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Abstract
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1 Introduction

The liberalization of European electricity markets, starting with the adoption of the

European Commission�s Directive 96/92/EG in 1996, has led to an increase in inter-

national cross-border electricity �ows. In 2007, 12.6% of all electricity consumption

was delivered cross-border across all UCTE countries.1 In the course of growing in-

ternational perspectives in power markets, countries strive towards optimizing cross-

border interconnections. In 2006, the Belgian, Dutch and French electricity exchanges

started a market coupling in order to improve the coordination of their cross-border

electricity �ows. Just recently, at the end of 2008, Germany and Western Denmark

also coupled their electricity markets with the aim of a more e¢ cient usage of avail-

able transmission capacity. Along with an improved organization and increasing usage

of cross-border electricity connections, prices in the European market continuously

converge.2

In the course of internationalizing electricity markets and growing importance of

cross-border electricity �ows, the signi�cance of an adequate risk management capa-

ble of adjusting to changing risk factors further increases. The two sources of risk

inherent in cross-border electricity markets can be separated, analogous to national

markets, into physical and �nancial risk. Physical risk comprises the risk associ-

ated with the proper ful�llment of delivery agreements. Financial risk is concerned

with unexpected price variations that lead to substantial �nancial losses. While the

�nancial risk is inherent in virtually all �nancial markets, albeit more severe in elec-

tricity markets due to higher price variations, the physical risk is unique as electricity

exhibits special characteristics compared to other commodities or assets. Two prop-

erties mainly describe electricity as a commodity. It is in general not storable at

reasonable cost and electricity is grid bound.3 The �rst attribute leads to the unique

spiky trajectory of electricity prices, since the lack of storability reduces the chance

to dampen shocks of supply and demand. This poses a great challenge to the man-

agement of �nancial risk in electricity markets. The latter characteristic increases the

risk of physical settlement. Since electricity is transported through a power grid with

only limited capacity, a congested cable could hamper delivery. This risk is ampli�ed

1See http://www.ucte.org. The Union for the Co-ordination of Transmission of Electricity (UCTE)
is the association of continental European transmission system operators (TSOs). UCTE currently
comprises 29 TSOs from 24 di¤erent countries.
2Armstrong and Galli (2005) as well as Zachmann (2008) show an increasing convergence of day-
ahead electricity prices in Continental Europe between 2002-2006.
3In Europe, Norway with a share of hydropower over 90% might state an exception to the non-
storability of electricity. See Von der Fehr et al. (2005) for a discussion of the relevance of hydropower
in the Nordic market.
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by another property of electricity. According to Kirchho¤�s law, electricity spreads

across the entire grid as soon as it is injected at any point in the network. In other

words, a point to point delivery from the origin to the destination is not feasible.

Thus, even a congested cable not originally intended to carry electricity could make

timely delivery unfeasible.4 As congested electricity lines hamper the �ow of elec-

tricity, diverging electricity prices in neighboring areas result, creating an additional

�nancial risk in cross-border electricity markets.

In order to manage the physical and �nancial risk in European cross-border electric-

ity markets, Physical Transmission-Rights (PTRs) have been introduced.5 PTRs are

option contracts that allow access to cross-border transmission lines for a speci�c pe-

riod of time. Therefore, PTRs o¤er the opportunity of buying electricity in a speci�c

region A and selling it in another region B. From a �nancial standpoint, the payo¤

of this transaction is equal to the di¤erence between both electricity prices. For this

reason, PTRs can be seen as exchange options where the electricity price in region

B is exchanged for the electricity price in region A. Thus, the payo¤ of a PTR can

be stated as

PTR = max [B � A; 0] : (1)

Margrabe (1978) was the �rst to discuss the valuation of exchange options. He de-

velops a closed-from solution, based on the Black/Scholes formula, in case both asset

prices follow Itô processes. Marckho¤ (2009) extends the Margrabe model and pro-

poses, based on Merton (1976), a quasi closed-form solution for exchange options in

case of log-normal jumps in both asset prices. Li (2008) shows a more general ex-

tension to Margrabe (1978). She uses a multivariate Gram-Chalier approximation to

value exchange options in case of non-normal asset distributions. Another approach

follow Cherubini and Luciano (2002). They use copula functions to value various

options, including exchange options in closed form. Dempster et al. (2008) show,

however that in case of co-integrated price processes the spread can be modelled

directly, instead of modelling each asset separately. Since electricity prices in neigh-

boring regions are usually co-integrated, modelling the spread directly is a suitable

approach for electricity exchange options. Thus, the valuation of electricity exchange

options reduces to modelling a single price process, i.e. the spread, and pricing the

4A congested cable between Germany and France could, for instance, hamper electricity �ows from
Germany to the Netherlands even though the cable between the latter two countries is not congested.
5In addition, Financial Transmission Rights (FTRs) as well as Contracts for Di¤erence (CfDs) have
been introduced in Europe to hedge pure �nancial risks. See Kristiansen (2004) for an overview of
various risk management products in cross-border electricity markets and Marckho¤andWimschulte
(2009) for a detailed discussion of CfDs.
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option written on this underlying.

One of the �rst papers addressing the valuation of electricity derivatives was Lucia

and Schwartz (2002). They derive formulas for the valuation of electricity forwards

based on one and two factor mean-reversion models. An extension to pure di¤usion

models propose, among others, Cartea and Figueroa (2005) who include log-normal

jumps in their model in order to account for erratic variations observed in electricity

prices. However, jumps in electricity prices generally last only a few days. Therefore,

in order to mimic the characteristic trajectory of electricity prices, the resulting

mean-reversion speeds become unrealistically high for those models. To circumvent

this problem, Geman and Roncoroni (2006) propose signed jumps to model negative

jumps immediately following positive ones. Recently, Huisman and Mahieu (2003)

and Bierbrauer et al. (2007) propose regime switching models in order to match the

speci�c characteristics of electricity prices.

Although modelling the spread between electricity prices directly allows us to refer

to standard models for pricing electricity derivatives, the unique characteristics of

spread processes need to be incorporated. While Seifert and Uhrig-Homburg (2007)

show that spikes in the German electricity market generally last two to three days

until prices revert back to their long term mean-reversion level, the duration of spikes

in the spread between electricity prices is usually remarkably shorter. Jumps in the

day-ahead spread between Dutch and German electricity prices, for example, do not

last longer than one day. In order to match these speci�c spread characteristics, we

develop a model based on Simonsen et al. (2004) that produces these pronounced

spikes. We separate the di¤usion part from observed prices and model the spikes as a

normally distributed component that is occasionally added to the underlying di¤usion

process.6 The jump times are Bernoulli distributed in order to model that jumps

occur instantly and then disappear immediately. The separation of the underlying

spread into a di¤usion and a spike component further allows us to include only de-

spiked prices into the valuation of derivatives. Since spikes only last one day and

their occurrence has absolutely no impact on the overall price level, using observed

spreads for the valuation of derivatives could lead to large distortions.

In this paper, we use the aforementioned model for the valuation of hourly day-ahead

PTR options on the German-Dutch interconnector. We include all hourly PTRs be-

tween January 1, 2001 and December 31, 2008, i.e. 2,922 observations for each hour

of the day. Our dataset further includes all corresponding hourly day-ahead electric-

6Throughout this paper we refer to the di¤usion component as the de-spiked process.
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ity prices in Germany and the Netherlands. As PTRs and electricity is auctioned

explicitly for each hour of the day and each hour has its unique characteristics, we

analyze all 24 hours separately. In order to estimate the empirical (or physical) and

risk-neutral parameters of our model, we use the method of Markov Chain Monte

Carlo (MCMC). MCMC is widely used for estimating equity models and is applied

by Eraker et al. (2003) as well as Eraker (2004) and more recently by Rodrigues and

Schlag (2009). This e¢ cient and robust estimation procedure does not only allow

for the simultaneous estimation of all parameters, but also the estimation of explicit

vectors for jump times and jump sizes. Using the latter, we can easily separate the

de-spiked price process from observed market prices.

This paper contributes to the current research in various ways. First, to the best of our

knowledge, we are the �rst to comprehensively analyze day-ahead PTR options that

are currently the most widely used instruments for managing cross-border electricity

�ows in the German electricity market.7 Second, we develop a model capable of

incorporating the unique features of hourly electricity spreads. Finally, we estimate

our model and analyze the market price of jump risk inherent in day-ahead PTR

options. Due to their extremely short time to maturity, jump risk can be considered

as the main driver of these contracts. Empirical evidence indicates that our model

describes an adequate approach for the valuation of hourly PTR options especially

during calm hours. Further, our results show that investors are willing to pay a

premium for hourly PTR options for turbulent hours of the day, i.e. hours 8 to

22. This price premium can be explained by increased hedging demand of investors

and emphasizes the importance of these contracts and the need for adequate risk

managing tools in cross-border electricity markets.

