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Abstract 

We develop a cobweb model in which firms, facing a two-period production delay, 

have access to a flexible (costly) and an inflexible (cheap) production technology. 

Moreover, firms select between production technologies depending on their 

evolutionary fitness, measured in terms of past realized profits. The dynamics of 

our cobweb model is driven by a four-dimensional nonlinear map. We analytically 

show that its unique steady state may become unstable due to a Neimark-Sacker 

bifurcation, a scenario that gives rise to cyclical price dynamics, as observed in 

actual commodity markets. Simulations furthermore reveal that our cobweb 

model may also produce chaotic motion.  
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1 Introduction 

One of the many lessons we were fortunate to learn from Tonu Puu is not to forget 

what our former scholars accomplished in the past. In many of his inspiring 

papers, he re-explored classical economic models using new mathematical tools, 

frequently involving younger scholars, giving them the opportunity to enter the 

world of academia at the highest possible international level. Although his 

research interests spanned many fields, he was primarily interested in oligopoly 

dynamics (Puu 1991, Puu and Sushko 2002), business cycle theory (Puu et al. 

2005, Puu and Sushko 2006) and spatial economics (Beckman and Puu 1985, 

Sushko et al. 2003). In this paper, we endeavor to follow his approach. 

In fact, our paper is concerned with the dynamics of the cobweb model, one of 

the oldest and most studied contributions to the theory of mathematical economic 

dynamics. Cobweb models describe the price dynamics of nonstorable 

commodities whose production takes time, thus requiring firms to form price 

expectations. Pioneering contributions in this line of research were made by Ricci 

(1930), Tinbergen (1930) and Schultz (1930). On the one hand, these authors 

aimed at developing dynamic models that allow us to explain the up and down 

movements of certain agricultural prices, following, for instance, the empirical 

observations by Moore (1917) on the behavior of cotton prices. On the other 

hand, and presumably more importantly, these authors were clearly dissatisfied 

with a pure equilibrium (static) analysis, seeing the need for a dynamic economic 

theory, e.g. by considering production delays. A particularly elegant contribution 

in this respect was made by Leontief (1934), who formally established that the 

stability of the steady state of a classical cobweb model depends on the slopes 

of its supply and demand schedules, i.e. that their relation has to be smaller than 

one in modulus at the steady state. Apparently, the term “cobweb model” was 

first used by Kaldor (1934) to capture the model’s characteristic “zigzag” 

dynamics in a price-quantity diagram. A further classical reference in this area is 

the famous paper by Ezekiel (1938), who synthesized the aforementioned works 

into a general theory of the cobweb phenomenon, paving the way for its entry into 

economic textbooks. See Waugh (1964) for an early survey of the pertinent 

literature and Hommes (2018) for a more recent one. 



3 
 

Over the last 100 years, cobweb models have served as a workhorse to study a 

number of important economic ideas. The papers by Goodwin (1947), Nerlove 

(1958) and Muth (1961), for instance, introduced and popularized the concepts 

of extrapolative, adaptive and rational expectation rules, respectively, starting a 

revolution in economic theory with far-reaching consequences for the real world 

and academia. With the advent of chaos theory (Lorenz 1963, Li and Yorke 1975, 

May 1976), economists such as Artstein (1983), Jensen and Urban (1984), 

Chiarella (1988) and Hommes (1991) showed that nonlinear cobweb models may 

give rise to quite irregular price dynamics, triggering a wave of research in 

nonlinear economic dynamics.  

A particularly relevant contribution was made by Brock and Hommes (1997), who 

showed that chaotic price dynamics may arise in cobweb models when firms 

switch between naive and rational expectation rules subject to their past 

performance. Since models that deviate from the assumption of fully rational 

agents face the well-known wilderness of the bounded rationality critique, it 

should be noted that setups in which agents rely on a set of plausible rules to 

form expectations and select among them based on their past performance 

provide a reasonable alternative to the fully rational paradigm. See Hommes 

(2013) and references therein for a deeper discussion. Other papers that 

introduce learning in the cobweb model include Goeree and Hommes (2000), 

Lasselle et al. (2005) and Schmitt and Westerhoff (2015). 

A typical property of cobweb models is that their steady states become unstable 

due to a flip bifurcation, resulting in a period-two cycle or, using the words of 

Leontief (1934), producing zigzag dynamics. However, even Moore (1917), 

Ezekiel (1938) and Larson (1964) stressed the fact that actual commodity prices 

have a cyclical nature. Against this background, a Neimark-Sacker bifurcation, 

turning fixed-point dynamics into cyclical dynamics, appears to be quite appealing 

from an empirical perspective.1 Dieci and Westerhoff (2010) provide such a 

framework by coupling the dynamics of two cobweb markets via the supply side. 

                                                           
1 To prevent confusion, we remark that by cyclical price dynamics we mean cycles of higher period 

and not the zigzag behavior of a period-two cycle. 
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Hommes (1998) and Cavalli et al. (2021) are just some of the few cobweb models 

that also manage to produce cyclical price dynamics. 

The goal of our paper is to add to this line of research by proposing a cobweb 

model that is able to produce cyclical commodity price dynamics. As already 

demonstrated by Ezekiel (1938), cobweb models with a one-period production 

delay and naïve expectations may create a stable period-two cycle, while cobweb 

models with a two-period production delay and naïve expectations are able to 

generate a stable period-four cycle.2 The latter observation forms our starting 

point. We assume in our cobweb model that all firms face a production delay of 

two periods. Moreover, firms have access to two different production 

technologies: an inflexible production technology, requiring them to start the 

production process immediately, and a flexible production technology, allowing 

them to delay the actual production process by one period. While the flexible 

production technology invokes higher fixed costs than the inflexible production 

technology, it offers firms an informational advantage in the sense that they can 

track the commodity price one period closer to the actual trading period. 

Importantly, firms endogenously select between the two production technologies 

with respect to their evolutionary fitness, measured in terms of past realized 

profits. The dynamics of our cobweb model is due to a four-dimensional nonlinear 

map. We show that its unique steady state may become unstable via a Neimark-

Sacker bifurcation, a scenario that gives rise to cyclical price dynamics, as 

observed in many actual commodity markets. Simulations furthermore reveal that 

our cobweb model may produce chaotic motion, too.  

We remark that our paper is related to the following studies. Gori et al. (2014) 

and Matsumoto and Szidarovszky (2015) study nonlinear continuous-time 

models with production delays that yield endogenous cyclical dynamics, though 

                                                           
2 Many economists seem to have forgotten this part of Ezekiel’s (1938) paper – in any case, there 

are virtually no references to his discussion of larger production delays and the herewith 

connected possibility of cycles. The same is true for us: we only rediscovered this part of his paper 

by chance. In a sense, one may regard our attempt to revive this aspect as a Tonu Puu moment, 

and, hopefully, as a general incentive to all of us to embrace classical economic (and 

noneconomic) papers. 
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their models do not consider the fact that firms may switch between different 

production technologies. Interestingly, their line of reasoning may be traced back 

to the work of Haldane (1934) and Larson (1964). The continuous-time 

disequilibrium commodity market model by Mackey (1989) with state-dependent 

production and storage delays may produce cyclical dynamics, too. Two 

interesting economic examples for discrete-time models in which firms have 

access to different production technologies and switch between them with 

respect to their evolutionary fitness are Hommes and Zeppini (2014) and 

Lamantia et al. (2018). 

