices.

These extreme model prices are based on jumps in the underlying spot price. Since de-

spiking eliminates those outliers, exaggerated model prices are also reduced. As jumps

are usually positive, using de-spiked prices results in generally lower values for model

PTRs and thus, in a better �t of PTR market prices.

The e¤ect of the inclusion of jumps is similar. Table 5 shows that the di¤usion vari-

ance markedly declines for the jump-di¤usion model compared to the di¤usion model.

Considering the risk-neutral jump intensities of nearly zero, only the di¤usion variance

enters into the valuation of PTR options. Hence, the overall PTR model price decreases

as it is strictly increasing in the variance, leading to a better �t of market prices. The ef-

fect of reduced spread values is stressed by the mean and median as well as the minimum

and maximum values in Table 6.

In addition to an improved model performance, results in Table 6 point out that PTR

model prices are on average above their market counterparts as indicated by the negative

mean spread values, i.e. monthly PTR options are generally underpriced. Even for the

jump-di¤usion model with jump intensities of virtually zero, model prices are above

market prices.35 In order to con�rm the undervaluation of monthly PTRs, we compare

their prices to those of the corresponding futures spread. Since a PTR is an option

on the spread between the German and Dutch electricity spot price, the corresponding

futures contract is the spread between the German and Dutch national electricity futures

with identical delivery period. In our case, we use a long position in the Dutch and a

short position in the German futures contract. Further, we use physically settled futures

contracts from the EEX, i.e. German Power Futures, and the ENDEX, i.e. Dutch Power

Futures, in order to match the physical settlement of PTRs. The calculation of the

futures spread is based on the daily closing price at the day of the PTR auction. Figure

4 shows the price of the monthly PTR option (solid line) and the corresponding spread

between the national electricity futures contracts (dashed line) for all contracts between

February 2006 and December 2008.

[Insert Figure 4 here]

35Even though monthly PTR options are rather portfolios of hourly PTR options, we value these contracts
as plain-vanilla options with expiry on the �rst day of the delivery period. The valuation of monthly
PTR options as a portfolio of hourly options would, however, entail an increase in model prices as
the time to maturity generally increases. Therefore, overestimated PTR model prices and thus the
underpricing of market PTRs would be even more pronounced.
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Figure 4 shows that PTR prices and the corresponding futures spreads are highly corre-

lated. However, almost all of the monthly PTR option prices are below the correspond-

ing futures spread.36 While PTR contracts o¤er the �exibility of exercising every hourly

PTR contract separately, futures contracts in contrast pose a binding commitment over

the entire delivery period. Thus, the �exibility inherent in PTRs is not priced support-

ing our results from Table 6 that monthly PTR options are generally undervalued. This

is in line with the prior �ndings of Dieckmann et al. (2008).

6 Conclusion

Cross-border electricity �ows become increasingly relevant due to connecting pan Eu-

ropean electricity markets. Further, shifts in the power generation mix, i.e. a growing

share of renewables along with a decrease of fossil fuels and nuclear power, result in ad-

ditional cross-border electricity �ows. These trends increase the physical and �nancial

risk inherent in cross-border electricity markets. Although TSOs continue to invest in

the expansion of their intra- and international power grids, congestion will continue to

prevail in the European electricity markets.

Physical Transmission Rights (PTRs) are physically settled option contracts in order

to manage the capacity of cross-border interconnections in Europe. These products are

currently the only used instruments for managing electricity �ows at German cross-

border interconnections. From a �nancial perspective, PTRs are options to exchange

one electricity price for another. We therefore apply the exchange option model of Mar-

grabe (1978) for the valuation of monthly PTR contracts on the German and Dutch

interconnector between 2001 and 2008. We extend the Margrabe model by including

jumps in the underlying pice process in order to model the erratic behavior of elec-

tricity prices. Our analysis shows that the adoption of jumps signi�cantly improves the

pricing performance of the exchange option model. In addition, we also show that using

de-spiked prices further improves the performance for both, the di¤usion as well as the

jump-di¤usion model. These two e¤ects are in line with our expectations. As electricity

prices are extremely erratic compared to other commodities, their distribution is far

from normal even for monthly average values. Thus, including jumps in the model ac-

commodates the non-normal distribution and clearly improves the ability of the model

to match PTR market prices. Further, as intertemporal electricity prices are at best

loosely connected, de-spiked prices are a better indicator of the overall price level and

a possible bias induced by jumps in the underlying is signi�cantly reduced.