In the course of this paper, we �rst discuss the national and cross-border electricity

markets of Germany and the Netherlands. We then introduce our model for the

valuation of PTR options and explain the MCMC estimation of the empirical and

risk-neutral parameters. Finally, we discuss the results of our analysis before we

shortly sum up our �ndings.

7With the exception of the German and western Denmark interconnector, all German cross-border
connections currently use explicit auctions of PTRs to allocate day-ahead cross-border capacity.
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2 German-Dutch Electricity Market

2.1 National Electricity Markets

The German and Dutch exchange based electricity markets are very alike. In Ger-

many, electricity is traded on the European Energy Exchange (EEX). The spot mar-

ket mainly consists of a day-ahead market where every working day, electricity is

auctioned for each of the 24 hours of the next day (or days in case of holidays or

weekends). The overall trading volume in 2007 in the spot market at EEX was 124

TWh, compared to a total electricity consumption in Germany of 556 TWh. In the

Netherlands, electricity is traded on the Amsterdam Power Exchange (APX). Here,

the spot market is also a day-ahead market where every day electricity is auctioned

analogous to the EEX.8 The spot market trading volume at APX in 2007 was about

21 TWh compared to a total consumption in the Netherlands of 117 TWh.9

Although the market set up in both countries is comparable, their physical electricity

markets demonstrate fundamental di¤erences in terms of their power generation mix.

These discrepancies are extremely relevant as they economically determine the overall

electricity price level and therefore the sign and level of the price spread between these

countries. The Netherlands, as one of the largest natural gas producers in the world,

generates a major share of electricity from natural gas power plants.10 Other fuels

play only a minor role in the generation of electricity. In Germany, coal �red and

nuclear power plants are the most important source of electricity generation, while

natural gas and renewables also contribute signi�cantly to the power generation mix.

Table 1 provides details on the gross power generation in both countries in 2007.

[Insert Table 1 here]

The power generation mix shown in Table 1 has a signi�cant e¤ect on the spread

between German and Dutch electricity prices. Power plants are generally stacked

according to their marginal cost of power generation, where the power plant with the

lowest marginal cost is used �rst.11 In Germany, baseload demand is generally covered

8At EEX and APX, there also exists an intraday market since September 2006, where electricity is
traded continuously for certain time blocks.
9Exchange based information is available at http://www.eex.de and http://www.apxgroup.com re-
spectively. Consumption �gures are obtained from http://www.ucte.org.

10In 2007, the Netherlands produced about 76.3 billion cubic meters of natural gas which corresponds
to almost 39% of the European Union�s natural gas production. See http://www.cia.gov for details.

11This stacking is called merit order and is also applicable within a power plant concerning di¤erent
generators. In addition to marginal costs, other factors, e.g. lead time and minimum usage time,
need to be considered.
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by renewables (without pumped storages), lignite and nuclear power. Natural gas and

hard coal power plants are added as demand increases. Peakload is usually covered

by gas and oil �red plants or pumped storage facilities. The Netherlands cannot rely

on relatively cheap nuclear power or lignite and need to refer to more expensive hard

coal and natural gas power plants for base and medium load. Therefore, the usage of

e¢ cient powerplants to cover peak demand in the Netherlands is limited and Dutch

day-ahead electricity prices are in general higher and more erratic than prices in

Germany.

2.2 German-Dutch Cross-Border Market

The German and Dutch power grids are currently connected via three high voltage

(380kV) cross-border cables. In Germany, the two southern cables are operated by

the transmission system operator (TSO) RWE TSO and the northern one by E.ON

Netz. In the Netherlands, TenneT is the sole TSO operating all interconnectors. The

capacity of the cross-border connections is auctioned explicitly by Auction BV, a

100% subsidiary of Tennet. The capacity is auctioned for each direction separately

via PTR options.12

There are three di¤erent types of PTR options auctioned for the German-Dutch inter-

connector. They di¤er in the length of the delivery period and are hourly, monthly

and yearly PTRs. All PTRs have a volume of 1MW. Hourly PTRs are auctioned

day-ahead for every single hour of the following day. Monthly PTRs are auctioned

on the 10th working day of the month preceding the delivery month. Yearly PTRs

are auctioned on the �rst working day after September 27th in the year preceding

the year of delivery. In case of remaining capacity from the �rst auction of yearly

PTRs, a second auction is held on the �rst working day after the 27th of November.

In general, about one third of the entire available capacity is reserved for each of

the three contract types. Investors bid price/volume combinations were several bids

per investor are allowed. In case the requested volume is lower than the available

capacity, the PTR price is zero. Otherwise, all investors pay the price of the lowest

successful bid. If there is more volume requested at the lowest successful bid, the

allocation for those bids is partitioned relative to the requested volume.

Although monthly and yearly PTRs are auctioned separately, they actually consist of

a portfolio of hourly PTRs for each hour of the respective delivery period. Therefore,

12The connections from RWE TSO and E.ON Netz are auctioned separately. Since the capacity of
the RWE TSO cables is by far larger, we only refer to these interconnectors and the respective
PTRs throughout this paper.
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the owner of such a portfolio has the right to exercise each hourly PTR separately.

In case of monthly or yearly contracts, investors need to nominate the PTR for each

hour three days prior to execution, i.e. they must state whether they use their PTR

or not. Should investors nominate the usage of their PTR, they are obliged to induce

the corresponding amount of electricity into the grid. In case PTRs are returned,

the capacity is available for the hourly auction and the owner is refunded with the

proceeds of the auction. If an investor does not nominate the PTR at all, the capacity

is returned to the hourly auction and the owner is not refunded. This approach is

called the use it or lose it principle. Concerning the ful�llment of the PTRs, these

contracts are o¤ered �rm, i.e. the TSO has no right to curtail the granted capacity of

a PTR holder. However, there are two exceptions to the rule. In case of power system

safety requirements or force majeure, the TSO might revoke the right of inducing

electricity into the grid. In the �rst case, the TSO is required to compensate for the

losses and has to pay the holder of the PTR 110% of the initially paid price. In case

of force majeure, the TSO only refunds 100% of the paid PTR price. Out of the 2,922

days between 2001 and 2008, only for six days there was no PTR price available.

As all three types of PTR options basically refer to hourly contracts, the underlying

of the PTR is the hourly spread between German and Dutch day-ahead electricity

prices. Figure 1 shows this spread between 2001 and 2008.

[Insert Figure 1 here]

Hourly spreads between Germany and the Netherlands vary signi�cantly across dif-

ferent hours of the day. While spreads usually �uctuate mildly with occasional jumps

during o¤ peak hours, spreads are highly erratic during peak hours. Since the merit

order leads to a concave marginal cost function, price spikes are more likely when

general demand is already high as for the peak hours during the day. Furthermore,

price spreads and spikes are mostly positive, i.e. Dutch prices are usually higher than

German ones. This is in line with the power generation mix of the Netherlands com-

pared to Germany discussed above. Table 2 provides detailed descriptive statistics

for the German and Dutch hourly day-ahead spread, where a positive spread refers

to higher prices in the Netherlands and vice versa.

[Insert Table 2 here]

Figures in Table 2 con�rm the erratic behavior of the electricity price spread and

shows a large dispersion of the descriptive statistics across di¤erent hours. The min-

imum and maximum values indicate the relevance and idiosyncratic occurrence of

jumps in national electricity prices. Also, the skewness and kurtosis shows signi�cant
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values for all hours, although during peak hours these �gures are even more severe.

The varying characteristics of electricity price spreads across the day motivates the

distinct modelling of each hour. Further, the mostly positive results for the mean

and skewness in addition to the larger maximum compared to the minimum values

(in absolute terms) con�rm the generally higher and more erratic electricity prices in

the Netherlands.

As stated in equation 1, the PTR is an option on the spread between German and

Dutch hourly day-ahead price. Since hourly PTRs are auctioned with only one day

to maturity, we expect their prices to closely re�ect the price spreads in Table 2.

The descriptive statistics of hourly PTRs as well as the average volume auctioned

(in MW) are shown in Table 3.