We continue as follows. In Section 2, we introduce a cobweb model in which 

firms, facing a production delay of two periods, can switch between two different 

production technologies. In Section 3, we present our main analytical and 

numerical results. In Section 4, we modify our cobweb model by considering that 

firms have to cope with a production delay of three periods and three production 

technologies. In Section 5, we conclude our paper and discuss potential avenues 

for future research.  

 

2 A cobweb model with two different production technologies 

Cobweb models describe a dynamic price adjustment process on a competitive 

market for a single nonstorable commodity with a fixed supply response lag. 

Cobweb models usually assume that firms face a production delay of one period. 

Motivated by Ezekiel (1938), we assume here that all firms face a production 

delay of two periods. However, firms have access to two different production 

technologies, offering them different degrees of flexibility with respect to the 

period at which they have to finalize their decisions about their actual production 

quantities. One production technology, called the slow production technology, is 

rather inflexible. Firms relying on that production technology have to determine 

their production quantities and to initiate the production process for period 𝑡𝑡 

immediately in period 𝑡𝑡 − 2. The other production technology, called the fast 

production technology, is more flexible and allows firms to delay their final 

production decisions by one period, i.e. they produce the commodity for period 𝑡𝑡 

in period 𝑡𝑡 − 1.  



6 
 

Access to the more flexible production technology invokes higher fixed costs than 

the slow production technology. Clearly, firms that adopt the fast production 

technology need to spend these additional fixed costs in period 𝑡𝑡 − 2 for more 

efficient machinery and equipment that reduces for them the time to produce the 

commodity and to bring it to the market by one period. A crucial advantage of 

spending higher fixed costs obviously is that it allows firms to condition their final 

production decisions on information they receive up to period 𝑡𝑡 − 1. In the spirit 

of Brock and Hommes (1997), firms select production technologies based on their 

past performance, as observable in period 𝑡𝑡 − 2, and display a boundedly rational 

learning behavior in the sense that more of them will use the production 

technology that was more profitable in the recent past. We also assume that firms 

are committed to the production technology they choose in period 𝑡𝑡 − 2 for the 

commodity market that operates in period 𝑡𝑡, i.e. they cannot reverse their 

production technology choices in period 𝑡𝑡 − 1. To make the implications of our 

setup as clear as possible, we specify all other model parts as is done in classical 

linear cobweb models (see, e.g. Gandolfo 2009). Since firms thus have naïve 

price expectations, firms opting for the slow production technology condition their 

production decisions on the commodity price observed in period 𝑡𝑡 − 2, while firms 

that decided in favor of the fast production technology can monitor the commodity 

price up to period 𝑡𝑡 − 1. Due to firms’ endogenous technology choice, the 

dynamics of our cobweb model is driven by the iteration of a four-dimensional 

nonlinear map.  

Let us turn to the details of our model. We consider a fixed number 𝑁𝑁 of firms, 

indexed by 𝑆𝑆 for slow and by 𝐹𝐹 for fast production technology adopters. For 

notational convenience, we denote the market shares of firms that have decided 

in period 𝑡𝑡 − 2 to use the slow and the fast production technology for providing 

their supply in period 𝑡𝑡 by 𝑊𝑊𝑡𝑡
𝑆𝑆 and 𝑊𝑊𝑡𝑡

𝐹𝐹, respectively. Since an individual firm either 

supplies quantities 𝑆𝑆𝑡𝑡𝑆𝑆 or 𝑆𝑆𝑡𝑡𝐹𝐹, the total supply of the commodity can be expressed 

by 

𝑆𝑆𝑡𝑡 = 𝑁𝑁(𝑊𝑊𝑡𝑡
𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆 + 𝑊𝑊𝑡𝑡

𝐹𝐹𝑆𝑆𝑡𝑡𝐹𝐹).                                                                                       (1) 

Consumers’ commodity demand depends negatively on the current commodity 

price 𝑃𝑃𝑡𝑡. Using a linear demand relation, we formulate consumers’ commodity 
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demand by  

𝐷𝐷𝑡𝑡 = 𝑎𝑎 − 𝑏𝑏𝑃𝑃𝑡𝑡,                                                                                                           (2) 

with 𝑎𝑎, 𝑏𝑏 > 0. Since the commodity is nonstorable, the market clearing condition  

𝐷𝐷𝑡𝑡 = 𝑆𝑆𝑡𝑡                                                                                                                 (3) 

holds in every period, implying that the commodity price obeys 

𝑃𝑃𝑡𝑡 = 𝑎𝑎−(𝑊𝑊𝑡𝑡
𝑆𝑆𝑆𝑆𝑡𝑡

𝑆𝑆+𝑊𝑊𝑡𝑡
𝐹𝐹𝑆𝑆𝑡𝑡𝐹𝐹)

𝑏𝑏
,                                                                                      (4) 

where, for ease of exposition, we have normalized the mass of firms to 𝑁𝑁 = 1. 

Each firm maximizes its expected profits subject to a quadratic cost function. Let 

𝑃𝑃𝑡𝑡
𝑒𝑒,𝑖𝑖 stand for firm 𝑖𝑖’s commodity price expectation and let 𝐶𝐶𝑡𝑡𝑖𝑖 = 1

2𝑐𝑐
(𝑆𝑆𝑡𝑡𝑖𝑖)2 + 𝑑𝑑𝑖𝑖 reflect 

its cost function, with 𝑐𝑐 > 0 and 𝑑𝑑𝑖𝑖 > 0. Firm 𝑖𝑖’s fixed costs depend on its choice 

of production technology, specified in the sequel, and are represented by 𝑑𝑑𝐹𝐹 >

𝑑𝑑𝑆𝑆 ≥ 0. Hence, we can write firm 𝑖𝑖’s expected profits as 

 𝜋𝜋𝑡𝑡
𝑒𝑒,𝑖𝑖 = 𝑃𝑃𝑡𝑡

𝑒𝑒,𝑖𝑖𝑆𝑆𝑡𝑡𝑖𝑖 −
1
2𝑐𝑐

(𝑆𝑆𝑡𝑡𝑖𝑖)2 − 𝑑𝑑𝑖𝑖,                                                                       (5) 

yielding its optimal supply decision 

𝑆𝑆𝑡𝑡𝑖𝑖 = 𝑐𝑐𝑃𝑃𝑡𝑡
𝑒𝑒,𝑖𝑖.                                                                                                 (6) 

Accordingly, firm 𝑖𝑖’s commodity supply depends positively on its price 

expectations. Since firms employ naïve expectations, the optimal supply of a firm 

relying on the slow production technology, requiring it to fix its output in period 

𝑡𝑡 − 2, is 

𝑆𝑆𝑡𝑡𝑆𝑆 = 𝑐𝑐𝑃𝑃𝑡𝑡−2,                                                                                                          (7) 

while the optimal supply of a firm applying the fast production technology, 

providing it the flexibility to determine its output in period 𝑡𝑡 − 1, amounts to 

𝑆𝑆𝑡𝑡𝐹𝐹 = 𝑐𝑐𝑃𝑃𝑡𝑡−1.                                                                                                                (8) 