36Results from Figure 4 are also apparent when using settlement prices from the day prior to the auction
of monthly PTR options.
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In addition to the pricing performance of the discussed models, numerical results show

that monthly PTR options are generally underpriced. This underpricing is not only

evident in relation to calculated model prices, but also compared to the correspond-

ing futures spread. For contracts between February 2006 and December 2008, the PTR

option price is strictly below the respective futures spread indicating that market par-

ticipants do not value the �exibility inherent in PTR options. This result con�rms the

prior �ndings of Dieckmann et al. (2008).

Future research could extend our analysis and apply our model to additional spread

options. Here, spread products in other commodity markets are of special interest. These

include locational spreads as well as cross commodity contracts, such as the widely

used spark-spread options. In addition, a thorough analysis of the di¤erence between

exchange options in contrast to options directly written on the underlying spread are of

great interest.
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Appendix

A.1 Posterior Densities for the Di¤usion Model

The conditional posterior for the mean reversion speed is

p (�P j���P ; S) / p (Sj�) p (�P )

/ exp
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The conditional posterior for the variance of the di¤usion process reads as

p
�
�2P
�����2P ; S� / p (Sj�) p
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� (e�P )
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1

�2P
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�
e�P
�2P

!
:

Therefore the posterior of �2P is also inverse-gamma distributed where the parameters

follow from the prior parameters as

�P =
1

2
T + �P ;

�P =
1

2

XT

t=1
(St � (1� �P )St�1)2 + �P :

The conditional posterior for the correlation between German and Dutch electricity

prices is

p (�j���; X; Y ) / p (X; Y j�) p (�)

/ 1

j�j
T
2

exp

�
�1
2

XT

t=1

�
St � �t�1

�0
��1

�
St � �t�1

��
� 1

�max � �min
;

where St = (Xt; Yt)
0 is the vector of de-trended spot prices. The vector of the mean

of de-trended spot prices, i.e. �t�1, is �t�1 = ((1� �G)Xt�1; (1� �D)Yt�1)0. � is the
covariance matrix.
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A.2 Posterior Densities for the Jump-Di¤usion Model

The Bernoulli probability 't satis�es

't = Pr ('t = 1jSt�1;�; Nt; qt)

=

�
1 +

1� �P
�P

exp
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2
t

�2P

���1
:

The posterior of the jump intensity follows as
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We can write the conditional posterior of the mean jump size as
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The posterior distribution of the mean jump size is
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The posterior distribution of the variance of the jump size follows as
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The posterior distribution of the mean reversion speed is
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The posterior distribution of the variance of the di¤usion process follows as
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The conditional posterior of the correlation is
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where St = (Xt; Yt)
0 is the vector of spot prices. The vector of mean spot prices, i.e.
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Table 1
Descriptive Statistics of Daily and Monthly Spot Prices

This table shows the descriptive statistics of the logarithm of daily (Section A) and monthly (Section
B) day-ahead electricity prices from Germany and the Netherlands. Calculated values in Section A
are based on 2,922 daily prices between January 1, 2001 and December 31, 2008. Results in Section B
are based on the 96 monthly average electricity prices between 2001 and 2008. Monthly averages are
calculated as the arithmetic mean of the logarithm of all daily prices per calendar month.

A. Daily Baseload

Country Mean Median Minimum Maximum Std.dev. Skewness Kurtosis

Germany 3.5086 3.4667 1.1378 5.7089 0.5110 0.0623 0.4531
Netherlands 3.6690 3.6112 0.7178 6.4928 0.5273 0.2431 1.0480

B. Monthly Average

Country Mean Median Minimum Maximum Std.dev. Skewness Kurtosis

Germany 3.5090 3.4028 2.8299 4.4675 0.4052 0.4328 -0.7689
Netherlands 3.6689 3.5694 2.9725 4.4766 0.3784 0.3439 -0.9334
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Table 2
Descriptive Statistics of Monthly PTR Options

This table shows the descriptive statistics for the 96 monthly PTR options on the German-Dutch
interconnector between January 2001 and December 2008.

PTR N Mean Median Minimum Maximum Std.dev. Skewness Kurtosis

Month 96 7.8988 6.8850 1.0620 27.8886 5.3103 1.5583 3.3452
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Table 3
Parameters of Deterministic Function

This table shows the estimated values of the deterministic functions for Germany and the Netherlands
between 2001 and 2008. Calculations are based on the logarithm of daily prices. All parameters are
signi�cantly di¤erent from 0 at the 95% level.