[Insert Table 3 here]

Table 3 shows that in general PTR prices re�ect the underlying price spread. For

peak hours, mean PTR prices as well as their standard deviations are higher than

for o¤-peak hours. Further, skewness and kurtosis are extremely high for all hours

but the greatest values are observed for o¤-peak hours. Traded volumes indicate

relatively large amounts of available capacity, considering that these values are given

per MWh and that hourly PTRs only constitute about one third of overall capacity

auctioned. Further, the �gures show lower capacities for peak hours compared to

o¤-peak hours. One reason might be the lower levels of returned capacity from year

and month auctions, i.e. more PTR holders exercise their long term options rather

than selling it in the hourly auction. Another reason could be the delivery of less

electricity from the Netherlands to Germany, compared to o¤-peak hours, which also

leads to lower capacities for delivery from Germany to the Netherlands.13

Despite overall similarities, there are signi�cant di¤erences between PTR prices and

electricity price spreads, especially when considering the extremely short time to

maturity of each PTR. The reason is that price spikes are very hard to predict even

with only one day to maturity. Positive (negative) price spikes occur in case the

Dutch day-ahead electricity price jumps up (down) compared to the German one or

vice versa. Jumps in national electricity prices are idiosyncratic and occur in case

of a sudden drop in supply or an unpredicted increase in demand, where the �rst is

usually more common. Figure 2 shows the relation between traded PTR prices and

the resulting payo¤s, i.e. the maximum of the underlying spread and zero, between

13Since opposed currents cancel out, scheduled electricity �ows from the Netherlands to Germany
increase the available capacity for the opposite direction.
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2001 and 2008. A negative value indicates PTR prices above the corresponding payo¤.

It is evident that there is a large dispersion between paid PTR prices and resulting

payo¤s. PTR prices considerably above their payo¤ as well as payo¤s signi�cantly

in excess of PTR prices are both frequently observed across all hours. This con�rms

the unpredictability of price spikes.

[Insert Figure 2 here]

In addition to unforeseeable price spikes, the PTR auction process further induces a

great amount of uncertainty to investors. As PTRs are physical contracts that securi-

tize the right to deliver electricity via an interconnector, the exercise of these options

requires a speci�c period of lead time.14 In order to pro�t from a purchased PTR

option, assuming that no prior delivery agreement exists, the investor needs to buy

electricity in the German day-ahead market and sell the same amount in the Dutch

day-ahead auction. However, while the PTRs are auctioned at 9am the day before

maturity, the auctions for German and Dutch day-ahead electricity close at noon

and 11am respectively. Auction results are submitted 15 minutes later for German

day-ahead electricity and 30 minutes later otherwise. Since there is no obligation to

use the purchased PTR, the holder can announce its usage until 2pm. In case the

investor bought electricity in the Dutch or German day-ahead auction and the price

spread does not allow for a pro�table usage of the PTR option, positions need to be

closed via the intraday market in order to prevent losses. Since the price at which

the positions are closed is also unpredictable, this schedule of auctioning the PTR

options o¤ers a great amount of uncertainty to investors.

3 Model

3.1 Underlying Processes

In order to model the hourly spread between German and Dutch electricity prices, we

decompose the price spread at time t; Pt; into a di¤usion component St and a jump

component Jt. Further, we can neglect any seasonal component that is common in

electricity price models, since the price spread is not subject to any seasonal trend.

The price spread Pt can be written as

Pt = St + Jt: (2)

14Lead time is required since an instantaneous delivery of electricity is hardly feasable. Further,
demand and supply have to be balanced at all time so that the TSO needs to schedule any changes
in the supply and demand.
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St follows an Ornstein-Uhlenbeck process since the price spread is subject to mild

variations in the short term but reverts back to the mean-reversion level in the long

run. Jt mirrors the fact that the price spread is subject to occasional jumps, which

in general only last for one day. Formally, we have

dSt = � (� � St) dt+ �DdWt;

Jt =

(
Nt; with probability pJ
0; with probability (1� pJ)

;
(3)

where Nt � N (�J ; �
2
J). Using this set up, we are able to model price spikes in

the underlying process, i.e. extreme jumps that only last for one day. Further, since

we separate the jump and di¤usion component, the mean-reversion speed � is not

biased by jumps in the underlying and we therefore receive more realistic values

when estimating �. In addition, we are able to use the current de-spiked value St
when calculating the PTR option price. This is reasonable as the occurrence of a

spike should have no in�uence on the PTR price. Following Mikosch (1999) and Cont

and Tankov (2003) we get for the process of Pt

Pt = S0e
��t + �

�
1� e��t

�
+ �De

��t
Z t

0

e�sdWs + Jt: (4)

The mean and variance of Pt are

E [Pt] = S0e
��t + �

�
1� e��t

�
+ pJ�J ;

V ar [Pt] =
�
1� e�2�t

� �2D
2�
+ &J ;

(5)

where &J = �2DpJ + �2JpJ (1� pJ) is the variance of the jump component Jt. In

order to obtain the SDE under the risk-neutral measure Q, we use the Girsanov
transform.15 In our model, we only consider the e¤ect of the measure change on the

jump component. Due to the short time to maturity of only one day, we neglect the

impact of the market price of di¤usion risk. Therefore, we receive more pronounced

results for our estimation of the jump risk premia and all di¤usion parameters remain

constant, i.e. �QJ = �J , �Q = � and �QJ = �J .16 Under the risk-neutral measure the

jump intensity as well as the mean jump size change whereas the variance of the

jump size remains constant, i.e. �QJ = �J . Thus, we can characterize St and Jt under

15See Benth et al. (2008) for a detailed discussion of the measure change for jump processes.
16We use the super index Q to indicate the risk neutral measure. For the empirical measure P, we
omit the super index.
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the risk-neutral measure as

dSt = � (� � St) dt+ �DdW
Q
t ;

JQt =

(
NQ
t ; with probability pQJ

0; with probability
�
1� pQJ

� ;
(6)

Under the risk-neutral measure, the jump probability is pQJ and N
Q � N

�
�Q; �2J

�
.

The corresponding process for Pt follows as

Pt = S0e
��t + �

�
1� e��t

�
+ �De

��t
Z t

0

e�sdWQ
s + JQt : (7)

Based on the risk-neutral information of the jump component, we can calculate the

market price of jump risk �J . Considering the distributional characteristics of the

jump, i.e. a Bernoulli distributed jump time and a normally distributed jump size,

the market price of jump risk is de�ned as

�J =
�Q � �

�2J
: (8)

Thus, the market price of jump risk is the change in mean jump size per unit of jump

size variance. It is negative for a risk-averse investor and positive for a risk-loving

investor. Thus, a risk-averse investor requires a discount in order to invest in PTR

options since the investment is risky. A risk-loving investor on the other hand is

willing to pay a premium for buying the PTR. A risk-neutral investor does not price

any risk and therefore the empirical and risk-neutral mean jump sizes are identical,

i.e. �J = 0.

3.2 Derivation of Call-Price

We derive the price of a PTR option based on the approach of Merton (1976). When

conditioning the spread on the occurrence of a jump at time t, the spread is normally

distributed. Given a conditional normal distribution, the option price can be easily

derived as the discounted expected value under the risk-neutral measure. Based on

the risk-neutral process for Pt from equation 7, we can write the price of a PTR

option as

PTR = e�rt
1X
n=0

Pr (n jumps)EQ
�
(Pt)

+
��n jumps� : (9)

Due to the set up of our model, the number of jumps until maturity is of no relevance

for the valuation of the PTR option. This is based on the idea that spikes only last one
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day and vanish without any in�uence on the general price level. The only relevant

jump time for the valuation of a PTR option is at maturity. Therefore, we only

need to distinguish two scenarios. Either there is a jump in the underlying spread

at maturity or there is no jump. Considering the probability of a jump under the

risk-neutral measure, i.e. pQJ , we can write the value of the PTR option at time zero

and maturity at time t as

PTR =
1X
n=0

�
pQJ

�n �
1� pQJ

�1�n nh
S0e

��t + �
�
1� e��t

�
+ n�QJ

i
� (d)

+

r
�2D
2�
(1� e�2�t) + n�2J

e�
1
2
d2

p
2�

)
e�rt;

(10)

where � (�) is the cumulative normal distribution function and d is de�ned as

d =
S0e

��t + � (1� e��t) + n�Qq
�2D
2�
(1� e�2�t) + n�2J

:

Equation 10 shows that if a jump occurs, the mean and variance of the spread are

adjusted by the mean and variance of the jump component. In case of no jump,

only the di¤usion mean and variance enter the expected spot price. Since only two

scenarios need to be considered, i.e. jump and no jump, the formula is kept easily

tractable.

4 Parameter Estimation

4.1 Discrete Process

In order to estimate the empirical and risk-neutral parameters, we �rst need to dis-

cretize the process Pt assuming that �t = 1. Special interest in the course of the

discretization receives the jump component Jt: We decompose the jump component

into the product of a jump time variable qt and a jump size variable Nt. While qt
is Bernoulli distributed to indicate whether a jump occurs at time t, Nt is normally

distributed to determine the jump size. This setup allows us to model positive and

negative jumps in the underlying spread.