Importantly, firm 𝑖𝑖’s willingness to invest in higher fixed costs allows it to track the 

commodity price one period closer to the actual trading period. In this sense, we 

may also regard the difference in fixed costs, i.e. 𝑑𝑑 = 𝑑𝑑𝐹𝐹 − 𝑑𝑑𝑆𝑆, as information 

costs.3 

                                                           
3 As pointed out by an anonymous referee, one may interpret our setup also in the following way. 

The difference in fixed costs may reflect costs that provide those firms that are willing to spend 

them with an unbiased forecast in period 𝑡𝑡 − 2 about the commodity price in period 𝑡𝑡 − 1, which 
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We model firms’ production technology choices and their willingness to invest in 

higher fixed costs via the discrete choice approach. Following Brock and 

Hommes (1997), the market shares of firms that choose the slow and fast 

production technology are expressed by 

𝑊𝑊𝑡𝑡
𝑆𝑆 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−2

𝑆𝑆 ]
𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝜋𝜋𝑡𝑡−2

𝑆𝑆 �+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−2𝐹𝐹 ]
= 1

1+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽�𝜋𝜋𝑡𝑡−2𝐹𝐹 −𝜋𝜋𝑡𝑡−2
𝑆𝑆 �]

                                                   (9) 

and 

𝑊𝑊𝑡𝑡
𝐹𝐹 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−2𝐹𝐹 ]

𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝜋𝜋𝑡𝑡−2
𝑆𝑆 �+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−2𝐹𝐹 ]

= 1 −𝑊𝑊𝑡𝑡
𝑆𝑆,                                                          (10) 

respectively, where, given the model’s underlying time structure, the production 

technologies’ realized profits, observed in period 𝑡𝑡 − 2, are determined by 

𝜋𝜋𝑡𝑡−2𝑆𝑆 =  𝑃𝑃𝑡𝑡−2𝑆𝑆𝑡𝑡−2𝑆𝑆 − 𝐶𝐶𝑡𝑡−2𝑆𝑆 = 𝑐𝑐
2

 𝑃𝑃𝑡𝑡−4(2𝑃𝑃𝑡𝑡−2 − 𝑃𝑃𝑡𝑡−4) − 𝑑𝑑𝑆𝑆                                                    (11) 

and  

𝜋𝜋𝑡𝑡−2𝐹𝐹 = 𝑃𝑃𝑡𝑡−2𝑆𝑆𝑡𝑡−2𝐹𝐹 − 𝐶𝐶𝑡𝑡−2𝐹𝐹 =  𝑐𝑐
2

 𝑃𝑃𝑡𝑡−3(2𝑃𝑃𝑡𝑡−2 − 𝑃𝑃𝑡𝑡−3) − 𝑑𝑑𝐹𝐹,                                                 (12) 

respectively. Note that the higher the profitability of a production technology, the 

more firms will select it. In particular, the intensity of choice parameter 𝛽𝛽 > 0 

controls how sensitive the mass of firms is to selecting the most profitable 

production technology. For 𝛽𝛽 → 0, for instance, firms do not observe profit 

differentials between the two production technologies and, consequently, are 

divided equally among them, i.e. 𝑊𝑊𝑡𝑡
𝑆𝑆 = 𝑊𝑊𝑡𝑡

𝐹𝐹 = 0.5 for all 𝑡𝑡. However, the higher 

the intensity of choice parameter 𝛽𝛽, the more firms will select the more profitable 

production technology. In the extreme case of 𝛽𝛽 → ∞, the so-called neoclassical 

limit, all firms will opt for the more profitable production technology.4 

 

                                                           
they can use as a predictor for the commodity price in period 𝑡𝑡. In fact, firms may be willing to pay 

money for better predictions. 
4 Hommes (1998) develops a nonlinear cobweb model with linear backward-looking expectations 

that may yield cyclical commodity price dynamics. In particular, he studies the case in which firms 

form their price expectations for period 𝑡𝑡 as a weighted average of prices they observe in periods 

𝑡𝑡 − 1 and 𝑡𝑡 − 2. In a sense, our model resembles his model when we interpret the market shares 

of firms that opt for the slow and the fast production technology that we model in our paper as 

time-varying weights that enter the aforementioned weighted average price in his model. 
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3 Main results 

For analytical and notational convenience, and similar to Brock and Hommes 

(1997), we introduce the difference in market shares of the two production 

technologies with a one-period lag in the time subscript, i.e. 𝑚𝑚𝑡𝑡−1 = 𝑊𝑊𝑡𝑡
𝑆𝑆 −𝑊𝑊𝑡𝑡

𝐹𝐹=

𝑡𝑡𝑎𝑎𝑡𝑡ℎ �𝛽𝛽
2

(𝜋𝜋𝑡𝑡−2𝑆𝑆 − 𝜋𝜋𝑡𝑡−2𝐹𝐹 ) �. Noting that 𝑊𝑊𝑡𝑡
𝑆𝑆 = 1+𝑚𝑚𝑡𝑡−1

2
  and 𝑊𝑊𝑡𝑡

𝐹𝐹 = 1−𝑚𝑚𝑡𝑡−1
2

 then allows us 

to express our model in the form of a four-dimensional nonlinear map, given by 

⎩
⎪
⎨

⎪
⎧𝑃𝑃𝑡𝑡 =

𝑎𝑎−�1+𝑚𝑚𝑡𝑡−1
2 𝑐𝑐𝑋𝑋𝑡𝑡−1+

1−𝑚𝑚𝑡𝑡−1
2 𝑐𝑐𝑃𝑃𝑡𝑡−1�

𝑏𝑏
                                                                                            

𝑋𝑋𝑡𝑡 = 𝑃𝑃𝑡𝑡−1                                                                                                                                     
𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡−1                                                                                                                                     

𝑚𝑚𝑡𝑡 = 𝑡𝑡𝑎𝑎𝑡𝑡ℎ �𝛽𝛽
2
�� 𝑐𝑐

2
𝑌𝑌𝑡𝑡−1(2𝑃𝑃𝑡𝑡−1 − 𝑌𝑌𝑡𝑡−1) − 𝑑𝑑𝑆𝑆� − � 𝑐𝑐

2
𝑋𝑋𝑡𝑡−1(2𝑃𝑃𝑡𝑡−1 − 𝑋𝑋𝑡𝑡−1) − 𝑑𝑑𝐹𝐹� � �

, (13) 

where 𝑋𝑋𝑡𝑡 = 𝑃𝑃𝑡𝑡−1 and 𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡−1 are auxiliary variables. In order to find the model’s 

steady state(s), we set 𝑃𝑃� = 𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡−1 = 𝑋𝑋𝑡𝑡−1 = 𝑌𝑌𝑡𝑡−1 and 𝑚𝑚� = 𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1. 