Country � � dMon dTue dWed dThu dFri dSat dSun s1

Germany 2.9415 0.0004 0.0896 0.1598 0.1513 0.1293 0.0667 -0.1645 -0.4332 -0.0494
Netherlands 3.1985 0.0003 0.1044 0.1653 0.1429 0.1320 0.0629 -0.1678 -0.4407 -0.1010
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Table 4
Estimated Parameters and Prior Distributions for the Di¤usion Model

This table provides information on the parameters of the di¤usion model. It shows the prior distributions
and their respective hyperparameters. Further, the starting value for each parameter is given which is
obtained as a random draw from its prior distribution. Finally, the point estimates and standard errors
(given in brackets) for the parameters are shown calculated as the arithmetic mean of all non-discarded
iterations.

Parameter Prior Distribution Starting Values Estimated Values

�G N (0:5; 0:25) �G;(0) = 0.8639 0.2291 (0.00012)
�2G IG (3:0; 1:0) �2G;(0) = 0.4443 0.0456 (0.00001)

�D N (0:5; 0:25) �D;(0) = 0.0947 0.2718 (0.00013)
�2D IG (3:0; 1:0) �2D;(0) = 0.7930 0.0762 (0.00002)

� U (�1:0; 1:0) �(0) = 0.2278 0.3781 (0.00017)

34



Table 5
Estimated Parameters and Prior Distributions for the Jump-Di¤usion Model

This table shows analogously to Table 4 the prior distributions, hyperparameters and starting values
for all parameters of the jump di¤usion model. Also, the point estimates of the parameters and their
standard errors (given in brackets) are given.

Parameter Prior Distribution Starting Values Estimated Values

�G N (0:5; 0:25) �G;(0) = 0.9029 0.1655 (0.00010)
�2G IG (3:0; 1:0) �2G;(0) = 0.3679 0.0134 (0.00001)
�GJ N (0:5; 0:25) �GJ;(0) = 0.5342 -0.0183 (0.00019)
�2J;G IG (3:0; 1:0) �2G;(0) = 0.3076 0.1736 (0.00013)
�G B (10; 3100) �G;(0) = 0.0018 0.0944 (0.00006)

�D N (0:5; 0:25) �D;(0) = 0.4262 0.1452 (0.00010)
�2D IG (3:0; 1:0) �2D;(0) = 0.6219 0.0144 (0.00001)
�DJ N (0:5; 0:25) �DJ;(0) = 0.6100 -0.0005 (0.00020)
�2J;D IG (3:0; 1:0) �2D;(0) = 0.6725 0.2624 (0.00017)
�D B (10; 3100) �D;(0) = 0.0024 0.1215 (0.00006)

� U (�1:0; 1:0) �(0) = 0.5017 0.1934 (0.00026)
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Table 6
Descriptive Statistics of Deviation between Monthly PTR Market and Model Prices

This table shows descriptive statistics as well as the Root Mean Squared Error (RMSE) of the spread
between observed market PTR prices and their respective model prices. Model prices are calculated
based on observed daily prices (Section A) and de-spike prices (Section B). A positive spread refers to
higher market prices and vice versa.

A. Normal Price Process

Model RMSE Mean Median Minimum Maximum Std.dev. Skewness Kurtosis

Di¤usion 20.98 -15.83 -12.70 -79.57 13.47 13.84 -1.29 4.21
Jump-Di¤usion 11.77 -0.87 0.22 -72.46 24.72 11.80 -3.17 16.44

B. De-Spiked Price Process

Model RMSE Mean Median Minimum Maximum Std.dev. Skewness Kurtosis

Di¤usion 19.44 -15.05 -12.80 -59.14 13.30 12.37 -0.59 0.88
Jump-Di¤usion 9.17 0.02 0.82 -50.46 24.58 9.21 -2.02 10.30
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Figure 1
Logarithm of German and Dutch Daily Electricity Prices

This �gure shows the logarithm of German and Dutch daily electricity prices between 2001 and 2008.
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Figure 2
Mean PTR Model Price and Jump Intensities

This �gure shows the mean PTR model price plotted against German and Dutch jump intensities. Mean
model prices are calculated as the arithmetic mean of all 95 PTR option prices between February 2001
and December 2008.
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Figure 3
De-Spiked Logarithm of German and Dutch Daily Baseload Prices

This �gure shows de-spiked values of the logarithm of German and Dutch daily electricity prices
between 2001 and 2008. The de-spiked prices correspond the di¤usion component of the underlying
jump-di¤usion model.
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Figure 4
PTR Price vs. Futures Spread

This �gure shows the PTR option price (dashed line) and the corresponding futures spread (solid line)
for all month contracts between February 2001 and December 2008. The futures spread is calculated
based on daily closing prices for physically settled futures contracts on the day of the PTR auction.
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