Given the process for Pt under the empirical measure P from equation 4, we can

write the discrete process of Pt as

Pt+1 jSt = Ste
�� + �

�
1� e��t

�
+
p
1� e�2�"t+1 +Nt+1qt+1; (11)
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where "t+1 � N
�
0;

�2D
2�

�
. For simplicity we assume P0 = S0 = 0. Since a spike today

has virtually no impact on tomorrow�s price, Pt is conditioned on today�s de-spiked

price St. Given the discrete process of Pt, we can formulate the full information

likelihood of P = fPtgTt=1 as

p (P j�; q; N ) =
T�1Y
t=0

p (Pt+1 jSt; qt+1; Nt+1;�) ; (12)

where

p (Pt+1 jSt; qt+1; Nt+1;�) / exp
 
�1
2

(Pt+1 � Ste
�� � � (1� e��t)�Nt+1qt+1)

2

(1� e�2�)
�2D
2�

!
:

The full information likelihood is an essential part in the parameter estimation. The

likelihood for the vector of observed price spreads P is simply the product of the

likelihood functions of all of its elements Pt, for all t = 1; :::; T . Normality of Pt
is guaranteed since it is conditioned on the occurrence of a jump. The risk-neutral

discrete process of Pt can be derived identically as

Pt+1 jSt = Ste
��t + �

�
1� e��t

�
+
p
1� e�2�"Qt+1 +NQ

t+1q
Q
t+1: (13)

The full information likelihood for the risk-neutral process of Pt follows analogous to

equation 12.

4.2 Empirical Parameters

In order to estimate the parameters of the discretized process, we use the Markov

Chain Monte Carlo (MCMC) method. Via MCMC, we generate random samples

from the joint posterior distribution, p (�; X jP ), of parameters � and latent state

variables X. The set of parameters includes all relevant parameters to be estimated,

i.e. � = f�; �2D; �; �J ; �2J ; pJg, whereas the latent state variables include jump times
and jump sizes, i.e. X = fq;Ng. Since the joint posterior distribution is in general
not known, we apply the Cli¤ord-Hemmersley theorem that allows us to draw from

the complete conditional distributions, i.e. p (� jP;X ) and p (X jP;�), instead. If
drawing from the complete conditional distribution is still not feasible, the Cli¤ord-

Hemmersley theorem can be reapplied until each parameter, conditional on observed

prices, latent state variables and all other parameters, is drawn separately. The same

holds for the conditional distribution of the state variables. Drawing all parameters

iteratively, we receive a Markov Chain that eventually converges to the target poste-
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rior distribution. We �nally receive the estimated parameter values as the arithmetic

mean of all non discarded Monte Carlo draws. We discard the �rst drawings of our

estimation to let the Markov chain come close to its stationary distribution and

therefore, to receive more robust results.17

MCMC is based essentially on the theory of Bayes. Using Bayes rule, we are able

to state the posterior distribution as the factor of the likelihood (see equation 12),

the distribution of the state variables, p (X j�) ; and the prior distribution of the
parameter, p (�). As we only require a proportionality relation, we can express the

posterior distribution as

p (�; X jP ) / p (P j�; X ) p (X j�) p (�) ; (14)

In case the above stated product of distributions can directly be drawn from, we

can use the so called Gibbs algorithm in order to draw a new sample. By choosing

appropriate prior distributions for the parameters, we mainly refer to Gibbs sampling

in this paper. If the posterior distribution cannot directly be sampled from, we use a

Metropolis-Hastings step. Here, a new sample is drawn from a proposed distribution.

This sample candidate is then accepted as a drawing from the posterior distribution

according to a given acceptance criterion. In case of the Metropolis-Hastings algo-

rithm, the conditional posterior only needs to be evaluated numerically. We use the

Metropolis-Hastings method when drawing samples for the mean-reversion speed �.

For our estimation, we start with the jump times qt. In each iteration step, we generate

a vector q 2 fq1; :::; qTg with length equal to the number of observed market prices.
Each element is Bernoulli distributed indicating if a jump occurred at time t or not,

i.e. qi 2 f0; 1g, for all i = 1; :::; T . The conditional probability of a jump in the next
time step, i.e. qt+1 = 1, has the following distribution18

qt+1j�; Pt+1; St; Nt+1 � Bernoulli
�
't+1

�
: (15)

't+1 is the Bernoulli probability of a jump in the next time step. With the vector

of jump times, we draw a new jump probability pJ via Gibbs. We assume that pJ
has a beta prior distribution, i.e. pJ � Beta

�
�pJ ; �pJ

�
. A beta prior ensures that the

jump probability is bound between zero and one. Further, the beta distribution is

17See Gamerman and Lopes (2006) for a textbook treatment of MCMC methods and Bayesian theory.
Johannes and Polson (2003) thouroughly discuss MCMC methods and give various examples for
�nancial models.

18We refer to the appendix for details on the posterior distributions.
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conjugate to the Bernoulli likelihood.19 The posterior distribution of pJ then follows

as

p (pJ jq ) / p (q jpJ ) p (pJ) : (16)

In case we omit indices of observed prices, jump times or jump sizes, we refer to

the entire vector. Indices, in contrast, refer to a speci�c element of the respective

vector. The latter is used when drawing the vector of jump times and jump sizes

since each element is drawn individually. The �rst is applied for the estimation of the

parameters.

When drawing the vector of jump sizes we proceed analogous to jump times such

that we need to generate a vector of jump sizes N 2 fN1; :::; NTg, where each element
is normally distributed with mean �J , and variance �

2
J . The posterior distribution of

each element can therefore be stated as

p (Nt+1j�; qt+1; Pt+1; St) / p (Pt+1jSt; Nt+1; qt+1;�) p (Nt+1 j�) : (17)

After having drawn jump times, jump sizes and the jump probability, we continue

by successively drawing all remaining parameters. The mean jump size �J has the

following posterior distribution, assuming a normal prior, i.e. �J � N (mJ ; s
2
J)

p
�
�J jN; q;���J

�
/ p (N j�) p (�J) : (18)

���J refers to the vector of parameters without �J . For the variance of the jump size

�2J we assume an inverse gamma prior distribution, i.e. �
2
J � IG

�
��J ; ��J

�
, to insure

positivity of the variance. Thus, the posterior follows as

p
�
�2J
��N; q;���2J� / p (N j�) p

�
�2J
�
: (19)

Afterwards, we draw a sample for the mean-reversion speed � as well as the variance

of the di¤usion process �2D. For � we assume a normal prior, i.e. � � N (m�; s
2
�) and

therefore the posterior of � is

p (�jN; q;���; P; S) / p (P jS;N; q;�) p (�) ; (20)

where S = fStgTt=1. Since a direct draw from the above mentioned product of the

likelihood and the prior of � is not feasible, we use the Metropolis-Hastings approach

19A prior distribution is called conjugate to a likelihood function if the resulting posterior distribution
is from the same family as the prior, i.e. the product of Bernoulli likelihood and a beta prior is also
beta distributed with altered parameters. With the exception of the mean reversion speed, all prior
distributions in this paper are conjugate.
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to sample �: Here, we only need to evaluate � (�g+1) =� (�g), where �g is the gth

sample drawing of � and � (�g) is the posterior distribution of �g. Using the random

walk Metropolis-Hastings algorithm, we draw a proposed �g+1 as �g+1 = �g + "�,

where "� � N (0; �2"). Afterwards, we have to decide whether to accept �g+1 as a

potential sample drawing for the above stated posterior distribution (from which we

could not draw directly). In case we do not accept �g+1 we set �g+1 = �g, where the

probability � of the acceptance of �g+1 is calculated as20

� (�g; �g+1) = min

�
� (�g+1) q (�gj�g+1)
� (�g) q (�g+1j�g)

; 1

�
:

Afterwards we need to draw a new �2D from its posterior distribution, where we

assume, analog to the variance of the jump size, an inverse gamma prior distribution

of �2D, i.e. �
2
D � IG (�D; �D) :Thus, the posterior of �2D is

p
�
�2D
��N; q;���2D ; P� / p (P jS;N; q;�) p

�
�2D
�
: (21)

Finally, we need to draw a new sample for the mean-reversion level �. Assuming that

� � N (m� ; s
2
�) ; the conditional posterior follows as

p (�jN; q;��� ; P ) / p (P jS;N; q;�) p (�) : (22)

Repeating the drawing of the above mentioned state variables and parameters, the

distribution of the resulting Markov Chains will eventually converge to their target

posterior distributions. In order to �nd starting values for the estimation procedure,

we randomly draw parameter values from their prior distributions. The starting vec-

tor of jump sizes is constructed from observed market data. We discard the �rst

10,000 iterations and use additional 10,000 drawings as a basis for our parameter es-

timation. Appropriate choices of prior distributions and their parameters (called hy-

perparameters) improve fast convergence and are generally used to induce exogenous

information into the estimation procedure. However, in our estimation, the results of

the parameter estimates are quite insensitive towards changes in hyperparameters.21

Besides receiving point estimates for parameter values, MCMC additionally allows

20q (�g+1j�g) is the proposal density of �g+1. In case of symetrical proposal densities, these cancel
out simplifying the acceptance criterion to the fraction of posterior distributions.