Straightforward computations reveal that map (13) possesses the unique steady 

state  

𝐹𝐹𝑆𝑆𝑆𝑆 = (𝑃𝑃�,𝑋𝑋�,𝑌𝑌� ,𝑚𝑚�) = � 𝑎𝑎
𝑏𝑏+𝑐𝑐

, 𝑎𝑎
𝑏𝑏+𝑐𝑐

, 𝑎𝑎
𝑏𝑏+𝑐𝑐

, 𝑡𝑡𝑎𝑎𝑡𝑡ℎ �𝛽𝛽
2
𝑑𝑑��.                                          (14) 

Since steady-state profit differences between the slow and the fast production 

technology amount to  𝜋𝜋𝑆𝑆��� − 𝜋𝜋𝐹𝐹���� = 𝑑𝑑𝐹𝐹 − 𝑑𝑑𝑆𝑆 = 𝑑𝑑, their steady-state market shares 

can be expressed by 𝑊𝑊𝑆𝑆���� = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒[−𝛽𝛽𝛽𝛽]

 and 𝑊𝑊𝐹𝐹����� = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝛽𝛽]

, respectively. Moreover, 

to study the local asymptotic stability properties of the model’s steady state, we 

have to evaluate the Jacobian matrix of (13). At the 𝐹𝐹𝑆𝑆𝑆𝑆, we obtain  

𝐽𝐽(𝐹𝐹𝑆𝑆𝑆𝑆) =

⎣
⎢
⎢
⎢
⎡−

𝑐𝑐�1−𝑡𝑡𝑎𝑎𝑡𝑡ℎ�𝛽𝛽2𝛽𝛽��

2𝑏𝑏
−

𝑐𝑐�1+𝑡𝑡𝑎𝑎𝑡𝑡ℎ�𝛽𝛽2𝛽𝛽��

2𝑏𝑏 0 0
1 0 0 0
0
0

1
0

0 0
0 0⎦

⎥
⎥
⎥
⎤
,                                                           (15) 

yielding the characteristic polynomial 

𝑃𝑃(𝜆𝜆) = 𝜆𝜆2 �𝜆𝜆2 +
𝑐𝑐�1−𝑡𝑡𝑎𝑎𝑡𝑡ℎ�𝛽𝛽2𝛽𝛽 ��

2𝑏𝑏
𝜆𝜆 +

𝑐𝑐�1+𝑡𝑡𝑎𝑎𝑡𝑡ℎ�𝛽𝛽2𝛽𝛽 ��

2𝑏𝑏
�.                                                 (16) 

Since two eigenvalues of (16) are obviously always equal to zero, say 𝜆𝜆1 = 0 and 

𝜆𝜆2 = 0, the local stability of the model’s steady state hinges on the remaining two 

eigenvalues, say 𝜆𝜆3 and 𝜆𝜆4, determined by the term in brackets on the right-hand 

side of (16). Let us rewrite this term as 
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𝜆𝜆2 + 𝑎𝑎1𝜆𝜆 + 𝑎𝑎2,                                                                                               (17) 

where 𝑎𝑎1 =
𝑐𝑐�1−𝑡𝑡𝑎𝑎𝑡𝑡ℎ�𝛽𝛽2𝛽𝛽 ��

2𝑏𝑏
= 𝑐𝑐

𝑏𝑏
𝑊𝑊𝐹𝐹����� and 𝑎𝑎2 =

𝑐𝑐�1+𝑡𝑡𝑎𝑎𝑡𝑡ℎ�𝛽𝛽2𝛽𝛽 ��

2𝑏𝑏
= 𝑐𝑐

𝑏𝑏
𝑊𝑊𝑆𝑆����. As is well known 

(see, e.g. Medio and Lines 2001), necessary and sufficient conditions assuring 

that the remaining two eigenvalues of (16) are less than one in modulus are given 

by (i) 1 + 𝑎𝑎1 + 𝑎𝑎2 > 0, (ii) 1 − 𝑎𝑎1 + 𝑎𝑎2 > 0 and (iii) 1 − 𝑎𝑎2 > 0. Conditions (i) and 

(ii) are always satisfied. However, condition (iii) requires that  

𝑊𝑊𝑆𝑆���� 𝑐𝑐
𝑏𝑏

< 1.                                                                                                                (18) 

Importantly, 0.5 < 𝑊𝑊𝑆𝑆���� < 1 increases in line with 𝛽𝛽. For 𝛽𝛽 → 0, we have that 𝑊𝑊𝑆𝑆���� →

0.5. Hence, the FSS is always unstable for 𝑐𝑐 > 2𝑏𝑏. For 𝛽𝛽 → ∞, we have that 𝑊𝑊𝑆𝑆���� →

1, implying that the FSS is locally stable for 𝑐𝑐 < 𝑏𝑏. Since 𝑊𝑊𝑆𝑆���� =
1+𝑡𝑡𝑎𝑎𝑡𝑡ℎ�𝛽𝛽2𝛽𝛽 �

2
, 

condition (18), relevant for 𝑏𝑏 < 𝑐𝑐 < 2𝑏𝑏, is equivalent to  

𝛽𝛽 <
2𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡ℎ�2𝑏𝑏−𝑐𝑐𝑐𝑐 �

𝛽𝛽
.                                                                                                    (19) 

Finally, a violation of (18) and (19), respectively, is associated with a Neimark-

Sacker bifurcation. 5 We have thus proven the following proposition. 

Proposition: The dynamics of our cobweb model is driven by a four-dimensional 

nonlinear map. Its unique steady state, implying that 𝑃𝑃� = 𝑎𝑎
𝑏𝑏+𝑐𝑐

 and 𝑚𝑚� =  𝑡𝑡𝑎𝑎𝑡𝑡ℎ �𝛽𝛽
2
𝑑𝑑�, 

is locally stable for 𝑐𝑐 < 𝑏𝑏 and unstable for 𝑐𝑐 > 2𝑏𝑏. For 𝑏𝑏 < 𝑐𝑐 < 2𝑏𝑏, the model’s 

steady state is locally stable if 𝛽𝛽 <
2𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡ℎ�2𝑏𝑏−𝑐𝑐𝑐𝑐 �

𝛽𝛽
, where a violation of the later 

condition is associated with a Neimark-Sacker bifurcation. 

                                                           
5 Interestingly, firms’ evolutionary switching between the slow and the fast production technology 

stabilizes the model’s dynamics relative to the case in which only one production technology is 

available, whether that is the slow or the fast production technology. As stated above, the local 

stability of the FSS requires for 𝑊𝑊𝑆𝑆���� → 1 that 𝑐𝑐 < 𝑏𝑏. Furthermore, condition (ii) reads (𝑊𝑊𝐹𝐹����� −

𝑊𝑊𝑆𝑆����) 𝑐𝑐
𝑏𝑏

< 1. Since 𝑊𝑊𝐹𝐹����� < 𝑊𝑊𝑆𝑆����, condition (ii) is always satisfied. However, consider, contrary to our 

assumptions, that 𝑑𝑑 < 0, and assume that 𝛽𝛽 → ∞. Then 𝑊𝑊𝐹𝐹����� → 1, and the local stability of the FSS 

again requires that 𝑐𝑐 < 𝑏𝑏. In the latter case, commodity prices become unstable in the form of a 

flip bifurcation, as in classical cobweb models with naïve expectations and a one-period 

production delay. See Leontief (1934) or Gandolfo (2009). 
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Let us discuss the economic implications of our proposition. At the steady state, 

the commodity price is given by 𝑃𝑃� = 𝑎𝑎
𝑏𝑏+𝑐𝑐

. Since 𝑃𝑃� only depends on the model’s 

real parameters, we call it the model’s fundamental steady state.6 However, the 

model’s behavioral parameter 𝛽𝛽, i.e. firms’ intensity of choice, influences the 

steady-state fractions of firms opting for the slow and fast production technology, 

given by 𝑊𝑊𝑆𝑆���� = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒[−𝛽𝛽𝛽𝛽]

 and 𝑊𝑊𝐹𝐹����� = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝛽𝛽]

, respectively. Obviously, the slow 

production technology receives a larger market share when firms’ intensity of 

choice and/or its fixed costs advantage increases. Needless to say, the same can 

be concluded from the difference in market shares, i.e. from 𝑚𝑚� =  𝑡𝑡𝑎𝑎𝑡𝑡ℎ �𝛽𝛽
2
𝑑𝑑�. For 

completeness, we remark that the steady-state profits of the two production 

technologies amount to 𝜋𝜋𝑆𝑆��� = 𝑐𝑐
2
𝑃𝑃�2 − 𝑑𝑑𝑆𝑆 = 𝑐𝑐𝑎𝑎2

2(𝑏𝑏+𝑐𝑐)2
− 𝑑𝑑𝑆𝑆 and 𝜋𝜋𝐹𝐹���� = 𝑐𝑐

2
𝑃𝑃�2 − 𝑑𝑑𝐹𝐹 =

𝑐𝑐𝑎𝑎2

2(𝑏𝑏+𝑐𝑐)2
− 𝑑𝑑𝐹𝐹. Hence, firms make profits at the steady state as long as their 

production technologies’ fixed costs are not too high. 

With respect to the steady state’s stability properties, we have that the FSS is 

locally stable for 𝑐𝑐 < 𝑏𝑏, while it is unstable for 𝑐𝑐 > 2𝑏𝑏. For 𝑏𝑏 < 𝑐𝑐 < 2𝑏𝑏, stability 

condition 𝑊𝑊𝑆𝑆���� 𝑐𝑐
𝑏𝑏

< 1 applies, being equivalent to  𝛽𝛽 <
2𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡ℎ�2𝑏𝑏−𝑐𝑐𝑐𝑐 �

𝛽𝛽
. Hence, the local 

stability of the model’s FSS does not only depend on the slopes of the model’s 

demand and supply schedules, but also on firms’ intensity of choice and on the 

fixed costs advantage of the slow production technology. In particular, an 

increase in parameter 𝑏𝑏 is beneficial for market stability, while an increase in 

parameters 𝑐𝑐, 𝑑𝑑 and 𝛽𝛽 is harmful to market stability. Furthermore, the stability of 

the model’s FSS is independent of parameter 𝑎𝑎, and, consequently, the same is 

true for the steady-state commodity price and the steady-state profits of the two 

production technologies. In more general terms, we may conclude that an 

increase in the market impact of firms relying on the slow production technology 

is destabilizing. In fact, we may interpret the product of 𝑊𝑊𝑆𝑆���� and 𝑐𝑐 as the slope 

                                                           
6 We remark that Ezekiel (1938) called this steady state the normal steady state. Today, the use 

of the term “fundamental steady state” is more common. 



12 
 

parameter of the aggregate supply function of firms relying on the slow production 

technology, growing, of course, with the market share of the slow production 

technology and with the individual slope parameter of a slow production 

technology adapter. 

To illustrate the dynamics of our model, let us assume the following base 

parameter setting: 𝑎𝑎 = 25, 𝑏𝑏 = 1, 𝑐𝑐 = 1.5 and 𝑑𝑑 = 1. Figure 1 shows bifurcation 

diagrams of the commodity price (top panel) and the market share of firms opting 

for the slow production technology (bottom panel) versus firms’ intensity of 

choice, where parameter 𝛽𝛽 is varied between 0 and 2. As predicted by our 

analytical results, the steady-state commodity price 𝑃𝑃� = 10 becomes unstable 

due to a Neimark-Sacker bifurcation as parameter 𝛽𝛽 exceeds 𝛽𝛽𝑐𝑐𝑎𝑎𝑖𝑖𝑡𝑡 ≈ 0.7. Since 

the amplitude of commodity price cycles increases in line with parameter 𝛽𝛽, we 

can conclude that our cobweb model does not only become unstable, but also 

increasingly volatile when firms switch faster between their two production 

technologies. While 𝑃𝑃� is independent of parameter 𝛽𝛽, 𝑊𝑊𝑆𝑆���� increases in line with it. 

Note that 𝑊𝑊𝑆𝑆���� = 2/3 at 𝛽𝛽𝑐𝑐𝑎𝑎𝑖𝑖𝑡𝑡 ≈ 0.7, so that 𝑊𝑊𝑆𝑆���� 𝑐𝑐
𝑏𝑏

= 1. Defining 𝑆𝑆𝐶𝐶 = 𝑊𝑊𝑆𝑆����𝑐𝑐 as the 

slope parameter of the aggregate supply schedule of firms adhering to the slow 

production technology at the steady state, the stability condition 𝑆𝑆𝑆𝑆
𝑏𝑏

< 1 is 

reminiscent of the one reported in Leontief (1934), except that a violation of our 

stability condition leads to cyclical dynamics, while a violation of his stability 

condition creates a period-two cycle. 

Figures 2 depicts the time evolution of the commodity price, the time evolution of 

the market share of firms opting for the slow production technology, the market 

share of firms opting for the slow production technology in period 𝑡𝑡 versus the 

commodity price in period 𝑡𝑡 and the commodity price in period 𝑡𝑡 + 1 versus the 

commodity price in period 𝑡𝑡, assuming that 𝛽𝛽 = 1. As long as firms’ intensity of 

choice parameter remains near its Neimark-Sacker bifurcation value, our model 

gives rise to more or less regular oscillatory commodity price dynamics. However, 

our model is also able to produce complex dynamics, as evidenced by the 

simulations presented in Figure 3, resting on 𝛽𝛽 = 3.5. We remark that the 
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emergence of a strange attractor, visible in the bottom two panels of Figure 3, is 

an indicator of chaotic dynamics. 

Despite the high dimension of our cobweb model, it is still possible to understand 

its basic functioning. Note first that the amplitude of the commodity price cycles 

depicted in Figure 3 increases when firms stick to the slow production technology 

for longer periods, as is, for instance, the case around periods, 20, 40 and 60. In 

contrast, the dynamics of our cobweb model becomes (temporarily) stabilized 

when sufficiently many firms switch to the fast production technology. In fact, 

stability condition (18) suggests that for the underlying parameter setting of the 

dynamics depicted in Figure 3, this is the case when 𝑊𝑊𝑡𝑡
𝑆𝑆 < 2

3
. Together, this leads 

us to the following insights. Near the fundamental steady state, firms prefer the 

slow production technology: as long as the commodity price is relatively stable, 

the slow production technology’s fixed costs advantage outweighs the errors that 

arise from having to predict the commodity price for period 𝑡𝑡 on the basis of the 

commodity price observed in period 𝑡𝑡 − 2. The cobweb market is then subject to 

a centrifugal force. As the cobweb market enters a more unstable phase, 

however, prediction errors of firms using the slow production technology 

increase, and it eventually pays off for firms to switch to the fast production 

technology, despite facing higher fixed costs.7 This allows them to monitor the 

commodity price for one period closer to the trading period. Now the commodity 

market is subject to a centripetal force. Unfortunately, this is not the end of the 

story. Firms return to the slow production technology when the commodity market 

has sufficiently calmed down and, consequently, the centripetal force gives way 

to the centrifugal force, keeping the dynamics alive.8 

 

                                                           
7 See Appendix A for a more rigorous line of reasoning. 
8 In the cobweb model by Brock and Hommes (1997), firms switch between naïve and rational 

expectations, implying, essentially, that they face a production lag of one period or no production 

lag. Similar to our model, the dynamics of their model becomes unstable when naïve (slow) firms 

dominate the commodity market. A difference between their model and ours is that our model 

entails a further production lag, turning, roughly speaking, their flip bifurcation scenario into our 

Neimark-Sacker bifurcation scenario.  
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4 A cobweb model with three different production technologies 

In this section, we modify our cobweb model by assuming that the production 

process takes three periods and that firms have access to three different 

production technologies, referred to as the fast, the slow and the lame production 

technology, effectively necessitating them to fix their production decisions (i.e. 