21The mean jump size as well as the mean-reversion level are normally distributed with mean 0:0
and variance 2:25. The mean reversion speed is also normally distributed but with a mean of 0:3
and a variance of 0:01. The variances of the jump size and the di¤usion variance are inverse-gamma
distributed with an alpha of 10:0 and a beta of 2:0. The jump probability is beta distributed with
an alpha and beta equal to 2:0.

16



us to separate the jump and the di¤usion part of the underlying spread. Since we

receive a vector of jump times and a vector of jump sizes in each iteration step, we

can calculate the di¤usion part of the underlying at time t, i.e. St, as the di¤erence

between the observed spread and the product of jump time and jump size at time

t. After having �nished the parameter estimation, we receive the �nal value for St
as the arithmetic mean of non discarded iterations of St for all t = 1; :::; T . The

calculation of the �nal jump times and jump sizes follows analogous to the vector

S. Figure 3 shows the underlying spread, the de-spiked process as well as the jump

times and jump sizes exemplarily for the eighth hour.

[Insert Figure 3 here]

4.3 Risk-neutral Parameters

In order to estimate the risk-neutral parameters, we need to include option prices

into our estimation, since spot prices do not contain information about market prices

of risk. For the observed PTR prices C, we assume

Ct = PTRt
�
�Q;  t

�
+ "ct ; (23)

where "ct � N (0; �2c). PTRt
�
�Q;  t

�
is the model price of Ct; given in equation 10,

as a function of the parameters �Q and additional factors  t; i.e. the current value

of the de-spiked price St; interest rate and time to maturity.22

Equation 23 states that PTR prices are observed with an error. This assumption is

made in order to avoid a singularity problem. Thus, the observed option prices are

normally distributed around their theoretical value, i.e. Ct � N
�
PTRt

�
�Q;  t

�
; �2c
�
.

Given the empirical parameters, we now only need to estimate those parameters that

change when changing to the risk-neutral measure. The set of parameters therefore is

�Q =
n
�; �2D; �; �

Q
J ; �

2
J ; p

Q
J ; �

2
c

o
. Since we do not want to induce any information on

how the risk-neutral parameters change when changing to the risk-neutral measure

Q, we use the same prior distributions and hyperparameters as before. The full
information likelihood of C follows as

p
�
C
���Q; S; �2c � = TY

t=1

p
�
Ct
���Q; St; �2c � : (24)

We point out that the conditional distribution of Ct does not depend on the jump

22Throughout this paper, we assume a risk free rate of interest of 2% p.a. As we only use PTR options
with one day to maturity, the interest rate has virtually no e¤ect on our results.
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times and jump sizes. Therefore, PTR prices contain no information on jump times

and jump sizes. This does of course not mean that jump times and jump sizes are

identical across measures. But in order to generate the vectors q and N , we refer to

the same posterior distributions as for the empirical estimation given in equations 15

and 17 and we refrain from stating them again.

The �rst parameter whose conditional distribution changes is the jump probabil-

ity pQJ . Given the beta prior distribution stated above, the posterior for the jump

probability follows as

p
�
pQJ
��qQ; C� / p

�
qQ
���pQJ � p �Ct ���Q; St; �2c � p�pQJ � : (25)

Since we cannot draw from this distribution directly, we apply Metropolis-Hastings

algorithm with a Beta proposal density. For the mean jump size �QJ the posterior is

p
�
�J

���NQ; qQ;�Q
��QJ

; C
�
/ p

�
NQ

���Q � p �Ct ���Q; St; �2c � p��QJ � : (26)

As we can also not draw from this distribution directly, we use again a Metropolis-

Hastings algorithm with a normal proposal density.23 Finally, we need to draw the

variance of the error term from the observed option prices where we assume, in line

with before estimated variances, an inverse gamma prior, i.e. �2c � IG (�c; �c) ; with
�c = 10 and �c = 2: The posterior distribution is

p
�
�2c
��NQ; qQ;�Q��2c ; C; P

�
/ p

�
CjP; S;NQ; qQ;�Q

�
p
�
�2c
�
; (27)

from which we can sample directly. Thus, we apply the Gibbs algorithm. As the rest

of the parameters is identical across measures, we refrain form drawing them again

and use their values estimated before.

5 Empirical Results

In Table 4, the estimation results for the empirical as well as risk-neutral parameters

are given for all 24 hours. As mentioned above, the presented values are calculated

as the arithmetic mean of the 10,000 non discarded Monte Carlo iterations. Further,

below each parameter, the standard error of the estimation is given. The low standard

errors in relation to the parameter values con�rm a fast convergence of our MCMC

23For the proposal density of the jump probability we use the parameters � = 2; � = 2. The normal
proposal density for the mean jump size has mean 0 and variance 100. Both proposal densities are
symmetric wich simpli�es the acceptance criteria in the Metropolis-Hastings step.
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algorithm.

[Insert Table 4 here]

For the empirical parameters, our initial expectations for the underlying spread are

con�rmed by the parameter estimates. First of all, �gures in Table 4 show a relatively

large mean-reversion speed � compared to values observed in national electricity

markets. This con�rms the observed oscillatory behavior of the di¤usion process as

presented in Figure 3.24 Second, the estimation results of the remaining parameters

support the time-series properties of the spread. The values of the mean-reversion

levels are in line with the median price spreads in Table 2 in terms of sign as well as

level. While hours 4 to 8 have negative mean-reversion levels, those for the other hours

are all positive and generally higher for peak hours. The mean jump sizes and jump

probabilities show no clear pattern across di¤erent hours. However, the variance of

the jump sizes vary signi�cantly during the day. For morning hours and late at night,

the variance of the jump sizes are rather moderate. During peak hours, in contrast,

jump variances increase extremely reaching their peak for hour 18 with a variance of

over 46,000. Comparing the �gures with the time-series results in Table 2 as well as

the trajectories in Figure 1, these values are in line with intuition. With minimum

and maximum price ranges of over 3,500 and kurtoses of up to 600, these jump

size variances are also in line with observed prices. Overall, the empirical parameter

estimates in Table 4 con�rm the erratic and extremely spiky behavior of daily price

spreads from Table 2 and Figure 1 and supports our approach of modelling each hour

separately.

The result for the risk-neutral parameters is dichotomous. For hours early in the

morning or late at night, the price of jump risk is negative. These are hours 1 to

7 as well as 23 and 24. For the other hours, i.e. 8 to 22, the price of jump risk is

either positive or zero. This distinction coincides with the volatility of the respective

hourly spreads, especially the jump size variances. While during relatively calm hours

market participants are risk-averse, PTRs are priced risk-neutral or even risk-loving

during turbulent hours. In order to clarify the results in Table 4, Figure 4 shows the

di¤erence between empirical and risk-neutral densities of the underlying spread. A

positive value refers to a higher probability under the risk-neutral measure.

[Insert Figure 4 here]

24Note that the mean-reversion speed only refers to the di¤usion component. Therefore, the spikes in
the underlying spread do not a¤ect the estimated values for �.
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Figure 4 con�rms the results of Table 4. For hours 4 and 24, negative (positive)

outcomes of the spread become more (less) likely under the risk-neutral measure.

This shift if distinctive for risk-averse market participants and in line with negative

�J values in Table 4. Although the is smaller for hour 24, note the di¤erent scale

for hours 12 to 24 compared to hours 4 and 8, the left shift of the distribution

is still signi�cant. For the remaining hours, the di¤erences between the empirical

and risk-neutral densities are also clearly visible, although only minimal for hour

12 since both densities are dominated by the extreme jump size variance. However,

in contrast to hours 4 and 24, the di¤erence between empirical and risk-neutral

densities is symmetric, i.e. there is no shift in the probability of positive and negative

outcomes. This con�rms the risk-neutral or marginally risk-loving behavior of market

participants during turbulent hours indicated by the results for the market price of

jump risk in Table 4.

In order to explain our results, two aspects are of relevance. First of all, PTR options

are physically settled in contrast to the widely used �nancially settled options. In case

of cross-border supply agreements, investors might need to purchase PTR options at

short notice. Since the ful�llment of such an agreement is generally of utmost priority,

investors might be willing to pay a premium for PTR options. As the PTR auction

is held before the day-ahead auction in the Dutch electricity market, investors are

in general not able to purchase any electricity in the Dutch market at all or at the

desired price in order to ful�ll a potential supply agreement. Thus, the auction set

up increases the hedging demand of market participants. This demand to hedge the

delivery risk is ampli�ed by the lower amount of available capacity during turbulent

hours, inducing an insurance premium in PTR options. The other reason might be the

usage of PTR options as purely speculative contracts. As PTR prices are generally

small with regards to the extreme price spikes inherent in the underlying price process,

PTRs can be thought of as a bet on the occurrence of a jump. As the forecast of

jumps in the underlying spread, even with only one day to maturity, is extremely

di¢ cult as shown in Figure 2, investors are willing to pay a premium for PTRs in

order to bene�t from occasional but highly pro�table jumps.

Besides the dichotomy in the behavior of market participants investing in PTR op-

tions, the pricing performance of our model also di¤ers depending on the volatility in

the market. The model �t is indicated by the variance of the residuals between market

and model prices, i.e. �2c . While �
2
c is rather low for calm hours with only moderate

jump size variances, it signi�cantly increases for turbulent hours. Our model there-

fore describes an adequate approach for the valuation of hourly PTR options during
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calm hours while in times of extreme volatility its pricing performance decreases.

6 Conclusion

Cross-border electricity �ows become increasingly relevant due to connecting pan-

European electricity markets. Further, shifts in the power generation mix, i.e. a grow-

ing share of renewables along with a decrease in fossil fuel and nuclear power plants,

results in additional cross-border electricity �ows and increases the physical and �-

nancial risk inherent in cross-border electricity markets. Although TSOs continue to

invest in the expansion of their intra- and international powergrids, congestion will

continue to prevail in the European electricity markets.

Physical Transmission Rights (PTRs) are physical products for managing cross-

border electricity �ows. These contracts are currently the only used products in the

cross-border electricity markets in Germany. Further, all cross border connections,

with the exception of the German and Western Denmark interconnection use explicit

auctions for their PTR contracts. In this paper, we analyze hourly PTR prices for

the German-Dutch interconnector between 2001 and 2008. PTRs are option like con-

tracts written on the di¤erence between hourly day-ahead electricity prices between

Germany and the Netherlands. We model this price spread directly considering the

unique features of the underlying, especially the extremely short-term price spikes.

Due to the diverse characteristics of price spreads across hours, modelling each hour

separately is essential. We �nd that investors are willing to pay a premium for hourly

PTR options for turbulent hours of the day, i.e. hour 8 to 22. This price premium

can be explained by increased hedging demand or a speculation premium from in-

vestors in the German-Dutch corss-border electricity market. The extensive demand

for PTRs emphasizes the importance of these contracts and the need for adequate

risk management tools in cross-border electricity markets.

Future research could analyze variations in the parameters of our model over time.

Moreover, the adoption of a time-varying jump-intensity, as used by Seifert and Uhrig-

Homburg (2007), could improve the pricing performance and shed more light on the

behavior of jumps in this market. In addition, applying the currently famous regime-

switching models could also be promising for modelling price spreads. These models

have proven to adequately mirror electricity prices and are, amongst others, used by

Haldrup and Nielsen (2006). Finally, testing our model for other underlyings, such

as cross-commodity spreads, seems an interesting �eld of research.
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Appendix

Full Conditionals for Estimated Parameters

The Bernoulli probability of a jump is needed in order to generate a vector of jump.

Each probability is calculated as

't+1 = Pr (qt+1 = 1j�; Pt+1; St; Nt+1)

=

 
1 +

1� pJ
pJ

exp

 
�
2Nt+1 (Pt+1 � Ste

�� � � (1� e��t))�N2
t+1

2 (1� e�2�)
�2D
2�

!!�1
:

The full posterior distribution for the jump probability is

p (pJ jq ) / p (q jpJ ) p (pJ)

/ p
PT
t=1 qt

J (1� pJ)
T�

PT
t=1 qt p�J�1J (1� pJ)

�J�1

/ p
�J+

PT
t=1 qt�1

J (1� pJ)
�J+T�

PT
t=1 qt�1 :

The full posterior distribution for the jump size is

p (Nt+1j�; qt+1; Pt+1; St) / p (Pt+1jSt; Nt+1; qt+1;�) p (Nt+1 j�)

/ exp

0BBBBB@�
1

2

 
Nt+1 �

�2Jqt+1(Pt+1�Ste����(1�e��t))+(1�e�2�)
�2D
2�
�J

�2Jq
2
t+1+(1�e�2�)

�2
D
2�

!2
�2J (1�e�2�)

�2
D
2�

�2Jq
2
t+1+(1�e�2�)

�2
D
2�

1CCCCCA :

The full posterior distribution for the mean jump size is

p
�
�J jN; q;���J ; P

�
/ p (N j�) p (�J)

/ exp

0B@�1
2

�
�J �

s2�
PT�1
t=0 Nt+1+�

2
Jm�

Ts2�+�
2
J

�2
�2Js

2
�

Ts2�+�
2
J

1CA :

The full posterior distribution for the variance of the jump size is

p
�
�2J
��N; q;���2J ; P� / p (N j�) p

�
�2J
�

/
�
1

�2J

�e�J+1
exp

 
�
e�J
�2J

! �e�J�e�J
� (e�J) :

Therefore, the posterior distribution of �2J is also inverse gamma with parameters e�J
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and e�J , which follow from the prior parameters as

e�J = 1

2
T + �J ;

e�J = 1

2

XT�1

t=0
(Nt+1 � �J)

2 + �J :

The full posterior distribution for the variance is

p
�
�2D
��N; q;���2D ; P� / p (P jS;N; q;�) p

�
�2D
�

/
�
1

�2D

�e�D+1
exp

 
�
e�D
�2D

! �e�D�e�D
� (e�D) :

The full posterior distribution for the mean-reversion level is

p (�jN; q;��� ; P ) / p (P jS;N; q;�) p (�)

/ exp

0BBBBB@�
1

2

 
� � (1�e

��)s2�
PT�1
t=0 (Pt+1�Ste���Nt+1qt+1)+m�(1�e�2�)

�2D
2�

(1�e��)2s2�T+(1�e�2�)
�2
D
2�

!2
(1�e�2�)

�2
D
2�
s2�

(1�e��)2s2�T+(1�e�2�)
�2
D
2�

1CCCCCA :

The full posterior distribution for the variance of observed PTR prices is

p
�
�2c
��NQ; qQ;�Q��2c ; C; P

�
/ p

�
CjP; S;NQ; qQ;�Q

�
p
�
�2c
�

/
�
1

�2c

�e�D+1
exp

 
�
e�c
�2c

! �e�c�e�c
� (e�c) :
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Table 1
Gross Electricity Generation in 2007

This table shows the gross electricity generation in Germany and the Netherlands in 2007 in TWh.
Relative values are given in brackets in percent of total power generation. Source: Eurostat.

Country Coal Natural Oil Nuclear Pumped Renewables Other Total
Gas Storage

Germany 267.0 77.5 9.5 167.3 7.4 74.1 33.8 636.6
(41.9) (12.3) (1.5) (26.2) (1.2) (11.6) (5.3) (100.0)

Netherlands 23.6 59.4 2.1 3.5 - 9.5 0.1 98.4
(24.0) (60.4) (2.1) (3.6) (-) (9.7) (0.1) (100.0)
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Table 2
Descriptive Statistics of German-Dutch Day-Ahead Spreads between 2001 and 2008

This table shows descriptive statistics of hourly di¤erences between German and Dutch electricity
prices. Basis are the 2,922 hourly price spreads for all days between January 1, 2001 and December
31, 2008. A positive spread corresponds to higher prices in the Netherlands and vice versa.

Hour Mean Median Minimum Maximum Std.dev. Skewness Kurtosis

1 1.93 1.25 -28.31 137.02 6.55 4.13 66.69
2 1.05 0.50 -21.47 47.69 5.81 1.68 9.56
3 0.65 0.05 -27.00 110.70 6.08 3.15 43.49
4 0.18 -0.14 -28.91 110.61 5.83 3.22 50.74
5 -0.52 -0.56 -31.18 110.46 5.79 2.78 50.94
6 -0.92 -1.02 -43.11 49.31 5.52 0.53 9.07
7 -0.16 -0.73 -35.24 61.62 6.91 1.32 8.61
8 -0.20 -0.64 -210.92 150.08 11.9 -4.01 118.14
9 3.55 1.07 -256.84 467.42 23.32 6.36 131.26
10 13.60 3.24 -301.67 1,945.94 62.78 16.69 434.86
11 17.11 4.24 -546.78 1,544.92 67.31 10.77 198.79
12 19.56 4.98 -1,640.15 1,943.90 87.09 6.03 178.58
13 12.08 6.69 -273.58 1,752.34 58.12 16.58 409.82
14 16.09 4.04 -315.05 1,751.58 65.54 13.25 279.94
15 13.04 3.57 -430.09 1,524.92 55.78 11.98 240.40
16 11.12 2.95 -317.34 1,754.91 67.56 16.92 366.55
17 10.30 2.78 -564.99 1,736.99 59.37 17.64 441.38
18 24.82 3.28 -412.31 1,952.97 102.13 8.77 111.75
19 10.59 2.03 -2,186.62 742.92 69.19 -10.98 407.37
20 7.18 2.00 -407.21 450.04 26.50 3.75 82.93
21 5.25 1.90 -178.53 376.49 18.60 8.38 137.50
22 3.37 1.42 -26.08 468.56 12.65 18.55 633.82
23 2.13 0.92 -29.24 74.43 7.93 2.60 15.08
24 4.55 2.82 -17.73 114.98 7.98 3.22 23.58
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Table 3
Descriptive Statistics of German-Dutch PTR Prices between 2001 and 2008

This table shows descriptive statistics of hourly PTR prices for delivery from Germany to the
Netherlands between January 1, 2001 and December 31, 2008 based 2,916 PTR prices. For six days,
PTR prices are not available.