the quantity to be produced) one, two or three periods ahead. Once a firm has 

decided in period 𝑡𝑡 − 3 for a production technology it wants to use to produce the 

commodity for period 𝑡𝑡, its choice cannot be reversed. The three production 

technologies’ fixed costs parameters satisfy the relation 𝑑𝑑𝐹𝐹 > 𝑑𝑑𝑆𝑆 > 𝑑𝑑𝐿𝐿 ≥ 0, where 

the index 𝐿𝐿 refers to the new (lame) production technology. Consequently, the 

total supply of the commodity is 𝑆𝑆𝑡𝑡 = 𝑁𝑁(𝑊𝑊𝑡𝑡
𝐿𝐿𝑆𝑆𝑡𝑡𝐿𝐿 + 𝑊𝑊𝑡𝑡

𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆 + 𝑊𝑊𝑡𝑡
𝐹𝐹𝑆𝑆𝑡𝑡𝐹𝐹), where 𝑊𝑊𝑡𝑡

𝐿𝐿 

stands for the market share of firms opting for the lame production technology 

and 𝑆𝑆𝑡𝑡𝐿𝐿 = 𝑐𝑐𝑃𝑃𝑡𝑡−3 indicates the optimal supply of one of those firms. Fixing the mass 

of firms to 𝑁𝑁 = 1, the commodity price is due to 𝑃𝑃𝑡𝑡 = 𝑎𝑎−(𝑊𝑊𝑡𝑡
𝐿𝐿𝑆𝑆𝑡𝑡𝐿𝐿+𝑊𝑊𝑡𝑡

𝑆𝑆𝑆𝑆𝑡𝑡
𝑆𝑆+𝑊𝑊𝑡𝑡

𝐹𝐹𝑆𝑆𝑡𝑡𝐹𝐹)
𝑏𝑏

. 

Moreover, the market shares of firms choosing the lame, the slow and the fast 

production technology are given by 𝑊𝑊𝑡𝑡
𝐿𝐿 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−3𝐿𝐿 ]

𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝜋𝜋𝑡𝑡−3𝐿𝐿 �+𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝜋𝜋𝑡𝑡−3
𝑆𝑆 �+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−3𝐹𝐹 ]

, 𝑊𝑊𝑡𝑡
𝑆𝑆 =

𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−3
𝑆𝑆 ]

𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝜋𝜋𝑡𝑡−3𝐿𝐿 �+𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝜋𝜋𝑡𝑡−3
𝑆𝑆 �+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−3𝐹𝐹 ]

 and 𝑊𝑊𝑡𝑡
𝐹𝐹 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−3𝐹𝐹 ]

𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝜋𝜋𝑡𝑡−3𝐿𝐿 �+𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝜋𝜋𝑡𝑡−3
𝑆𝑆 �+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝜋𝜋𝑡𝑡−3𝐹𝐹 ]

, 

respectively. Importantly, firms’ choice of production technology now depends on 

realized profits observed in period 𝑡𝑡 − 3, namely 𝜋𝜋𝑡𝑡−3𝐿𝐿 =  𝑃𝑃𝑡𝑡−3𝑆𝑆𝑡𝑡−3𝐿𝐿 − 𝐶𝐶𝑡𝑡−3𝐿𝐿 =
𝑐𝑐
2

 𝑃𝑃𝑡𝑡−6(2𝑃𝑃𝑡𝑡−3 − 𝑃𝑃𝑡𝑡−6) − 𝑑𝑑𝐿𝐿, 𝜋𝜋𝑡𝑡−3𝑆𝑆 =  𝑃𝑃𝑡𝑡−3𝑆𝑆𝑡𝑡−3𝑆𝑆 − 𝐶𝐶𝑡𝑡−3𝑆𝑆 = 𝑐𝑐
2

 𝑃𝑃𝑡𝑡−5(2𝑃𝑃𝑡𝑡−3 − 𝑃𝑃𝑡𝑡−5) − 𝑑𝑑𝑆𝑆 

and 𝜋𝜋𝑡𝑡−3𝐹𝐹 = 𝑃𝑃𝑡𝑡−3𝑆𝑆𝑡𝑡−3𝐹𝐹 − 𝐶𝐶𝑡𝑡−3𝐹𝐹 =  𝑐𝑐
2

 𝑃𝑃𝑡𝑡−4(2𝑃𝑃𝑡𝑡−3 − 𝑃𝑃𝑡𝑡−4) − 𝑑𝑑𝐹𝐹. The dynamics of this 

model is due to a six-dimensional nonlinear map. See Appendix B for a brief 

analytical characterization. 

The top panel of Figure 4 shows the time evolution of the commodity price, 

assuming that 𝑎𝑎 = 25, 𝑏𝑏 = 1, 𝑐𝑐 = 1.5, 𝑑𝑑𝐹𝐹 = 1, 𝑑𝑑𝑆𝑆 = 0.1, 𝑑𝑑𝐿𝐿 = 0 and 𝛽𝛽 = 1.8. 

Comparing this panel with the top panel of Figure 2 reveals that allowing for larger 

production delays may increase the length of commodity price cycles. Indeed, 

Ezekiel (1938) already demonstrated that a cobweb model with a production 

delay of two periods and naïve expectations may give rise to a stable period-4 
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cycle, while a cobweb model with a production lag of three periods and naïve 

expectations may give rise to a stable period-6 cycle. Further simulations (not 

depicted) reveal that the average cycle length of the commodity price further 

increases when even larger production delays are considered. The bottom panel 

of Figure 4 presents the commodity price versus firms’ intensity of choice 

parameter using the same parameter setting, except that parameter 𝛽𝛽 is varied 

between 0 < 𝛽𝛽 < 2. As can be seen, the cobweb market becomes unstable in the 

form of a Neimark-Sacker bifurcation as firms’ intensity of choice parameter 

exceeds 𝛽𝛽𝑐𝑐𝑎𝑎𝑖𝑖𝑡𝑡 ≈ 1.418. 

 

5 Conclusions 

A crucial goal of our paper is to explain the fact that commodity markets around 

the world display significant cyclical price dynamics. To achieve this goal, we 

follow Ezekiel (1938) and develop a cobweb model in which all firms face a 

production delay of two periods. However, firms have access to two different 

production technologies: a slow (cheap) production technology, requiring them to 

start the production process immediately, and a fast (costly) production 

technology, allowing them to delay the production process by one period. While 

the fast production technology invokes higher fixed costs than the slow production 

technology, it offers firms an informational advantage in the sense that they can 

monitor the evolution of the commodity market one period closer to the actual 

trading date. Inspired by Brock and Hommes (1997), we furthermore assume that 

firms select between production technologies based on their past performance. 

As it turns out, a four-dimensional nonlinear map, possessing a unique steady 

state, reigns the dynamics of our cobweb model. We analytically show that its 

steady state may become unstable in the form of a Neimark-Sacker bifurcation 

when sufficiently many firms opt for the slow production technology. Our cobweb 

model then generates regular or, depending on the parameter setting, irregular 

oscillatory price dynamics. Interestingly, allowing for larger production lags tends 

to increase the dynamics’ average cycle length. 

To make the implications of our setup as stark as possible, we assume that firms 
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have naïve expectations. A natural extension of our cobweb model would thus be 

to consider alternative expectation formation schemes, e.g. by assuming that 

firms rely on extrapolative, regressive or adaptive expectation rules. It would, of 

course, be beneficial to build a model in which firms switch between production 

technologies and expectation rules. The same is true for approaches that 

postulate nonlinear demand and supply schedules. Finally, we remark that Tonu 

Puu was always interested in the global behavior of economic models. Hence, it 

might also be worthwhile to explore our model’s out-of-equilibrium dynamics in 

more detail. In any case, we hope that our paper stimulates more work in these 

directions. 

 
Appendix A 
Note that (11) and (12) allow us to rewrite the profit differential between the fast 

and the slow production technology as  

𝜋𝜋𝑡𝑡𝐹𝐹 − 𝜋𝜋𝑡𝑡𝑆𝑆 =
𝑐𝑐
2

 𝑃𝑃𝑡𝑡−1(2𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1) − 𝑑𝑑𝐹𝐹 −
𝑐𝑐
2

 𝑃𝑃𝑡𝑡−2(2𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−2) + 𝑑𝑑𝑆𝑆 

              = 𝑐𝑐 𝑃𝑃𝑡𝑡(𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2) − 𝑐𝑐
2

 (𝑃𝑃𝑡𝑡−12 − 𝑃𝑃𝑡𝑡−22 ) − (𝑑𝑑𝐹𝐹 − 𝑑𝑑𝑆𝑆) 

              = 𝑐𝑐 𝑃𝑃𝑡𝑡(𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2) − 𝑐𝑐
2

 (𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2)(𝑃𝑃𝑡𝑡−1 + 𝑃𝑃𝑡𝑡−2) − 𝑑𝑑                             (A1)              

              = 𝑐𝑐 (𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2) �𝑃𝑃𝑡𝑡 − 𝑃𝑃�𝑡𝑡−1� − 𝑑𝑑, 

where 𝑃𝑃�𝑡𝑡−1: = (𝑃𝑃𝑡𝑡−1+𝑃𝑃𝑡𝑡−2)
2

  is the average price of the previous two periods. 

Accordingly, the fast production technology is more profitable in period 𝑡𝑡 if and 

only if 

𝑐𝑐 (𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2) �𝑃𝑃𝑡𝑡 − 𝑃𝑃�𝑡𝑡−1� > 𝑑𝑑.                                                                   (A2) 

Since 𝑑𝑑 > 0, a necessary condition for the fast production technology to be more 

profitable in period 𝑡𝑡 is that (𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2) and �𝑃𝑃𝑡𝑡 − 𝑃𝑃�𝑡𝑡−1� have the same sign, that 

is there must be some persistence in the price trend over the last two periods. 

Conversely, a sufficient condition for the slow production technology to be more 

profitable in period 𝑡𝑡 is that the product between these two quantities is negative, 

e.g. due to a price reversal over the last two periods. Clearly, a commodity market 

with pronounced price trends is beneficial for the fast production technology while 

a more stable commodity market is beneficial for the slow production technology. 
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Appendix B 

The model with three different production delays presented in Section 4 may be 

expressed by the following six-dimensional nonlinear map: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑃𝑃𝑡𝑡 = 𝑎𝑎−�𝑊𝑊𝑡𝑡

𝐹𝐹𝑐𝑐𝑃𝑃𝑡𝑡−1+𝑊𝑊𝑡𝑡
𝑆𝑆𝑐𝑐𝑉𝑉𝑡𝑡−1+𝑊𝑊𝑡𝑡

𝐿𝐿𝑐𝑐𝑊𝑊𝑡𝑡−1�
𝑏𝑏

𝑉𝑉𝑡𝑡 = 𝑃𝑃𝑡𝑡−1                                                
𝑊𝑊𝑡𝑡 = 𝑉𝑉𝑡𝑡−1
𝑋𝑋𝑡𝑡 = 𝑊𝑊𝑡𝑡−1
𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡−1  
𝑍𝑍𝑡𝑡 = 𝑌𝑌𝑡𝑡−1

                                              
,                                                           (B1) 

where 𝑊𝑊𝑡𝑡
𝐹𝐹 =

𝑒𝑒𝑒𝑒𝑒𝑒 [𝛽𝛽�𝑐𝑐2𝑋𝑋𝑡𝑡−1(2𝑊𝑊𝑡𝑡−1−𝑋𝑋𝑡𝑡−1)−𝛽𝛽𝐹𝐹�]

Ω𝑡𝑡
, 𝑊𝑊𝑡𝑡

𝑆𝑆 =
𝑒𝑒𝑒𝑒𝑒𝑒 [𝛽𝛽�𝑐𝑐2𝑌𝑌𝑡𝑡−1(2𝑊𝑊𝑡𝑡−1−𝑌𝑌𝑡𝑡−1)−𝛽𝛽𝑆𝑆�]

Ω𝑡𝑡
, 𝑊𝑊𝑡𝑡

𝐿𝐿 =

𝑒𝑒𝑒𝑒𝑒𝑒 [𝛽𝛽�𝑐𝑐2𝑍𝑍𝑡𝑡−1(2𝑊𝑊𝑡𝑡−1−𝑍𝑍𝑡𝑡−1)−𝛽𝛽𝐿𝐿�]

Ω𝑡𝑡
 and Ω𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 [𝛽𝛽 �𝑐𝑐

2
𝑋𝑋𝑡𝑡−1(2𝑊𝑊𝑡𝑡−1 − 𝑋𝑋𝑡𝑡−1) − 𝑑𝑑𝐹𝐹�] +

𝑒𝑒𝑒𝑒𝑒𝑒 [𝛽𝛽 �𝑐𝑐
2
𝑌𝑌𝑡𝑡−1(2𝑊𝑊𝑡𝑡−1 − 𝑌𝑌𝑡𝑡−1) − 𝑑𝑑𝑆𝑆�] + 𝑒𝑒𝑒𝑒𝑒𝑒 [𝛽𝛽 �𝑐𝑐

2
𝑍𝑍𝑡𝑡−1(2𝑊𝑊𝑡𝑡−1 − 𝑍𝑍𝑡𝑡−1) − 𝑑𝑑𝐿𝐿�].9 Now, 

straightforward computations reveal that the model’s unique steady state, given 

by 

𝑃𝑃� = 𝑉𝑉� = 𝑊𝑊� = 𝑋𝑋� = 𝑌𝑌� = �̅�𝑍 = 𝑎𝑎
𝑏𝑏+𝑐𝑐

,                                                                               (B2) 

yields, via its Jacobian matrix, the following characteristic polynomial:  

𝑃𝑃(𝜆𝜆) = 𝜆𝜆3 �𝜆𝜆3 + 𝑐𝑐
𝑏𝑏
𝑊𝑊𝐹𝐹�����𝜆𝜆2 + 𝑐𝑐

𝑏𝑏
𝑊𝑊𝑆𝑆����𝜆𝜆 + 𝑐𝑐

𝑏𝑏
𝑊𝑊𝐿𝐿�����,                                                    (B3) 

where 𝑊𝑊𝐹𝐹����� = 1
1+exp�𝛽𝛽�𝛽𝛽𝐹𝐹−𝛽𝛽𝑆𝑆��+exp[𝛽𝛽(𝛽𝛽𝐹𝐹−𝛽𝛽𝐿𝐿)], 𝑊𝑊

𝑆𝑆���� = 1
1+exp�𝛽𝛽�𝛽𝛽𝑆𝑆−𝛽𝛽𝐹𝐹��+exp�𝛽𝛽�𝛽𝛽𝑆𝑆−𝛽𝛽𝐿𝐿��

 and  

𝑊𝑊𝐿𝐿���� = 1
1+exp[𝛽𝛽(𝛽𝛽𝐿𝐿−𝛽𝛽𝐹𝐹)]+exp�𝛽𝛽�𝛽𝛽𝐿𝐿−𝛽𝛽𝑆𝑆��

. Using the stability results derived in Lines et al. 