Hour Mean Median Minimum Maximum Std.dev. Skewness Kurtosis Avg. MW

1 0.99 0.22 0.00 25.00 2.07 4.36 26.58 777.78
2 0.57 0.10 0.00 25.01 1.51 6.21 55.57 782.61
3 0.50 0.06 0.00 25.01 1.48 7.09 71.20 783.24
4 0.44 0.06 0.00 20.01 1.29 7.24 73.09 789.76
5 0.39 0.05 0.00 20.01 1.20 7.73 84.87 791.68
6 0.40 0.05 0.00 20.01 1.28 7.88 83.62 792.45
7 0.86 0.09 0.00 350.00 8.88 34.52 1,267.75 762.00
8 1.33 0.25 0.00 350.00 9.09 32.15 1,147.80 693.83
9 3.90 1.00 0.00 350.00 13.27 13.76 278.31 661.55
10 9.56 2.25 0.00 399.00 24.74 6.98 68.64 642.18
11 11.91 3.11 0.00 399.00 27.47 5.95 50.41 636.36
12 14.16 3.74 0.00 579.12 32.97 6.89 74.61 635.48
13 8.48 2.58 0.00 399.00 23.63 7.92 91.15 637.53
14 10.46 2.51 0.00 399.00 26.34 6.84 67.16 638.55
15 8.46 2.06 0.00 399.00 23.32 7.79 87.34 643.43
16 6.61 1.64 0.00 399.00 20.53 9.68 131.10 648.86
17 6.95 1.66 0.00 370.77 20.92 8.81 105.79 648.60
18 15.37 2.01 0.00 648.99 48.61 6.93 60.53 647.36
19 10.03 1.51 0.00 500.01 31.03 7.22 67.44 655.28
20 6.19 1.35 0.00 350.00 17.71 8.92 118.46 659.68
21 4.08 1.06 0.00 350.00 10.66 14.57 399.11 671.94
22 2.64 0.60 0.00 350.00 10.39 22.32 667.68 698.67
23 2.06 0.50 0.00 350.00 9.85 25.85 829.02 722.80
24 2.48 0.75 0.00 350.00 9.63 27.09 898.59 765.20
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Table 4
Estimated Empirical and risk-neutral Parameters

This table shows all empirical as well as the risk-neutral parameters for the spread between German
and Dutch day-ahead electricity prices as well as the respective PTR prices. Further, the market
price of jump risk, given in equation 8, is also shown. Parameter values are calculated as the
arithmetic mean of all non discarded samples drawn during the estimation. Standard errors of the
estimation are given in brackets below each parameter.

Empirical Parameters Risk Neutral Parameters

Hour � �2D � �J �2J pJ �QJ pQJ �2c �J

1 1.4486 56.19 1.3127 4.5063 204.88 0.1053 -1.6473 0.0659 4.49 -0.0300
( 0 .0 0 0 6 ) ( 0 .0 3 4 1 ) ( 0 .0 0 1 2 ) ( 0 .0 0 7 9 ) ( 0 .2 4 7 3 ) ( 0 .0 0 0 1 ) ( 0 .0 0 6 9 ) ( 0 .0 0 0 1 ) ( 0 .0 0 1 2 ) ( 0 .0 0 0 2 )

2 1.2784 36.88 0.4322 3.4572 106.29 0.1650 -2.6264 0.0920 3.31 -0.0572
( 0 .0 0 0 5 ) ( 0 .0 2 1 9 ) ( 0 .0 0 1 1 ) ( 0 .0 0 5 9 ) ( 0 .1 0 4 1 ) ( 0 .0 0 0 2 ) ( 0 .0 0 2 8 ) ( 0 .0 0 0 2 ) ( 0 .0 0 0 7 ) ( 0 .0 0 0 4 )

3 1.2955 41.59 0.1346 3.3801 145.93 0.1312 -2.5935 0.0702 3.78 -0.0409
( 0 .0 0 0 6 ) ( 0 .0 2 2 4 ) ( 0 .0 0 1 1 ) ( 0 .0 0 7 1 ) ( 0 .1 6 4 2 ) ( 0 .0 0 0 2 ) ( 0 .0 0 2 3 ) ( 0 .0 0 0 2 ) ( 0 .0 0 0 7 ) ( 0 .0 0 0 3 )

4 1.3654 53.08 -0.0461 2.2074 197.75 0.0732 -2.9084 0.0317 3.84 -0.0259
( 0 .0 0 0 6 ) ( 0 .0 2 6 4 ) ( 0 .0 0 1 1 ) ( 0 .0 0 8 9 ) ( 0 .3 1 4 1 ) ( 0 .0 0 0 1 ) ( 0 .0 0 7 3 ) ( 0 .0 0 0 2 ) ( 0 .0 0 0 6 ) ( 0 .0 0 0 3 )

5 1.5132 63.37 -0.5918 0.8022 203.53 0.0674 -2.8833 0.0267 4.39 -0.0181
( 0 .0 0 0 6 ) ( 0 .0 3 4 8 ) ( 0 .0 0 1 1 ) ( 0 .0 0 9 4 ) ( 0 .3 2 6 3 ) ( 0 .0 0 0 1 ) ( 0 .0 0 0 6 ) ( 0 .0 0 0 9 ) ( 0 .0 0 0 9 ) ( 0 .0 0 0 2 )

6 1.6314 63.44 -1.0007 0.7735 131.93 0.0974 -3.1499 0.0491 4.82 -0.0297
( 0 .0 0 0 6 ) ( 0 .0 3 6 4 ) ( 0 .0 0 1 1 ) ( 0 .0 0 7 5 ) ( 0 .1 9 2 1 ) ( 0 .0 0 0 2 ) ( 0 .0 0 4 3 ) ( 0 .0 0 0 2 ) ( 0 .0 0 0 6 ) ( 0 .0 0 0 3 )

7 1.5528 75.97 -0.6849 3.2404 165.80 0.1395 1.9713 0.1166 81.97 -0.0077
( 0 .0 0 0 7 ) ( 0 .0 4 4 9 ) ( 0 .0 0 1 3 ) ( 0 .0 0 7 3 ) ( 0 .1 7 5 3 ) ( 0 .0 0 0 2 ) ( 0 .0 0 6 4 ) ( 0 .0 0 0 1 ) ( 0 .0 2 1 3 ) ( 0 .0 0 0 1 )

8 1.4206 113.12 -0.4416 0.8069 1,622.60 0.0566 1.2225 0.0418 85.81 0.0003
( 0 .0 0 0 6 ) ( 0 .0 5 5 2 ) ( 0 .0 0 1 6 ) ( 0 .0 1 3 4 ) ( 2 .2 0 6 5 ) ( 0 .0 0 0 1 ) ( 0 .0 0 5 4 ) ( 0 .0 0 0 2 ) ( 0 .0 2 2 0 ) ( 0 .0 0 0 0 )

9 1.3511 128.56 1.3972 2.4266 5,156.84 0.0895 3.0785 0.0800 174.27 0.0001
( 0 .0 0 0 6 ) ( 0 .0 6 6 6 ) ( 0 .0 0 1 8 ) ( 0 .0 1 4 2 ) ( 5 .3 4 3 4 ) ( 0 .0 0 0 1 ) ( 0 .0 0 3 6 ) ( 0 .0 0 0 2 ) ( 0 .0 4 5 3 ) ( 0 .0 0 0 0 )

10 1.7476 335.33 3.9393 3.9461 12,936.33 0.1290 4.7790 0.1331 606.56 0.0001
( 0 .0 0 0 7 ) ( 0 .1 8 9 4 ) ( 0 .0 0 2 4 ) ( 0 .0 1 4 8 ) ( 1 0 .6 4 7 5 ) ( 0 .0 0 0 1 ) ( 0 .0 1 3 3 ) ( 0 .0 0 0 1 ) ( 0 .1 5 7 6 ) ( 0 .0 0 0 0 )