(2020), we can conclude that the model’s steady state loses its local stability 

when one of the three inequalities becomes broken: (i) 1 + 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 > 0, 

(ii) 1 − 𝑎𝑎1 + 𝑎𝑎2 − 𝑎𝑎3 > 0 and (iii) 1 − 𝑎𝑎2 + 𝑎𝑎1𝑎𝑎3 − 𝑎𝑎32 > 0, where 𝑎𝑎1 = 𝑐𝑐
𝑏𝑏
𝑊𝑊𝐹𝐹�����, 𝑎𝑎2 =

𝑐𝑐
𝑏𝑏
𝑊𝑊𝑆𝑆���� and 𝑎𝑎3 = 𝑐𝑐

𝑏𝑏
𝑊𝑊𝐿𝐿����. Before we study these inequalities in more detail, a few 

observations are in order. For 𝛽𝛽 > 0, the relation 0 < 𝑊𝑊𝐹𝐹����� < 𝑊𝑊𝑆𝑆���� < 𝑊𝑊𝐿𝐿���� < 1 holds. 

Moreover, as 𝛽𝛽 moves from 0 to ∞, 𝑊𝑊𝐹𝐹����� decreases from 1
3
 to 0, while 𝑊𝑊𝐿𝐿���� increases 

from 1
3
 to 1. Although 𝑊𝑊𝑆𝑆���� = 1

3
 for 𝛽𝛽 = 0 and 𝑊𝑊𝑆𝑆���� → 0 for 𝛽𝛽 → ∞, 𝑊𝑊𝑆𝑆���� reacts non-

                                                           
9 The auxiliary variable 𝑊𝑊𝑡𝑡 should not be confused with the market shares 𝑊𝑊𝑡𝑡

𝐿𝐿, 𝑊𝑊𝑡𝑡
𝑆𝑆 and 𝑊𝑊𝑡𝑡

𝐹𝐹. 
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monotonically with respect to 𝛽𝛽. However, it is clear that 𝑊𝑊𝑠𝑠���� < 1
2
 for any 𝛽𝛽 ≥ 0. 

Having these observations in mind, condition (i) is obviously always satisfied. 

Condition (ii), requiring that  
𝑐𝑐
𝑏𝑏
�1 − 2𝑊𝑊𝑆𝑆����� < 1,                                                                                              (B4) 

is certainly satisfied when 𝑐𝑐 ≤ 2𝑏𝑏. A violation of (B4) takes place if the ratio 

between 𝑐𝑐 and 𝑏𝑏 is sufficiently larger than 1 and a large enough increase in 𝛽𝛽 

renders 𝑊𝑊𝑠𝑠���� sufficiently small. Condition (iii) necessitates that  
𝑐𝑐
𝑏𝑏
�𝑊𝑊𝑆𝑆���� + 𝑐𝑐

𝑏𝑏
𝑊𝑊𝐿𝐿�����𝑊𝑊𝐿𝐿���� −𝑊𝑊𝐹𝐹������� < 1.                                                                      (B5) 

Since the left-hand side of (B5) is equal to 𝑐𝑐
3𝑏𝑏 

 for 𝛽𝛽 = 0, our previous remarks 

imply that (B5) is violated if 𝑐𝑐 > 3𝑏𝑏 and 𝛽𝛽 is not too large. Similarly, since the left-

hand side of (B5) tends to �𝑐𝑐
𝑏𝑏
�
2
 as 𝛽𝛽 → ∞, (B5) holds if 𝑐𝑐 < 𝑏𝑏 and 𝛽𝛽 is large 

enough. Although no general conclusions can be drawn from intermediate values 

of the ratio between 𝑐𝑐 and 𝑏𝑏, the simple and tractable form of conditions (B4) and 

(B5) allows us to easily identify bifurcation values for 𝛽𝛽, given specific values for 

𝑏𝑏 and 𝑐𝑐. For instance, the bifurcation diagram in Figure 4 is based on 𝑏𝑏 = 1, 𝑐𝑐 =

1.5,  𝑑𝑑𝐹𝐹 = 1, 𝑑𝑑𝑆𝑆 = 0.1 and 𝑑𝑑𝐿𝐿 = 0. For 𝛽𝛽𝑐𝑐𝑎𝑎𝑖𝑖𝑡𝑡 ≈ 1.418, we obtain 𝑊𝑊𝐹𝐹����� ≈ 0.115, 𝑊𝑊𝑆𝑆���� ≈

0.411 and 𝑊𝑊𝐿𝐿���� ≈ 0.474, and (B5) reveals that the steady state is at the border of 

stability. As demonstrated by Gardini et al. (2021), we can furthermore conclude 

that a violation of (B5) is associated with a Neimark-Sacker bifurcation. In fact, a 

slight increase in 𝛽𝛽 elevates 𝑊𝑊𝐿𝐿���� and 𝑊𝑊𝑆𝑆���� at the expense of 𝑊𝑊𝐹𝐹�����, and the steady 

state loses its stability, giving way to oscillatory dynamics.  
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Figure 1: Bifurcation diagrams. The panels show the commodity price and the 

market share of firms opting for the slow production technology versus firms’ 

intensity of choice parameter 𝛽𝛽. Remaining parameters: 𝑎𝑎 = 25, 𝑏𝑏 = 1, 𝑐𝑐 = 1.5 

and 𝑑𝑑 = 1. 
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Figure 2: Oscillatory dynamics. The panels show from top to bottom the evolution 

of the commodity price, the evolution of the market share of firms opting for the 

slow production technology, the market share of firms opting for the slow 

production technology in period 𝑡𝑡 versus the commodity price in period 𝑡𝑡 and the 

commodity price in period 𝑡𝑡 + 1 versus the commodity price in period 𝑡𝑡. 

Parameter setting: 𝑎𝑎 = 25, 𝑏𝑏 = 1, 𝑐𝑐 = 1.5, 𝑑𝑑 = 1 and 𝛽𝛽 = 1. 
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Figure 3: Chaotic dynamics. The panels show from top to bottom the evolution of 

the commodity price, the evolution of the market share of firms opting for the slow 

production technology, the market share of firms opting for the slow production 

technology in period 𝑡𝑡 versus the commodity price in period 𝑡𝑡 and the commodity 

price in period 𝑡𝑡 + 1 versus the commodity price in period 𝑡𝑡. Parameter setting: 

𝑎𝑎 = 25, 𝑏𝑏 = 1, 𝑐𝑐 = 1.5, 𝑑𝑑 = 1 and 𝛽𝛽 = 3.5.  
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Figure 4: Three production technologies. The top panel shows the time evolution 

of the commodity price, assuming that 𝑎𝑎 = 25, 𝑏𝑏 = 1, 𝑐𝑐 = 1.5,  𝑑𝑑𝐹𝐹 = 1, 𝑑𝑑𝑆𝑆 = 0.1, 

𝑑𝑑𝐿𝐿 = 0 and 𝛽𝛽 = 1.8. The bottom panel shows the commodity price versus firms’ 

intensity of choice parameter using the same parameter setting, except that the 

parameter is varied between 0 < 𝛽𝛽 < 2. 
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