11 1.8726 638.14 5.8196 2.7146 23,143.02 0.1161 4.2312 0.1235 746.88 0.0001
( 0 .0 0 0 7 ) ( 0 .3 7 6 1 ) ( 0 .0 0 3 2 ) ( 0 .0 1 4 9 ) ( 1 9 .8 1 0 8 ) ( 0 .0 0 0 1 ) ( 0 .0 1 5 3 ) ( 0 .0 0 0 1 ) ( 0 .1 9 6 9 ) ( 0 .0 0 0 0 )

12 1.8348 810.10 6.2835 2.4282 32,081.58 0.1383 3.8410 0.1395 1,075.12 0.0000
( 0 .0 0 0 6 ) ( 0 .4 4 7 5 ) ( 0 .0 0 3 5 ) ( 0 .0 1 4 9 ) ( 2 5 .0 2 4 7 ) ( 0 .0 0 0 1 ) ( 0 .0 1 6 0 ) ( 0 .0 0 0 1 ) ( 0 .2 7 8 6 ) ( 0 .0 0 0 0 )

13 1.8551 403.06 4.6101 2.4941 15,852.15 0.0916 4.2589 0.1021 55.42 0.0001
( 0 .0 0 0 6 ) ( 0 .2 2 5 7 ) ( 0 .0 0 2 5 ) ( 0 .0 1 4 8 ) ( 1 5 .1 8 7 3 ) ( 0 .0 0 0 1 ) ( 0 .0 1 4 9 ) ( 0 .0 0 0 1 ) ( 0 .1 4 6 4 ) ( 0 .0 0 0 0 )

14 1.9521 459.85 5.0874 2.9444 20,728.57 0.1083 4.3394 0.1155 688.53 0.0001
( 0 .0 0 0 8 ) ( 0 .2 5 1 7 ) ( 0 .0 0 2 5 ) ( 0 .0 1 4 9 ) ( 1 7 .3 9 7 6 ) ( 0 .0 0 0 1 ) ( 0 .0 1 4 5 ) ( 0 .0 0 0 1 ) ( 0 .1 8 0 3 ) ( 0 .0 0 0 0 )

15 1.9533 347.13 4.4949 2.2971 21,650.97 0.0975 3.7397 0.1002 538.46 0.0001
( 0 .0 0 0 7 ) ( 0 .1 7 5 8 ) ( 0 .0 0 2 2 ) ( 0 .0 1 4 8 ) ( 1 9 .0 3 8 1 ) ( 0 .0 0 0 1 ) ( 0 .0 1 5 6 ) ( 0 .0 0 0 1 ) ( 0 .1 3 9 2 ) ( 0 .0 0 0 0 )

16 1.8549 268.06 3.8224 1.0518 38,264.94 0.0632 2.9409 0.0604 417.05 0.0000
( 0 .0 0 0 7 ) ( 0 .1 3 6 4 ) ( 0 .0 0 1 9 ) ( 0 .0 1 5 0 ) ( 4 0 .3 1 2 8 ) ( 0 .0 0 0 1 ) ( 0 .0 0 9 4 ) ( 0 .0 0 0 1 ) ( 0 .0 2 2 5 ) ( 0 .0 0 0 0 )

17 1.8386 220.12 3.4703 1.7472 20,305.41 0.0744 3.5207 0.0786 433.57 0.0001
( 0 .0 0 0 6 ) ( 0 .1 0 3 3 ) ( 0 .0 0 1 8 ) ( 0 .0 1 4 9 ) ( 2 0 .3 0 7 9 ) ( 0 .0 0 0 1 ) ( 0 .0 1 6 3 ) ( 0 .0 0 0 1 ) ( 0 .1 1 2 4 ) ( 0 .0 0 0 0 )

18 1.8040 262.60 3.6699 2.6711 46,001.99 0.1479 3.8846 0.1473 2,345.89 0.0000
( 0 .0 0 0 7 ) ( 0 .1 5 0 1 ) ( 0 .0 0 2 1 ) ( 0 .0 1 4 9 ) ( 3 1 .7 1 8 4 ) ( 0 .0 0 0 1 ) ( 0 .0 1 5 9 ) ( 0 .0 0 0 1 ) ( 0 .6 1 8 0 ) ( 0 .0 0 0 0 )

19 1.4990 188.97 2.5456 3.0567 18,822.19 0.1287 4.0312 0.1505 953.62 0.0001
( 0 .0 0 0 6 ) ( 0 .1 0 2 7 ) ( 0 .0 0 2 1 ) ( 0 .0 1 4 8 ) ( 1 4 .7 6 7 0 ) ( 0 .0 0 0 1 ) ( 0 .0 1 6 1 ) ( 0 .0 0 0 1 ) ( 0 .2 4 7 1 ) ( 0 .0 0 0 0 )

20 1.4863 166.56 2.4207 5.5006 4,909.00 0.1212 5.4211 0.1233 307.91 0.0000
( 0 .0 0 0 6 ) ( 0 .0 9 9 2 ) ( 0 .0 0 2 0 ) ( 0 .0 1 4 7 ) ( 4 .4 5 5 7 ) ( 0 .0 0 0 1 ) ( 0 .0 1 2 3 ) ( 0 .0 0 0 1 ) ( 0 .0 8 0 0 ) ( 0 .0 0 0 0 )

21 1.4791 159.85 2.5815 4.6026 3,282.18 0.0797 4.8525 0.0792 110.80 0.0001
( 0 .0 0 0 6 ) ( 0 .0 9 0 1 ) ( 0 .0 0 1 9 ) ( 0 .0 1 4 7 ) ( 3 .5 8 6 4 ) ( 0 .0 0 0 1 ) ( 0 .0 1 3 5 ) ( 0 .0 0 0 1 ) ( 0 .0 2 9 2 ) ( 0 .0 0 0 0 )

22 1.4997 118.16 2.1252 3.1520 2,318.22 0.0454 3.9104 0.0437 106.27 0.0003
( 0 .0 0 0 6 ) ( 0 .0 6 0 0 ) ( 0 .0 0 1 6 ) ( 0 .0 1 4 7 ) ( 3 .6 6 9 6 ) ( 0 .0 0 0 1 ) ( 0 .0 1 4 6 ) ( 0 .0 0 0 0 ) ( 0 .0 2 7 9 ) ( 0 .0 0 0 0 )

23 1.2860 53.22 0.8971 6.5293 217.47 0.1528 5.5574 0.1427 96.38 -0.0045
( 0 .0 0 0 6 ) ( 0 .0 3 3 9 ) ( 0 .0 0 1 3 ) ( 0 .0 0 7 5 ) ( 0 .1 9 5 0 ) ( 0 .0 0 0 1 ) ( 0 .0 0 9 4 ) ( 0 .0 0 0 1 ) ( 0 .0 2 2 5 ) ( 0 .0 0 0 1 )

24 2.0768 182.32 3.5926 8.6124 305.00 0.0620 7.5670 0.0662 91.64 -0.0034
( 0 .0 0 0 8 ) ( 0 .1 0 1 1 ) ( 0 .0 0 1 6 ) ( 0 .0 1 2 6 ) ( 0 .5 4 8 4 ) ( 0 .0 0 0 1 ) ( 0 .0 0 2 1 ) ( 0 .0 0 0 1 ) ( 0 .0 2 4 1 ) ( 0 .0 0 0 1 )

29



Figure 1
Hourly Price Spreads between German and Dutch Day-Ahead Prices

This �gure shows the hourly spread of day-ahead prices between German and Dutch day-ahead elec-
tricity prices between 2001 and 2008. A positive spread indicates a higher price in the Netherlands
and vice versa.
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Figure 2
Di¤erence between PTR Prices and Resulting Payo¤s

This �gure shows the di¤erence between PTR prices and the corresponding payo¤s, i.e. the maximum
of the resulting spread and zero. A negative di¤erence indicates a PTR price above the resulting
payo¤ and vice versa.
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Figure 3
Estimated De-Spiked Process for Hour 8

This �gure shows the price spread as well as the de-spiked process for the eighth hour between 2001
and 2008. Further, the estimated jump sizes and jump probabilities for each observed price spread
are given. The latter two are calculated as the arithmetic mean of all non discarded samples during
the estimation.
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Figure 4
Di¤erence between Empirical and Risk-neutral Densities

This �gure shows the di¤erence between the empirical and risk-neutral densities of the day-ahead
German and Dutch electricity spread. A positive value refers to a higher risk-neutral density com-
pared to the empirical counterpart. For simplicity, we assume the current spread to be zero, i.e.
S0 = 0. All remaining parameters are shown in Table 4.
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